

Titulación: Ingeniería Informática Asignatura: Fundamentos de Computadores

Bloque 3: Sistemas secuenciales

Tema 7: Máquinas finitas de estados

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- Bibliografía
- Introducción
- Tipos de máquinas finitas de estados
- Síntesis de máquinas finitas de estados
 - Síntesis de máquinas de Mealy
 - Síntesis de máquinas de Moore
- Análisis de máquinas finitas de estados
 - Análisis de máquinas de Mealy
 - Análisis de máquinas de Moore

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Román Hermida, Ana Mº del Corral, Enric Pastor, Fermín Sánchez
 "Fundamentos de Computadores", cap 3
 Editorial Síntesis

Daniel D. Gajski
 "Principios de Diseño Digital", cap 5
 Editorial Prentice Hall

M. Morris Mano
 "Diseño Digital", cap 4,5
 Editorial Prentice Hall

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

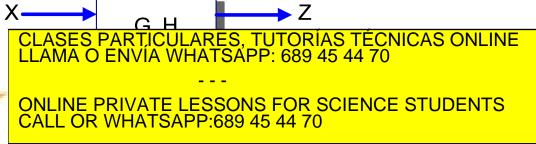
- - -

INTRODUCCIÓN

 En los sistemas combinacionales la salida Z en un determinado instante de tiempo t_i sólo depende de X en ese mismo instante de tiempo t_i, es decir que no tienen capacidad de memoria y que se puede obviar la variable de tiempo t

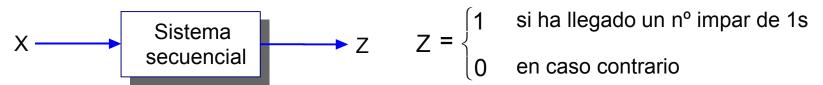
$$Z(t) = F(X(t)) \Rightarrow Z = F(X)$$

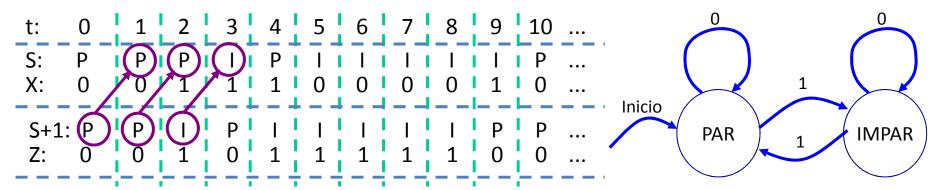
 En los sistemas secuenciales la salida Z en un determinado instante de tiempo t_i depende de X en ese mismo instante de tiempo t_i y en todos los instantes temporales anteriores ¿capacidad ∞ de memoria? No, todas las secuencias se resumen en un número finito de estados (FSM: máquina finita de estados)


CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

INTRODUCCIÓN

- Un sistema secuencial dispone de **elementos de memoria** cuyo contenido puede cambiar a lo largo del tiempo. Estos elementos de memoria determinan el **estado** del sistema.
- Los sistemas secuenciales suelen tener una señal que inicia los elementos de memoria con un valor determinado: señal de inicio (reset).
 - La señal de inicio determina el estado del sistema en el momento del arranque (normalmente pone toda la memoria a cero).
- La salida en un instante concreto viene dada por la entrada y por el estado del sistema.
- El estado actual del sistema, junto con la entrada, determinará el estado en el instante siguiente ⇒ **realimentación**.




INTRODUCCIÓN

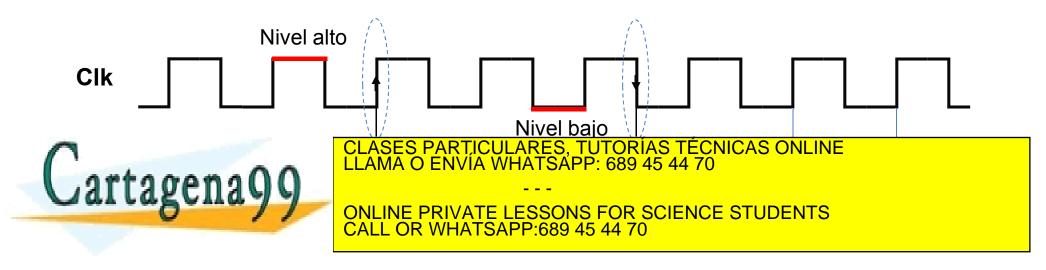
• Ejemplo: sistema secuencial que recibe datos a través de una entrada de 1 bit e indica si ha recibido un número impar de 1s.

