Consider the two-dimensional wave equation
\[\partial_{tt} u - \Delta u = f(x, y, t) \text{ if } t > 0, \quad u(x, y, 0) = \partial_t u(x, y, 0) = 0, \]
and heat equation
\[\partial_t u - \Delta u = f(x, y, t) \text{ if } t > 0, \quad u(x, y, 0), \]
where the forcing function \(f \) is given by
\[f(x, y, t) = \cos 2t \exp[-(2x^2 + 3y^2)/4]. \]

1. Solve the wave equation in the whole plane, with \(u \rightarrow 0 \) as \(x^2 + y^2 \rightarrow \infty \), using the Green function.

2. Solve the wave equation in the domain \(\Omega : -1 < x < 1, -1 < y < 1 \), with \(u = 0 \) at \(\partial \Omega \), using a spectral representation.

3. For both the unbounded and bounded domain:
 3.1 Elucidate whether the solutions are in phase with the forcing.
 3.2 Compare the CPU time that is required to construct a snapshot of the solution calculated in questions 1 and 2 in the domain \(\Omega \) in a \(100 \times 100 \) equispaced grid at \(t = \pi/2 \).
 3.3 Construct the appropriate graphical representations of the solution calculated in questions 1 and 2 to illustrate the solution in the domain \(\Omega \) as time proceeds.

4. Repeat questions 2, 3, 3.1, and 3.3 for the damped wave equation
\[\partial_{tt} u + \varepsilon \partial_t u - \Delta u = f(x, y, t) \text{ if } t > 0, \quad u(x, y, 0) = \partial_t u(x, y, 0) = 0, \]
with \(\varepsilon = 0.01 \).

5. (Extra credit) Repeat questions 1, 2, and 3 (including 3.1, 3.2, and 3.3) for the heat equation.