ARCOS ' B

COMPUTER
ARCHITECTURE

- Synchronization

:~\" N>\ Universidad ARCOS .-l B

) CarosIldeMadridc Contents e

9 i Q
i/ www.uc3mes

o Introduction.

o Hardware support.
o Locks.

o Barriers

Computer Architecture - 2014

&S unvesiid ——— MP Synchronization in shared
“| Carlos III de Madrid

@ L) V) www.uc3mes memo ry

o Communication performed through shared
memory.

o It is necessary to synchronize access to shared
variables.

o Alternatives:
o 1-1 Communication.
o Collective communication.

Computer Architecture - 2014

~ NO\ Universidad ARCOS .-l B

) carlosIldeMadrid 1-1 Communication B E §

) TuTy Q
s g www.uc3m.es

o Ensure that a read (receive) happens after
write (send).

o In case of reuse (loops):

o Ensure that write (send) happens after to prior
read (send).

0 Mutual exclusion needed:

o Only one of the processes accesses variable at
the same time.

o Critical section:

o Sequence of instructions accessing to one or
more variables with mutual exclusion.

Computer Architecture - 2014

:\\"‘ NO\ Universidad ARCOS .-l B

) CalosildeMadrid - COllective communication BEd §

9 i Q
i/ www.uc3mes

o Needs coordination of multiple accesses to a
variable.

o Writes without interference.
o Reads must wait for data to be available.

0 Guarantees needed:

o Accesses to variables in mutual exclusion.

o Result is not read until all have executed their
critical section.

Computer Architecture - 2014

\ a7 = o
O\ Universidad

www.uc3m.es

2\ Carlos ITI de Madrid Adding q vector

ARCOS i B

for (i=iproc; i<n;i=i+nproc) {
result = result + v[i;

}

.

‘g

Y, }

ouble partial = 0;

for (i=iproc; i<n;i=i+nproc) {

partial = partial + V][i];

result = result + partial;

N

Computer Architecture - 2014

:~\" N>\ Universidad ARCOS .-l B

) CarosIldeMadridc Contents e

9 i Q
i/ www.uc3mes

o Introduction

o Hardware support.
o Locks.

o Barriers

Computer Architecture - 2014

:\\"‘ NO\ Universidad ARCOS .-l B

) CarosldeMadrid - Hardware support e

9 i Q
i/ www.uc3mes

o Need to fix a global order of operations.

o Consistency model could be insufficient and
complex.

o Usually complemented with read-modify-write
operations.

o Example in 1A-32:
= Instructions with LOCK prefix.

= Access to bus in exclusive mode if position is not in
cache.

Computer Architecture - 2014

:f‘ NO\ Universidad ARCOS .-l B

) Carlos Il de Madrid Primitives - -

9 i Q
i/ www.uc3mes

0 Test and set:

o Atomic sequence.
= Read memory location in register (returned as result).
= Write value 1 in memory location.

o IBM 370, Sparc V9

Computer Architecture - 2014

&y 7 (I/&'G, Universidad AR C OS .-' .

: ") Carlos IIl de Madrid imiti S it
N M”\\\'S www.uc3m.es Prlmltlves .! .‘ .|

0 Swap:

o Atomic sequence:

= Exchanges contents of a memory location and a
register.

m Includes a memory read and a memory write.
o More general than test-and-set.

o Instruction |1A-32:
= XCHG reg, mem

o Sparc V9, |A-32, ltanium

Computer Architecture - 2014

:\\"‘ NO\ Universidad ARCOS .-l B

) CarlosIldeMadrid Primitives -

9 i Q
i/ www.uc3mes

o Fetch-and-op:
o Several operations: fetch-add, fetch-or, fetch-inc,

o Atomic sequence:
= Read memory position in register (return that value).