Ejemplo de secuencia:

En t=0, condición inicial, hay 0 1s lo que significa un número par de 1s

En cualquier instante de tiemno sólo hay dos nosibles clases de secuencias las que han

Cartagena99

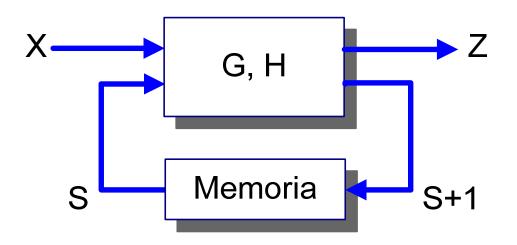

CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

SINCRONISMO EN MÁQUINAS DE ESTADOS

- Existen dos tipos de sistemas secuenciales: asíncronos y síncronos.
 - Los **asíncronos** son sistemas secuenciales que pueden cambiar de estado en cualquier instante de tiempo en función de cambios en las señales de entrada.
 - Los síncronos son sistemas secuenciales que sólo pueden cambiar de estado en determinados instantes de tiempos, es decir, están "sincronizados" con una señal que indica dicho instante y que se conoce como señal de reloj (Clk), sin importar si las señales de entrada han cambiado o no. Debido a su peso específico en el diseño sólo consideraremos los secuenciales síncronos.

- Bibliografía
- Introducción
- Tipos de máquinas finitas de estados
- Síntesis de máquinas finitas de estados
 - Síntesis de máquinas de Mealy
 - Síntesis de máquinas de Moore
- Análisis de máquinas finitas de estados
 - Análisis de máquinas de Mealy
 - Análisis de máquinas de Moore



CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

TIPOS DE MÁQUINAS FINITAS DE ESTADOS

X(t): entrada actual

Z(t): salida actual

S(t): estado actual

S(t+1): estado próximo

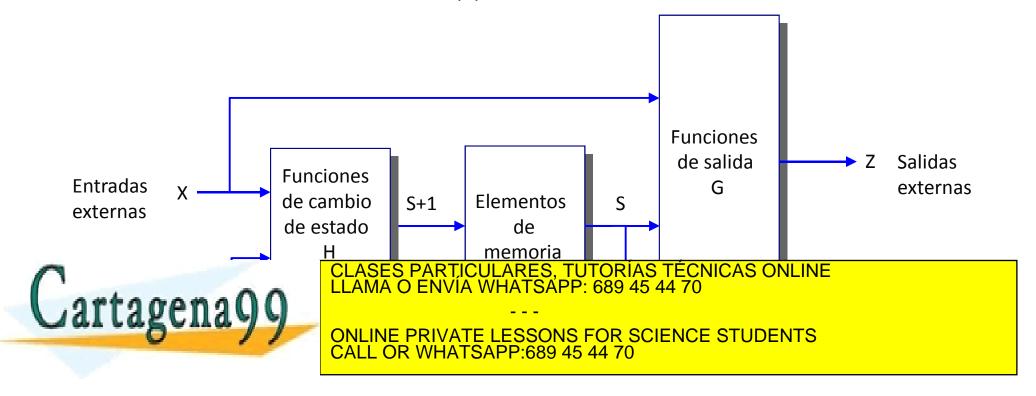
Las FSM constan de:

- Un conjunto de entradas $X \in \{X_0, X_1, ..., X_{k-1}\}$
- Un conjunto de salidas $Z \in \{Z_0, Z_1, ..., Z_{m-1}\}$
- Un conjunto de estados S ∈ {S₀,S₁,...,S_{n-1}}

Tipos de FSM:

