

Tema 3 AMPLIFICADORES OPERACIONALES

Amplificadores diferenciales

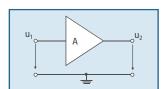
Amplificadores operacionales. El AO ideal

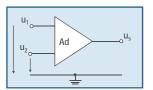
Aplicaciones lineales de los AOs

Aplicaciones no lineales de los AOs

Características reales de los AOs

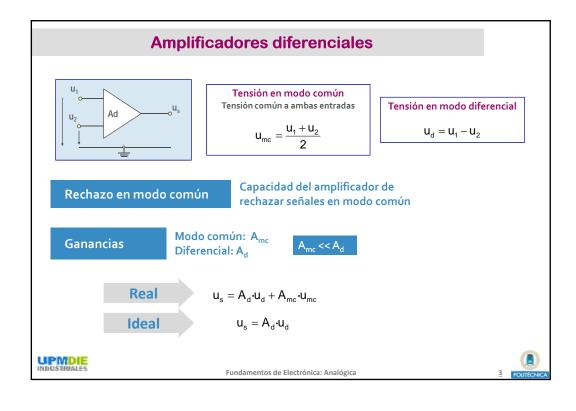
Oscilador Astable

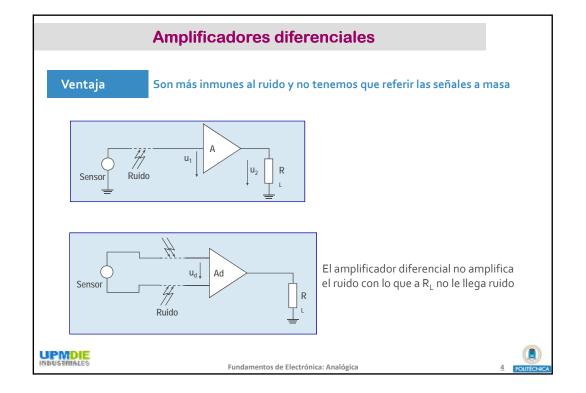

CUNIVERSIDAD POLITÉCNICA DE MADRID



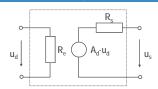
Amplificadores diferenciales

Los amplificadores, analizados en la lección anterior, tienen como entrada una sola tensión medida respeto a una tensión de referencia (masa)




Los AMPLIFICADORES DIFERENCIALES tienen dos entradas y dan una salida proporcional a la diferencia de las tensiones aplicadas a la entrada

POLITÉCNICA



Amplificadores diferenciales

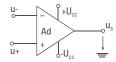
Símbolo

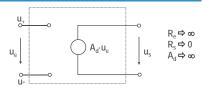
u_1 u_2 u_3 u_4 u_5 u_7 u_8

Circuito Equivalente

Razón de rechazo en modo común

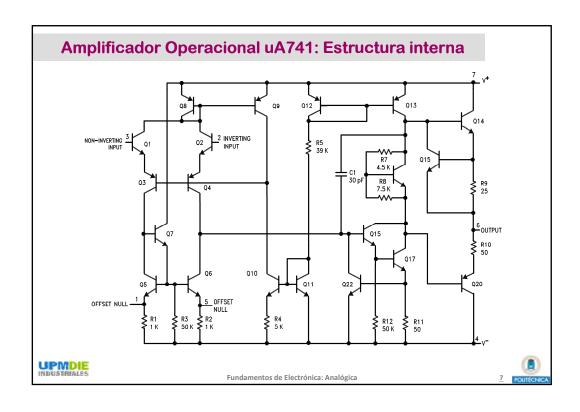
$$RRMC = \frac{\left|A_d\right|}{\left|A_{mc}\right|}$$

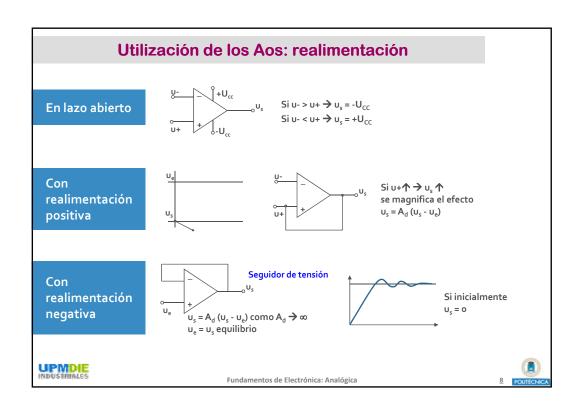

Fundamentos de Electrónica: Analógica


Amplificador Operacional

- Es un amplificador diferencial que se integra en un circuito y se caracteriza por tener:
 - o Ganancia de tensión muy alta
 - o Alta impedancia de entrada
 - o Baja impedancia de salida
 - o Amplifica tensión y potencia

Símbolo




Amplificador Operacional Ideal (Circuito Equivalente)

Aplicaciones lineales de los AOs

- Una aplicación lineal se tiene cuando se realimenta negativamente el amplificador
- Se suelen considerar características ideales:
 - $R_e = \infty$... la corriente de entrada al AO es cero
 - \circ R_s = 0 . . . se comporta como una fuente ideal de tensión
 - Con realimentación negativa u+=u-

Tipos

Amplificador inversor

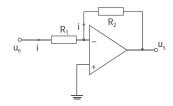
Integrador

Derivador

Sumador

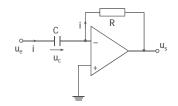
Amplificador de ganancia positiva

Amplificador diferencial



Fundamentos de Electrónica: Analógica

Aplicaciones lineales de los AOs

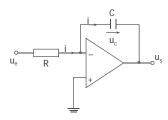

Amplificador inversor

$$u-=u+=0V$$

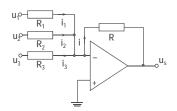
$$\frac{u_{e}-0}{R_{1}}=\frac{0-u_{s}}{R_{2}}$$

