Serie trigonométrica de Fourier

\[f(t) = a_0 + a_1 \cos \omega t + a_2 \cos 2\omega t + a_3 \cos 3\omega t + \ldots + b_1 \sin \omega t + b_2 \sin 2\omega t + b_3 \sin 3\omega t + \ldots \]

\[a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \, dt = \frac{1}{T} \int_{0}^{T} f(t) \, dt \]

\[a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos n\omega t \, dt = \frac{2}{T} \int_{0}^{T} f(t) \cos n\omega t \, dt \]

\[b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin n\omega t \, dt = \frac{2}{T} \int_{0}^{T} f(t) \sin n\omega t \, dt \]

MATHEMATICA

```
<< "Calculus`FourierTransform``

FourierTrigSeries[f, \{x, -5, 5\}, 10]

\[
\frac{3}{2} + \frac{6 \sin \frac{\pi x}{5}}{\pi} + \frac{2 \sin \frac{3\pi x}{5}}{\pi} + \frac{6 \sin \frac{\pi x}{5}}{5\pi} + \frac{6 \sin \frac{7\pi x}{5}}{7\pi} + \frac{2 \sin \frac{3\pi x}{5}}{3\pi}
\]
```

Serie exponencial de Fourier

Rev 1.2 Enero 2001
\[
\begin{align*}
f(t) &= F_0 + F_1 e^{j\omega t} + F_2 e^{2j\omega t} + F_3 e^{3j\omega t} + \ldots + F_n e^{nj\omega t} + \ldots + F_{-1} e^{-j\omega t} + F_{-2} e^{-2j\omega t} + F_{-3} e^{-3j\omega t} + \ldots + F_{-n} e^{-nj\omega t} + \ldots \\
&= \sum_{n=-\infty}^{\infty} F_n e^{jn\omega t} \quad \text{para} \quad (t_0 < t < t_0 + T) \\
F_n &= \frac{1}{T} \int_{t_0}^{t_0+T} f(t)(e^{jn\omega t})^* \, dt \\
&= \frac{1}{2\pi} \int_{t_0}^{t_0+T} f(t)e^{-jn\omega t} \, dt
\end{align*}
\]

MATHEMATICA

```
<< "Calculus`FourierTransform`"

FourierExpSeries[x, {x, -\[Pi], \[Pi]}, 2]
```

Relación de coeficientes entre la serie trigonométrica y exponencial

\[
\begin{align*}
a_0 &= F_0 \\
a_n &= F_n + F_{-n} \\
b_n &= J(F_n + F_{-n}) \\
F_n &= \frac{1}{2}(a_n + Jb_n)
\end{align*}
\]

Espectro de frecuencias de Fourier
Transformada de Fourier

La función $F(\omega)$ es la densidad espectral, y otro modo de expresar las transformadas es:

$$
\mathcal{F} \left[f(t) \right] = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt
$$

$$
\mathcal{F}^{-1} \left[F(\omega) \right] = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega
$$

MATHEMATICA

```
<< "Calculus`FourierTransform`"
FourierTransform[E^-t*UnitStep[t], t, w]
```

1

1 - I w

APLICACIONES

10.1) Hallar los coeficientes de Fourier correspondientes a la función, y la serie correspondiente.

$$
F(x) = \begin{cases}
0 & -5 < x < 0 \\
3 & 0 < x < 5
\end{cases} \quad \text{Periodo} = 10
$$
\[a_n = \frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega t) \, dt = \frac{2}{10} \left[\int_{-5}^{0} + \int_{0}^{5} 3 \cos(n\omega t) \, dt \right] = \frac{1}{5} \left[\int_{0}^{5} 3 \cos \left(\frac{n\pi}{5} t \right) \, dt \right] = \]