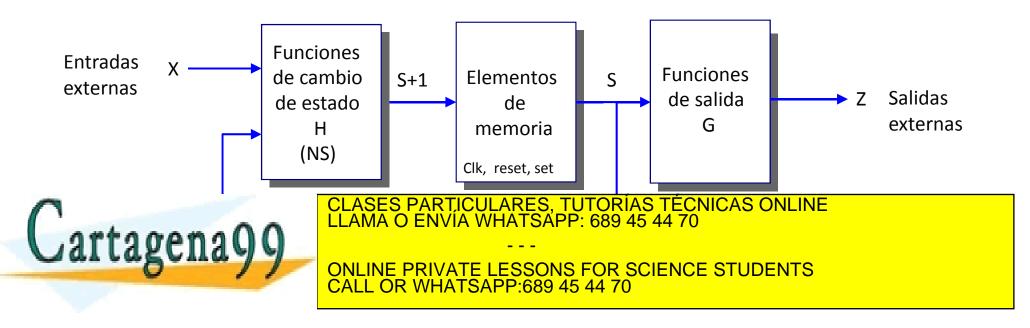
Mealy

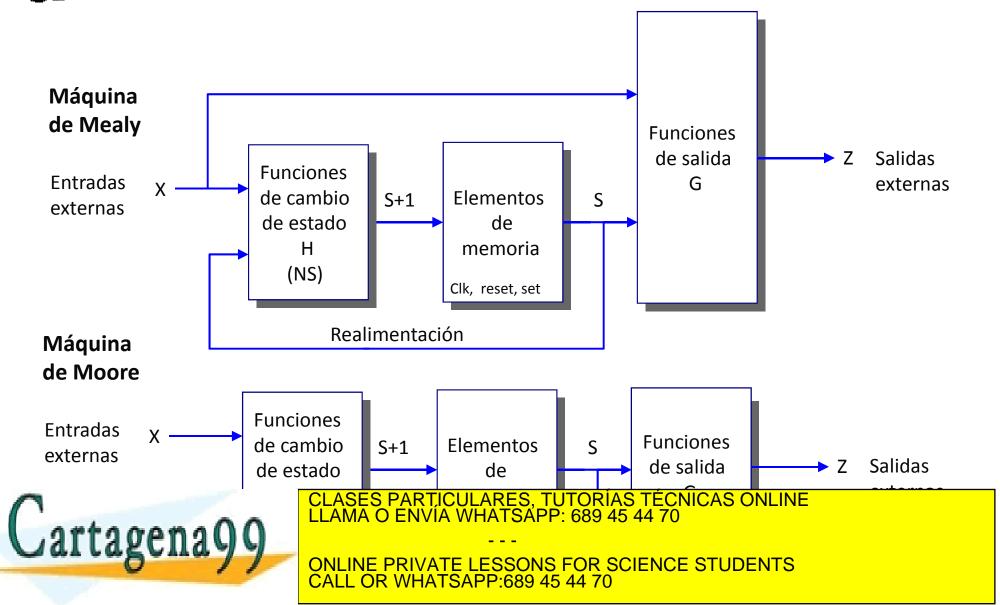
Cartagena99


CLÁSES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

-

MÁQUINAS FINITAS DE ESTADOS: MEALY

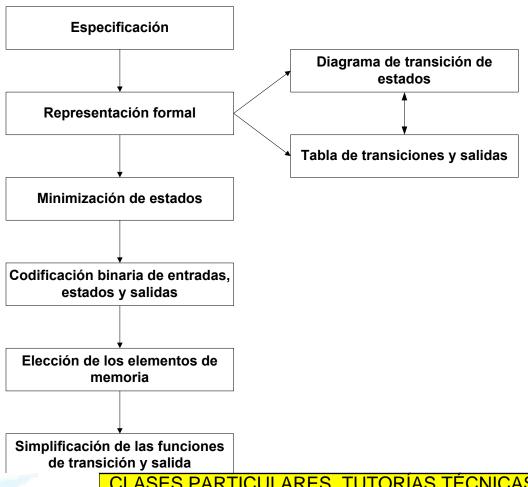

- FSM tipo Mealy:
 - El próximo estado del sistema se genera a través de la función de transición de estados H que genera el próximo estado (NS), y que actúa en función del estado actual del sistema (S) y de las entradas presentes (X).
 - La **función de salida** (G) se genera a partir del estado actual del sistema (S) y de los valores actuales de las entradas (X).


MÁQUINAS FINITAS DE ESTADOS: MOORE

- FSM tipo Moore (caso particular de Mealy):
 - El próximo estado del sistema se genera, como en las máquinas de Mealy, a través de la función de transición de estados H que genera el próximo estado (NS), y que actúa en función del estado del sistema (S) y de los valores de las entradas (X).
 - La función de salida (G) se genera, a diferencia de las máquinas de Mealy, exclusivamente en función del estado actual del sistema (S), sin importar el valor de las entradas.

MÁQUINAS FINITAS DE ESTADOS: MEALY Y MOORE

- Bibliografía
- Introducción
- Tipos de máquinas finitas de estados
- Síntesis de máquinas finitas de estados
 - Síntesis de máquinas de Mealy
 - Síntesis de máquinas de Moore
- Análisis de máquinas finitas de estados
 - Análisis de máquinas de Mealy
 - Análisis de máquinas de Moore



CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

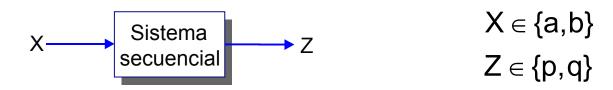
- - -

SÍNTESIS DE MÁQUINAS FINITAS DE ESTADOS

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -



SÍNTESIS DE FSM: ESPECIFICACIÓN

Veremos los pasos de diseño a partir de un ejemplo.

Especificación de un sistema secuencial

Diseñar un sistema secuencial con una entrada serie que detecte si los tres últimos datos de recibidos coinciden con la secuencia **abb**.