Derivador

$$u-=u+=0V$$


$$i=C\frac{du_e}{dt}=\frac{-u_s}{R}$$

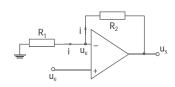
$$u_s=-CR\frac{du_e}{dt}$$


Aplicaciones lineales de los AOs

Integrador

$$\begin{split} u-&=u+=0V\\ i=&\frac{u_{e}-0}{R}=C\frac{du_{c}}{dt}=-C\frac{du_{s}}{dt}\\ &\frac{du_{s}}{dt}=\frac{-1}{RC}u_{e}\\ u_{s}(t)-u_{s}(0)=&\frac{-1}{RC}\int_{0}^{t}u_{e}dt \end{split}$$

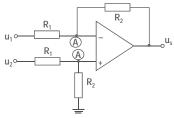
Sumador


$$\begin{split} u-&=u+=0V\\ i&=i_1+i_2+i_3\\ -\frac{u_s}{R}&=\frac{u_1}{R_1}+\frac{u_2}{R_2}+\frac{u_3}{R_3}\\ u_s&=-R\bigg(\frac{u_1}{R_1}+\frac{u_2}{R_2}+\frac{u_3}{R_3}\bigg) \end{split}$$

Fundamentos de Electrónica: Analógica

Aplicaciones lineales de los AOs

Amplificador de ganancia positiva



$$u - = u + = u_e$$

$$\frac{0 - u_e}{R_1} = \frac{u_e - u_s}{R_2}$$

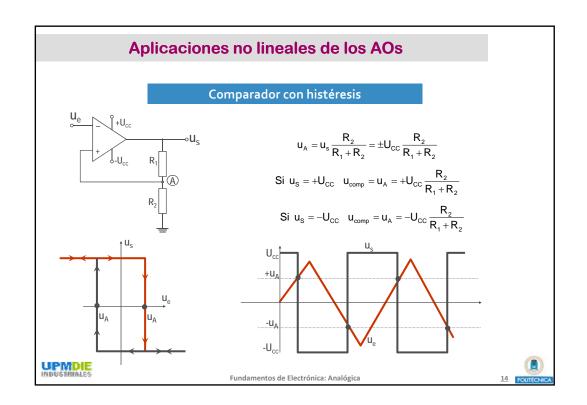
$$u_s = u_e \left(1 + \frac{R_2}{R_1}\right)$$

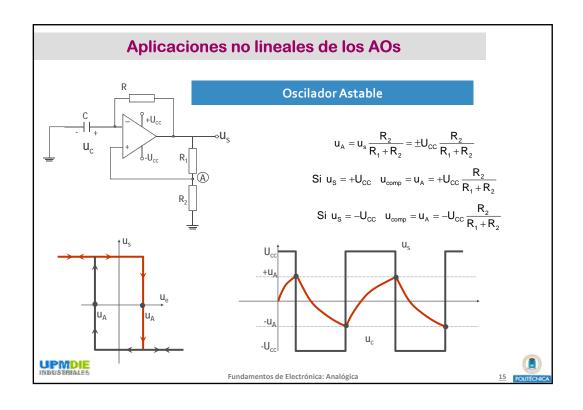
Amplificador diferencial

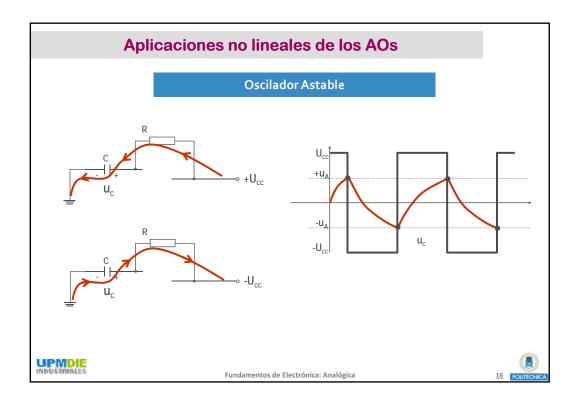
$$u-=u+=u_{A}=u_{2}\frac{R_{2}}{R_{1}+R_{2}}$$

$$\frac{u_{1}-u_{A}}{R_{1}}=\frac{u_{A}-u_{s}}{R_{2}}$$

$$u_{s}=\frac{R_{2}}{R_{1}}(u_{2}-u_{1})$$






Aplicaciones no lineales de los AOs

Realimentación positiva o bucle abierto

$$\begin{array}{c}
u_d \\
u_d$$

Problema

Se quiere medir la temperatura en un proceso industrial utilizando una RTD. Esta se sitúa en el interior del horno y se coloca otra a una temperatura constante T_{REF} de 25°C. Se propone el circuito de la figura 1 para realizar la medida:

- a) Calcule la relación entre u_1 y T (temperatura a medir).
- b) Calcule el margen de temperaturas a las que la medida es fiable (margen de medida).
- c) Calcule la sensibilidad del proceso de medida e indique cómo podría mejorarse.

Si a la salida u_1 se conecta un circuito (como el mostrado en la figura 2) para encender una refrigeración cuando se supere una temperatura dada, dibuje la curva que relaciona u_2 con la temperatura y comente el funcionamiento del sistema suponiendo que la refrigeración se conecta cuando $u_2 = -15V$.