Resolución analítica

\[\omega = \frac{2\pi}{T} = \frac{\pi}{5} \quad \text{y} \quad u = \frac{n\pi}{5} \cdot t \quad \therefore \, du = \frac{n\pi}{5} \, dt \]

\[a_n = \frac{1}{5} \int_{0}^{5} 3 \frac{5}{n\pi} \cos \left(\frac{n\pi}{5} t \right) \, dt = \frac{3}{n\pi} \left[\sin \left(\frac{n\pi}{5} t \right) \right]_{0}^{5} = \frac{3}{n\pi} \left[\sin 0 - \sin \pi \right] = 0 \]

\[a_n = 0 \quad n \neq 0 \]

\[b_n = \frac{2}{T} \int_{0}^{T} f(t) \sin(n\omega t) \, dt = \frac{2}{10} \left[\int_{-5}^{0} + \int_{0}^{5} 3 \sin(n\omega t) \, dt \right] = \frac{1}{5} \left[\int_{0}^{5} 3 \sin \left(\frac{n\pi}{5} t \right) \, dt \right] = \]

\[b_n = \frac{1}{5} \int_{0}^{5} 3 \frac{5}{n\pi} \sin \left(\frac{n\pi}{5} t \right) \, dt = \frac{3}{n\pi} \cos \left(\frac{n\pi}{5} t \right) \left[0 \right]^{5} = \frac{3}{n\pi} \left[-\cos(n\pi) + \cos 0 \right] = \]

\[b_n = \frac{3}{n\pi} \left[1 - \cos(n\pi) \right] \]

\[a_0 = \frac{1}{T} \int_{0}^{T} f(t) \, dt = \frac{1}{10} \left[\int_{-5}^{0} + \int_{0}^{5} 3 \, dt \right] = \frac{1}{10} \left. 3t \right|_{0}^{5} = \frac{1}{10} \left. 3(5 - 0) \right| = \frac{3}{2} \]

\[\text{Mathematica} \]

\[f = 3 \text{UnitStep}[t] \]

\[g = \text{FourierTrigSeries}[f, \{t, -5, 5\}, 20] \]
10.2) Desarrollar \(F(x) = x^2 \) \(0 < x < 2\pi \) en serie de Fourier

a - Si el período es \(2\pi \)
b- Si el período no se especifica

\[
\frac{4\pi^2}{3} + 4\cos(x) + \cos(2x) + \frac{4}{9}\cos(3x) + \frac{1}{4}\cos(4x) - 4\pi\sin(x) - 2\pi\sin(2x) - \frac{4}{3}\pi\sin(3x) - \pi\sin(4x)
\]
10.3) Se define una función rectangular \(f(t) \) a continuación

\[
F(t) = \begin{cases}
1 & 0 < t < \pi \\
-1 & \pi < t < 2\pi
\end{cases}
\]

Aproximar esta función mediante la forma de onda \(\sin t \), en el intervalo \((0, 2\pi)\) de modo que el error cuadrático medio sea mínimo

\[
f(t) = \sin t
\]

Considerando la función rectangular, demostrar que puede obtenerse una aproximación mejor mediante una gran cantidad de funciones mutuamente ortogonales.

10.4) Desarrollar \(f(t) = \sin t \), \(0 < t < \pi \) en serie de Fourier trigonométrica

\[
\begin{align*}
\frac{2}{\pi} & - \frac{4 \cos(2x)}{3\pi} - \frac{4 \cos(4x)}{15\pi} - \frac{4 \cos(6x)}{35\pi} - \frac{4 \cos(8x)}{63\pi} - \frac{4 \cos(10x)}{99\pi}
\end{align*}
\]
10.5) Considerar la onda seno rectificada (onda completa), correspondiente a una función del tipo \(f(t) = \sin t \), \(0 < t < \pi \), desarrollar en serie de Fourier exponencial

\[
\frac{2}{\pi} - \frac{2E^{-1} + x}{3\pi} - \frac{2E^{1} + x}{3\pi} - \frac{2E^{-4} + x}{15\pi} - \frac{2E^{4} + x}{15\pi} - \frac{2E^{-8} + x}{35\pi} - \frac{2E^{8} + x}{35\pi} - \frac{2E^{-16} + x}{63\pi} - \frac{2E^{16} + x}{63\pi} - \frac{2E^{-32} + x}{99\pi} - \frac{2E^{32} + x}{99\pi}
\]

10.6) Considerar la función periódica \(f(t) \) en \(0 < t < \pi \) y determinar el espectro de frecuencias de la función

\[f(t) = \sin t. \]
10.7) Desarrollar \(f(x) = x, \ 0 < x < 2 \) en serie de semiperíodo función seno.