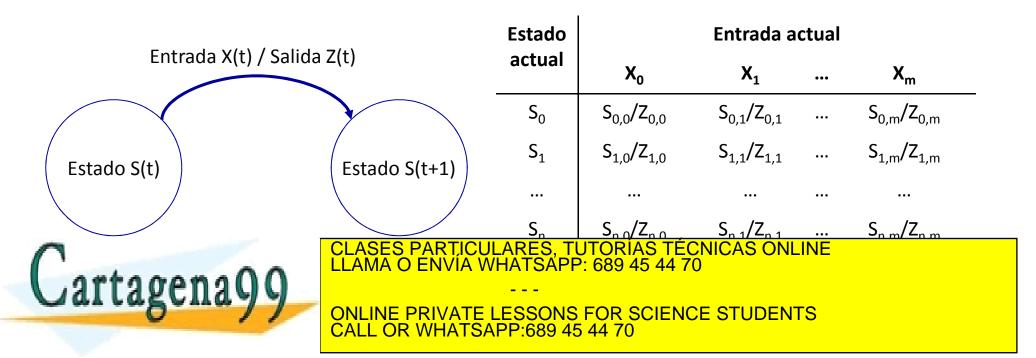
$$Z = \begin{cases} q \\ p \end{cases}$$

si los tres últimos datos recibidos son abb en caso contrario

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- -

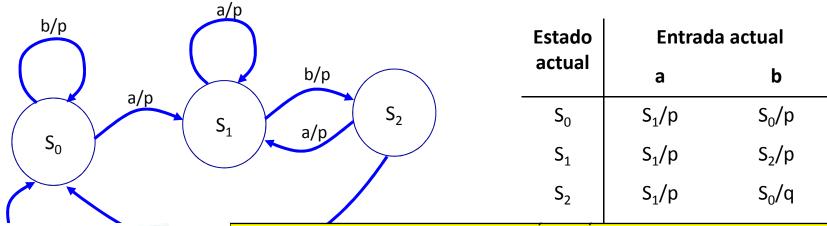


SÍNTESIS DE FSM: REPRESENTACIÓN FORMAL - MEALY

 La representación formal de un sistema secuencial se suele hacer en forma de tabla de estados y salidas o diagrama de estados. Ambas son formas equivalentes.

Diagrama de estados

Tabla de estados y salidas


SÍNTESIS DE FSM: REPRESENTACIÓN FORMAL - MEALY

Ejemplo: Diagrama de estados del caso propuesto.

$$X \in \{a, b\}$$
 $Z \in \{p, q\}$ $X \longrightarrow Z = \begin{cases} q & \text{si los últimos tres datos son : abb} \\ p & \text{caso contrario} \end{cases}$

Diagrama de estados

Tabla de estados y salidas

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

SÍNTESIS DE FSM: CODIFICACIÓN BINARIA - MEALY

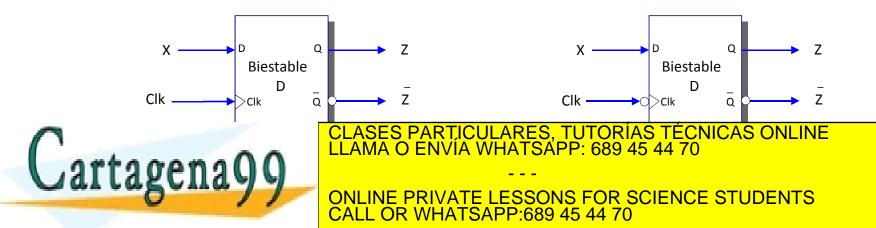
- A la hora de materializar el circuito hay que transformar la tabla de estados y salidas asignando valores binarios a cada estado y salida.
- Distintas asignaciones pueden conducir a materializaciones con prestaciones distintas aunque funcionalmente equivalentes.
- Ejemplo: codificación binaria del caso propuesto.

Entrada		Sal	ida		Estado			Tab	Tabla de estados y salidas			
X(t)	X _o	Z(t)	Z_0	S(t)	Q_1	Q_0		S(t)		X ₀		
a	0	р	0	S_0	0	0		Q_1	Q_0	0	1	
b	1	q	1	S_1	0	1		0	0	01/0	00/0	
				S_2	1	0		0	1	01/0	10/0	

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

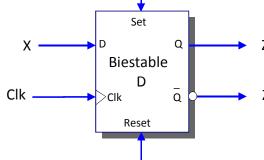


ELEMENTOS DE MEMORIA: BIESTABLES

- Un biestable es un dispositivo capaz de almacenar un bit (H ó L).
 - El biestable siempre ofrece a la salida el valor que tiene almacenado en su interior.
- Existen diferentes tipos de biestables, pero el más adecuado y sencillo en nuestro caso es el biestable D (Delay) activo por flanco de reloj:
 - El biestable D activo por flanco de subida (de bajada) captura el valor que tiene en su entrada de datos cuando se produce el flanco de subida (de bajada) del reloj.