= Write in memory location the result of applying
operation to original value.

o Example |A-32:
= LOCK XADD reg, mem

o IBM RP3, Origin 2000, 1A-32, Itanium

Computer Architecture - 2014

:\\"‘ NO\ Universidad ARCOS .-l B

) Carlos Il de Madrid Primitives - -

9 i Q
i/ www.uc3mes

o Compare-and-swap:

o Operation on two local variables (registers a and
b) and a memory location (variable x).

o Atomic sequence:
= Read value from x.
= If X equals to register a - swap x and register b.

o Example |1A-32:
= LOCK CMPXCHG mem, reg
m Uses implicitly additional register eax.

o IBM 370, Sparc V9, |A-32, Itanium

Computer Architecture - 2014

ARCOS '

W i i
® ./ www.uc3m.es | O |

_.5\ O\ Universidad . .
) cuisiiiemaria Primitives

o LL/SC (Load Linked/Store Conditional):

o If the content of a read variable through LL is
modified before a SC, store is not performed.

o If between LL and SC a context switch happens,
SC is not performed.

o SC returns success/failure code.

o Example Power-PC:
= LWARX
s STWCX

o Origin 2000, Sparc V9, Power PC

Computer Architecture - 2014

& 2% Universidad ARCOS .-l B

) CarosIldeMadridc Contents e

9 i Q
i/ www.uc3mes

o Introduction

o Hardware support.
o Locks.

o Barriers

Computer Architecture - 2014

:\\"‘ N>\ Universidad ARCOS .-l B

) CarlosIIdeMadrid |_ocks i i
N

) TuTy Q
QU www.uc3m.es

0 Mechanism to ensure mutual exclusion.

o Two synchronization functions:

o Lock(k)

= Acquires the lock.

= If several try to acquire the lock, n-1 of them transition
to waiting state.

= If more processes arrive, they transition to waiting
state.

o Unlock(k)

m Release the lock.

= Allow to one of the waiting processes to acquire the
lock.

Computer Architecture - 2014

2% Universidad ARCOS .-l B

) Coonin deMadrid Waiting mechanisms & &= i

o Two Alternatives.
o Busy waiting:
= Process waits in a loop that constantly queries wait
control variable value.
= Spin-lock.
o Blocking:

m Process suspends and gives processor to another
process.

= If a process executes un-lock and there are blocked
processes, one of them is released.

= Requires scheduler support.
Alternative selection

Is cost dependent

Computer Architecture - 2014

‘s Universidad ARCOS .-l B

g % Carlos III de Madrid — -
< A.\\\'S www.uc3m.es CO m po nen tS .l .l .l

o Acquisition method:
o Used to try to lock acquisition.

o Waiting method:
o Mechanism to wait until lock can be acquired.

o Release mechanism:

o Mechanisms to release one or more waiting
processes.

Computer Architecture - 2014

) - -
O\ Universidad

m Carlos Il de Madrid Simp|e locks

)]
i/ www.uc3mes

0 Shared variable k with two values:
o0 — open.
o1 — closed.

o Lock(k)
o If k=1 — Busy wait while k=1
o If k=0 — k=1
o Do not allow 2 processes to acquire lock
simultaneously.

= Use read-modify-write close.

Computer Architecture - 2014

ARCOS i B

2% Universidad ARCOS .-l .’

R Gt de Madria Simple implementations Ed W
Test and set Fetch and op
fLock(k) { - /Lock(k) { E
while (k.test_and set()) {} while (k.fetch_and or(1) == 1) {}
} }
. J . /
Swap |IA-32
4 N

Lock: MOV eax, 1
Repetir. XCHG eax, k
CMP eax, 1

_ jZ Repetir Y,

Computer Architecture - 2014

2% Universidad ARCOS .-l B

NP Coellemarid Test-and-set optimization & &= i

Goal: Minimize memory writes

Test and set Test and set
/Lock(k) { h /Lock(k) { h
while (k.test_and_set()) { do {
while (k==1) {} while (k==1) {}
} } while (k.test_and_set());
} }
- / - /
If it is very likely that If it is very likely that
lock is open lock is closed

Computer Architecture - 2014

‘s, Universidad ARCOS I-E [

%) Carlos Il de Madrid ' =y = e
R Sl deMadi Exponential delay P

o Goal:
o Memory access reduction.
o Limit power comsumption.

/Lock(k) { \

while (k.test_and_set()) {
pause(delay);
delay *=2;

}

N Y

Computer Architecture - 2014

:\\"‘ N>\ Universidad ARCOS .-E B

) CaloslldeMadrid - SyNChronization and modification B i i

<9 iy Q
i/ www.uc3mes

o Performance can be improved if same variable
used to synchronized and communicate.

o Avoid using shared variables only for
synchronization.