10.8) Desarrollar \(f(x) = x, \ 0 < x < 2 \) en serie de semiperíodo función coseno.

10.9) Hacer la gráfica y desarrollar en serie de Fourier trigonométrica

\[
F(x) = \begin{cases}
8 & 0 < x < 2 \\
-8 & 2 < x < 4
\end{cases} \quad \text{Periodo} = 4
\]

10.10) Hacer la gráfica y desarrollar en serie de Fourier trigonométrica

\[
F(x) = \begin{cases}
-x & -4 \leq x \leq 0 \\
x & 0 \leq x \leq 4
\end{cases} \quad \text{Periodo} = 8
\]

10.11) Desarrollar en serie de Fourier de período 8

\[
F(x) = \begin{cases}
2 - x & 0 < x < 4 \\
x - 6 & 4 < x < 8
\end{cases} \quad \text{Periodo} = 8
\]

10.12) Calcular los coeficientes \(a_0, a_n, b_n \) de la serie trigonométrica que representa en período \(2\pi \).

 a) \(F(t) = \text{Sen} \ t \)
 b) \(F(t) = \text{Cos} \ t \)

10.13) Desarrollar en serie de Fourier trigonométrica

\[
F(x) = \begin{cases}
x & 0 < x < 4 \\
8 - x & 4 < x < 8
\end{cases}
\]

10.14) Graficar la función extendida periodicamente con período \(2\pi \) y hallar su transformada de Fourier.
\[F(t) = \begin{cases}
\text{sen} & 0 < t < \pi \\
0 & \pi < t < 2\pi
\end{cases} \]

10.15) Dada una onda cuadrada periódica
\[f(t) = \begin{cases}
A & 0 < t < T / 2 \\
0 & -T / 2 < t < 0
\end{cases} \]
determinar

a) El espectro de frecuencias
b) \(F(\omega) \)
c) la función \(f(t) \)

\[
F(\omega) = \int_{-T/2}^{T/2} f(t) e^{-j\omega t} dt = \int_{-T/2}^{0} 0 e^{-j\omega t} dt + \int_{0}^{T/2} A e^{-j\omega t} dt =
\]

\[
= A \int_{0}^{T/2} e^{-j\omega t} dt = -\frac{A}{j\omega} \int_{0}^{T/2} e^{-j\omega t} dt = -\frac{A}{j\omega} \left[e^{-j\omega T/2} - 1 \right] = J \frac{A}{n\omega} \left[e^{-j\pi n} - 1 \right]
\]

\[f(t) = \frac{1}{T} \sum_{n=-\infty}^{\infty} F(\omega) e^{j\omega n t} = \frac{1}{T} \sum_{n=-\infty}^{\infty} \left[J \frac{A}{n\omega} \left[e^{-j\pi n} - 1 \right] e^{j\omega n t} \right] \]

10.16) Desarrollar la función rectificada media onda en serie de Fourier

trigonométrica

\[f(t) = \begin{cases}
\text{sen} t & 0 < t < \pi \\
0 & \pi < t < 2\pi
\end{cases} \]

10.17) Considerar la onda seno rectificada (media onda), correspondiente a una

función del tipo

\[f(t) = \begin{cases}
\text{sen} t & 0 < t < \pi \\
0 & \pi < t < 2\pi
\end{cases} \]

desarrollar en serie de Fourier exponencial

10.18) Determinar el espectro de frecuencias de la función precedente.
10.19) Evaluar la transformada de Fourier de la señal exponencial unilateral \(a = 2 \)

\[f(t) = e^{-at} u(t) \]

\[
F(?) = \int_0^\infty e^{-at} e^{-Jo t} dt = \frac{1}{2 + Jo} (e^{-\infty} - e^0) = \frac{1}{2 + Jo}
\]

\[F(s) = \frac{1}{s + 2} \]