Biestable D disparado por flanco de subida

Biestable D disparado por flanco de bajada



ELEMENTOS DE MEMORIA: BIESTABLES

Los biestables suelen tener entradas asíncronas (independientes del reloj)
 que sirven para darle valor inicial:

Reset (o Clear): puesta a 0.

Set (o Preset): puesta a 1.

- Las entradas asíncronas tienen prioridad sobre las síncronas.
- Modo de operación (biestable D activo por flanco de subida):

Set	Reset	D	Clk	Q(t+1)	Not Q(t+1)	_	
1	0	Χ	Х	1	0	Set	
0	1	Х	Χ	0	1	Reset	En modo síncrono, para poner
1	1	Х	Χ	1	1	No permitido	un valor en un biestable D activo
0	0	0	\uparrow	0	1	Flanco positivo	por flanco basta con colocar
Ū	J	Ü				rianco positivo	<u>dicho valor en su entrada de</u>

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ÓNLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

SÍNTESIS DE FSM: SIMPLIFICACIÓN - MEALY

- Una vez seleccionado el tipo de biestable, la codificación binaria sirve para crear la tabla de verdad de las funciones de transición y salida (tabla de excitación y salida).
- La síntesis se realiza de forma similar a la de los circuitos combinacionales.
- Ejemplo: tabla de excitación y salida del caso propuesto.

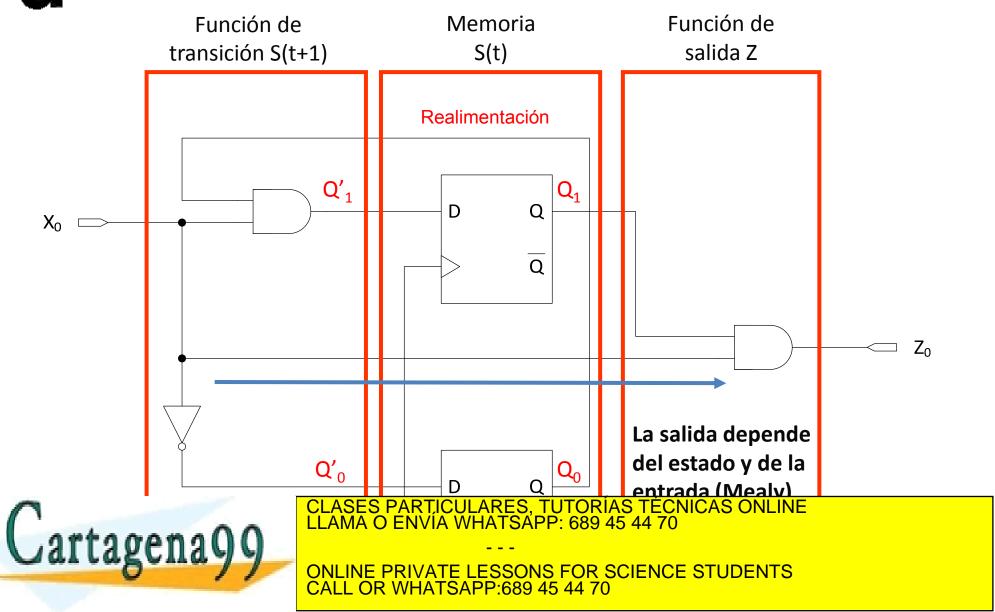
S	S(t)		(0		S(t), X			S(t+1), Z			
Q_1	Q_0	0	1		Q_1	Q_0	X	Q' ₁	Q' ₀	Z	
0	0	01/0	00/0		0	0	0	0	1	0	
0	1	01/0	10/0		0	0	1	0	0	0	
1	0	01/0	00/1		0	1	0	0	1	0	
		' 			0	1	1	1	0	0	
		Set	ì		1	0	0	0	1	0	