/

double partial = 0;
for (i=iproc; i<n;i=i+nproc) {
partial = partial + V[i];

}
result.fech _add(partial);

n

Computer Architecture - 2014

& 2% Universidad ARCOS .-l B

) CalosIldeMadrid | 0cks and arrival order i

9] Q
i/ www.uc3mes

0 Problem:

o Simple implementations do not fix acquisition
order of a lock.

o Starvation could be possible.

o Solution:

o Make that lock is acquired by request age (oldes
acquires first).

o Guarantees a FIFO ordering.

Computer Architecture - 2014

N>\ Universidad ARCOS .-l]

’ “ Carlos III de Madrid e nawy
NP Cuiesmiemadid Tagged locks PEE W

o Two counters:

o Acquisition counter: Number of processes that requested
the lock.

o Release counter: Number of times that a lock has been
released.

o Lock
o Tag — Acquisition counter value.
o Increment acquisition counter.
o Process stays waiting until release counter equals to tag.

o Unlock
o Increment release counter.

Computer Architecture - 2014

& 2% Universidad ARCOS .-l B

) CarosIldeMadrid Queue based locks B E §

&/ www.uc3mees

o Keep a queue with processes waiting to enter into
a critical section.

0 Lock
o Check if queue is empty.

o If a process joins a queue make busy waiting in a
variable.

= Each process busy waits in a different variable.

o Unlock
o Remove process from queue.
o Modify wait variable from process.

Computer Architecture - 2014

2% Universidad ARCOS .-l -
) Carlos III de Madrid

\\
il =1 o - ol
N Mm\\\-\ www.uc3m.es . . .

o Introduction

o Hardware support.
o Locks.

o Barriers

Computer Architecture - 2014

& 2% Universidad ARCOS .-l B

) Carlos Il de Madrid Barriers - -

9 i Q
i/ www.uc3mes

o Allow to synchronize several processes in
some point.

o Guarantees that no process passes the barrier
until all of them have arrived.

o Used to synchronized program phases.

Computer Architecture - 2014

:\\"‘ NO\ Universidad ARCOS .-l B

) CarloslldeMadrid - Centralized barriers i

9 i Q
i/ www.uc3mes

1 Centralized counter associated to the barrier.

o Counts the number of processes that have
arrived the barrier.

0 Barrier function:
o Increment counter.

o Wait until counter reaches the number of
processes to be synchronized.

Computer Architecture - 2014

>\ Universidad

ARCOS ' B

Carlos III de Madrid Simple barrier B i

www.uc3m.es

@rier(barrien n) {
lock(barrier.lock);

if (barrier.counter == 0) {
barrier.flag=0;

}

unlock(barrier.lock);

barrier.counter=0;
barrier.flag=1;

}

else {

N

local _counter = barrier.counter++;

while (barrier.flag==0) {}

~

Problem if barrier

if (local_counter == NP) { reused in Ioop_

4

Computer Architecture - 2014

]

@\ Universidad ARCOS ' R

) oo e Madrid Way inversion barrier & & i

@rier(barrien n) { \
local_flag = !local_flag;

lock(barrier.lock);

local _counter = barrier.counter++;

unlock(barrier.lock);

if (local _counter == NP) {
barrier.counter=0;
barrier.flag=local_flag;

}

else {
while (barrier.flag==local flag) {}

}
}

U 4

Computer Architecture - 2014

) - -
>\ Universidad

CarlosIldeMadrid [ree barriers

Qs www.uc3m.es

o A simple implementation of barriers is not
scalable.

o Contention in access to shared variables.

0 Tree structure for arrival and release
Processes.

o Specially used in distributed networks.

Computer Architecture - 2014

‘N Universidad ARCOS I-E B

QW) Carlos I de Madrid > W
. - \\\'5 www.uc3m.es S u m m a ry .! .' .'

0 Synchronization necessary for access to shared
variables.

o Alternatives for 1-1 and collective communication.

o Hardware support needed to fix global order of
operations.

o Variety of approaches in different processor families.

0 Locks as a higher level synchronization
mechanism.

o Waiting mechanisms: busy waiting and blocking.
o Mechanisms for acquisition, waiting, and release.

o Program phases can be synchronized with
barriers.

Computer Architecture - 2014