MATLAB

\[
a = [1,2]; \quad % Coeficientes del denominador en orden decreciente
b = [1]; \quad % Coeficientes del numerador
w = -50:.05:50; \quad % Rango de frecuencia en rad/s
\]

\[
H = \text{freqs}(b,a,w);
\]

\[
\text{mag} = \text{abs}(H);
\]

\[
\text{fase} = \text{angle}(H);
\]

\[
\text{axis([-50,50,0,.5])};
\]

\[
\text{figure (1)};
\]

\[
\text{plot(w,mag)};
\]

\[
\text{title(' Espectro de frecuencias (magnitud)');}
\]

\[
\text{xlabel('frecuencia, rad/s');}
\]

\[
\text{ylabel('magnitud');}
\]

\[
\text{grid};
\]

\[
\text{figure(2)};
\]
fase = fase*180/pi; % Cambio de fase de radianes a grados
axis([-50,50,-200,200]);
plot(w,fase);
title('Respuesta en frecuencia (fase)');
xlabel('frecuencia, rad/s');
ylabel('fase, degrees');
grid;
axis;

MATHEMATICA

g = FourierTransform[Exp[-2 t] UnitStep[t], t, w]

Plot[Abs[g], {w, -10, 10}]
Plot[Arg[g], {w, -10, 10}]

10.20) Evaluar la transformada de Fourier de la señal exponencial bilateral
10.21) Evaluar la función pulso rectangular como se define a continuación

\[f(t) = \begin{cases}
1 & |t| < \frac{T}{2} \\
0 & |t| > \frac{T}{2}
\end{cases} \]

10.22) Evaluar la transformada de Fourier de un impulso y de una constante.

10.23) Transformada de la función signum, \(f(t) = \text{sgn}(t) \).

10.24) Determinar la serie de Fourier trigonométrica, la serie exponencial y deducir el espectro de frecuencias de la función definida a continuación.

\[f(\theta) = \theta \text{ para } -\pi \leq \theta \leq \pi \]

\[2 \sin(\theta) - \frac{2}{3} \sin(2 \theta) - \frac{1}{2} \sin(4 \theta) + \frac{2}{5} \sin(5 \theta) - \frac{1}{3} \sin(3 \theta) + \frac{2}{7} \sin(7 \theta) - \frac{1}{4} \sin(6 \theta) + \frac{2}{9} \sin(9 \theta) - \frac{1}{5} \sin(10 \theta) \]

\[|E^{-i\theta} - |E^{i\theta} + \frac{E^{-2i\theta} \left(\frac{1}{4} (-1 - 2|\theta|) + \frac{1}{4} (1 - 2|\pi|) \right)}{2\pi} + \frac{E^{2i\theta} \left(\frac{1}{4} (-1 + 2|\theta|) + \frac{1}{4} (1 + 2|\pi|) \right)}{2\pi} \]
10.25) Determinar la serie de Fourier de:

\[f(t) = \begin{cases}
1 & -1 < t < 1 \\
0 & -2 < t \leq -1 \\
0 & 1 \leq t < 2
\end{cases} \]

\[
\frac{1}{2} + \frac{2 \cos \left(\frac{\pi t}{2} \right)}{\pi} - \frac{2 \cos \left(\frac{3\pi t}{2} \right)}{3\pi} + \frac{2 \cos \left(\frac{5\pi t}{2} \right)}{5\pi} - \frac{2 \cos \left(\frac{7\pi t}{2} \right)}{7\pi} + \frac{2 \cos \left(\frac{9\pi t}{2} \right)}{9\pi} \\
\frac{1}{2} + \frac{E^{-\frac{\pi t}{2}}}{\pi} + \frac{E^{\frac{\pi t}{2}}}{2\pi} - \frac{E^{-\frac{3\pi t}{2}}}{3\pi} - \frac{E^{\frac{3\pi t}{2}}}{3\pi} + \frac{E^{-\frac{5\pi t}{2}}}{5\pi} + \frac{E^{\frac{5\pi t}{2}}}{5\pi}
\]
Referencias:

Señales y sistemas
Ian V. Oppenheim - Alan S.Willsky
Prentice Hall

Mathematica 3.0
MatLab 5.0
GrapMath 1.30C