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

SÍNTESIS DE FSM: SIMPLIFICACIÓN - MEALY

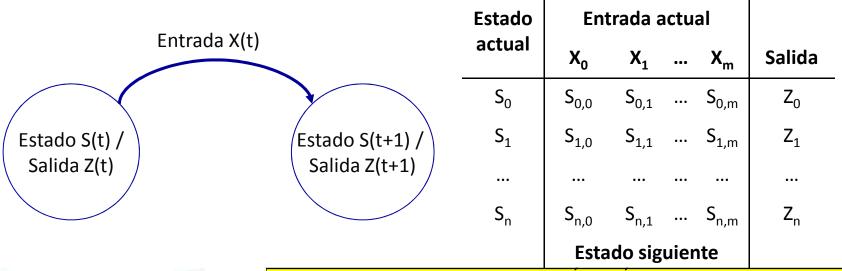
	S(t), X S(t+1), Z		S(t), X		S(t), X S(t+1), Z			Función de transición					
		Q_0		Q' ₁	Q' ₀	Z	$Q'_{0}(Q_{1},Q_{0},X_{0}) = \sum m(0,2,4) + \sum \Phi(6,7) \implies$						
	0	0	0	0	1	0	$Q'_0 = D_0 = X_0$						
	0	0	1	0	0	0	$O(1/O_1O_2) \times V(1) \times $						
	0	1	0	0	1	0	$Q'_{1}(Q_{1},Q_{0},X_{0}) = \sum m(3) + \sum \Phi(6,7) \Rightarrow$ $Q'_{1} = D_{1} = X_{0} \cdot Q_{0}$						
	0	1	1	1	0	0	$Q_1 - D_1 - X_0 \cdot Q_0$						
	1	0	0	0	1	0							
	1	0	1	0	0	1	Función de salida						
	1	1	0	Х	Χ	Χ	$Z_0(Q_1,Q_0,X_0) = \sum m(5) + \sum \Phi(6,7) \implies$						
	1	1	1	X	X	X	$Z_0 = X_0 \cdot Q_1$						
	1 1 1	0 0 1	0 1 0	0 0 X	1 0 X	0 1 X	$Z_0(Q_1,Q_0,X_0) = \sum m(5) + \sum \Phi(6,7) \Rightarrow$						


Cartagena99

La función de transición (par O' -O') y la función de salida (7) se CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

SÍNTESIS DE FSM: MEALY



SÍNTESIS DE FSM: REPRESENTACIÓN FORMAL - MOORE

 En la máquina de Moore, la salida no va ligada a la transición de un estado a otro, sino que depende únicamente del estado.

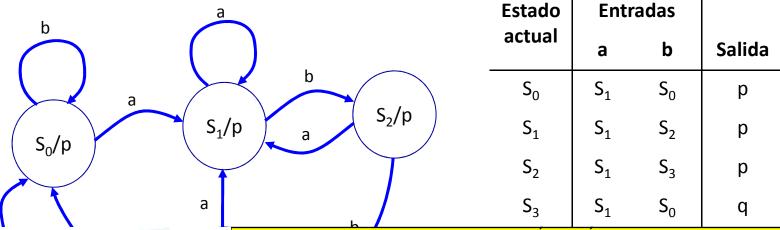
Diagrama de estados

Tabla de estados y salidas

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLÍNE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- -


SÍNTESIS DE FSM: REPRESENTACIÓN FORMAL - MOORE

Ejemplo: Diagrama de estados del caso propuesto.

$$X \in \{a, b\}$$
 $Z \in \{p, q\}$ $X \longrightarrow Z = \begin{cases} q & \text{si los últimos tres datos son : abb} \\ p & \text{caso contrario} \end{cases}$

Diagrama de estados

Tabla de estados y salidas

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

SÍNTESIS DE FSM: CODIFICACIÓN BINARIA - MOORE

- A la hora de materializar el circuito hay que transformar la tabla de estados y salidas asignando valores binarios a cada estado y salida.
- Distintas asignaciones pueden conducir a materializaciones con prestaciones distintas aunque funcionalmente equivalentes.
- Ejemplo: codificación binaria del caso propuesto.

Entr X(t)	rada X _o	I	Estado)	Tabla de estados y salidas					
a	0	S(t)	Q_1	Q_0	S	(t)	Х	ζ ₀	Z	
b	1	S_0	0	0	$\mathbf{Q_1}$	Q_0	0	1	Z _o	
b		S_1	0	1	0	0	01	00	0	
Sal	ida	S_2	1	0	0	1	01	10	0	
- (.)		_								

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

SÍNTESIS DE FSM: SIMPLIFICACIÓN - MOORE

- Una vez seleccionado el tipo de biestable, crearemos las tablas de verdad de las funciones de transición y salida (tabla de excitación y tabla de salida).
- La síntesis se realiza de forma similar a la de los circuitos combinacionales.
- Ejemplo: tabla de excitación y tabla de salida del caso propuesto.

	S(t)	X	(_o	Z	,	S(+) X	7	S(t	+1)	SI	t)	Z
Q_1	Q_0	0	1	Z ₀	Q_1	Q_0	X	Q' ₁	Q' ₀	Q_1	$\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}}}$	Z _o
0	0	01	00	0	0	0	0	0	1	0	0	0
0	1	01	10	0	0		1	0	0	0	1	0
1	0	01	11	0								
1	1	01	00	1	0	1	0	0	1	1	0	0
				l	0	1	1	1	0	1	1	1
		Set			1	0	0	0	1			

Cartagena99

CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

SÍNTESIS DE FSM: SIMPLIFICACIÓN - MOORE

S(t), X S(t+1)					+1)	(Q' ₀ (C	Q_1, Q_0	$(X_0) = \sum m(0,2,4,5,6) \Rightarrow$
	Q_1	Q_0	X	Q' ₁	Q' ₀			Q'	$D_0 = D_0 = Q_1 \cdot \overline{Q_0} + \overline{X_0}$
	0	0	0	0	1		•		
	0	0	1	0	0		Q'	1 (Q ₁ ,0	$Q_0, X_0) = \sum m(3,5) \implies$
	0	1	0	0	1		Q'	$_{1} = D_{_{1}}$	$= \mathbf{Q}_{1} \cdot \overline{\mathbf{Q}_{0}} \cdot \mathbf{X}_{0} + \overline{\mathbf{Q}_{1}} \cdot \mathbf{Q}_{0} \cdot \mathbf{X}_{0}$
	0	1	1	1	0	S	/ +)	Z	
	1	0	0	0	1	Q_1	\mathbf{Q}_{0}	Z _o	
	1	0	1	1	1	0	0	0	<u> </u>
	1	1	0	0	1	0	1	0	$Z_0(Q_1,Q_0) = \sum m(3) \implies$
	1	1	1	0	0	1	0	0	$Z_0 = Q_1 \cdot Q_0$
						1	1	1	

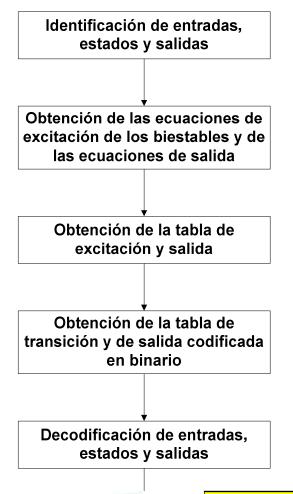


CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

SÍNTESIS DE FSM: MOORE

- Bibliografía
- Introducción
- Tipos de máquinas finitas de estados
- Síntesis de máquinas finitas de estados
 - Síntesis de máquinas de Mealy
 - Síntesis de máquinas de Moore
- Análisis de máquinas finitas de estados
 - Análisis de máquinas de Mealy
 - Análisis de máquinas de Moore



CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

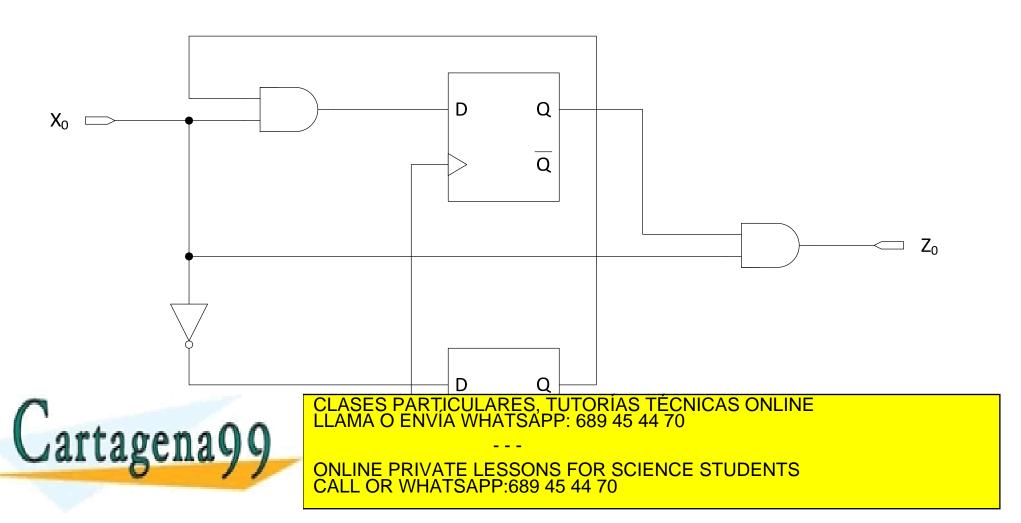
ANÁLISIS DE MÁQUINAS FINITAS DE ESTADOS

• Es el proceso inverso al de síntesis: dada una máquina finita de estados, obtener su representación en forma de diagrama de transición de estados y/o de tablas de transiciones y salidas.

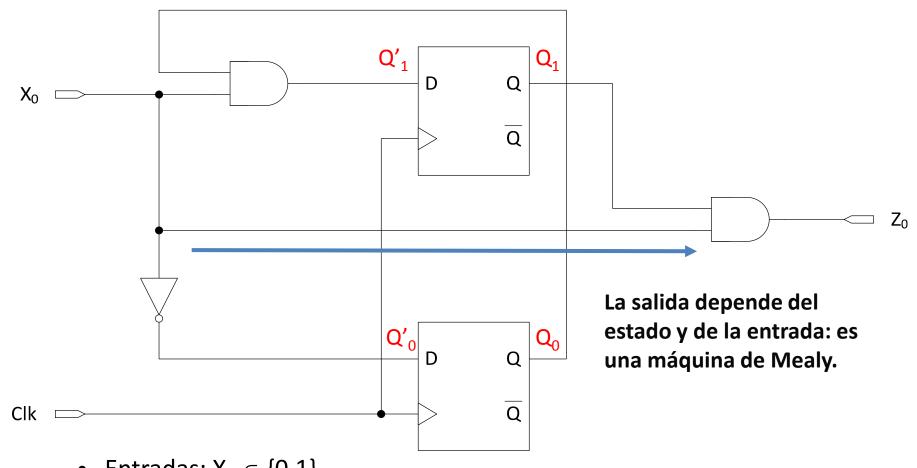
Lo estudiaremos a partir de ejemplos.

Cartagena99

Diagrama de transición de


CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -


ANÁLISIS DE FSM: EJEMPLO 1

Partimos de la siguiente FSM:

ANÁLISIS DE FSM: IDENTIFICACIÓN

Cartagena99

CLÁSES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ANÁLISIS DE FSM: ECUACIONES Y TABLAS - MEALY

Función de transición

$$D_{0} = Q'_{0}(Q_{1}, Q_{0}, X_{0}) = \overline{X_{0}}$$

$$D_{1} = Q'_{1}(Q_{1}, Q_{0}, X_{0}) = X_{0} \cdot Q_{0}$$

9	S(t), X		S(t+1), Z					
Q_1	Q_0	X	Q'1	Q_0'	Z			
0	0	0	0	1	0			
0	0	1	0	0	0			
0	1	0	0	1	0			
0	1	1	1	0	0			
1	0	0	0	1	0			

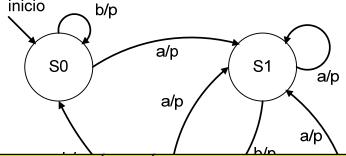
Función de salida

$$Z_0(Q_1,Q_0,X_0) = X_0 \cdot Q_1$$

La salida depende del estado y de la entrada: es una máquina de Mealy.

S(t)	×	0				
Q_1	Q_0	0 1					
0	0	01/0	00/0				

Clases Particulares, Tutorias LLAMA O ENVÍA WHATSAPP: 689 45

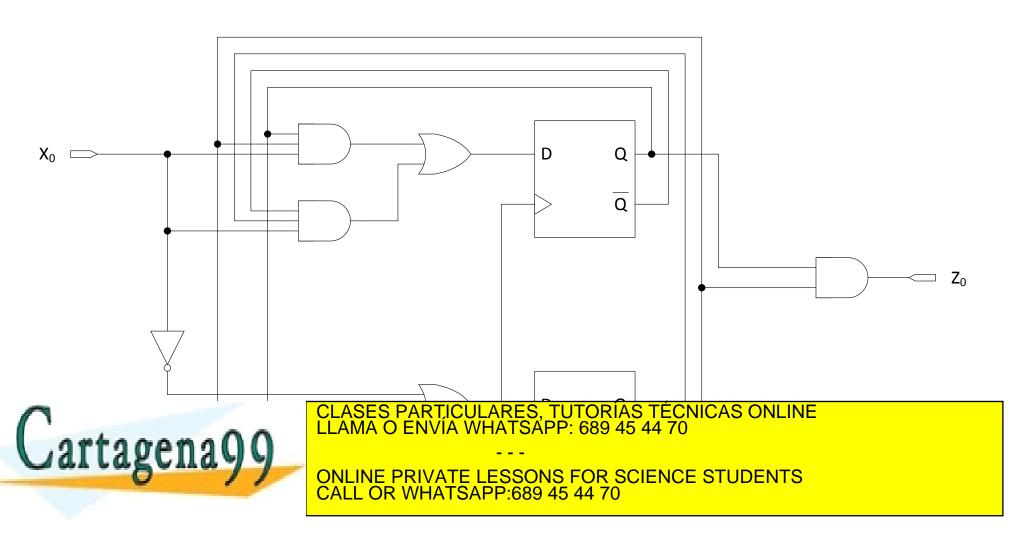


ANÁLISIS DE FSM: DECODIFICACIÓN Y REPRESENTACIÓN FORMAL - MEALY

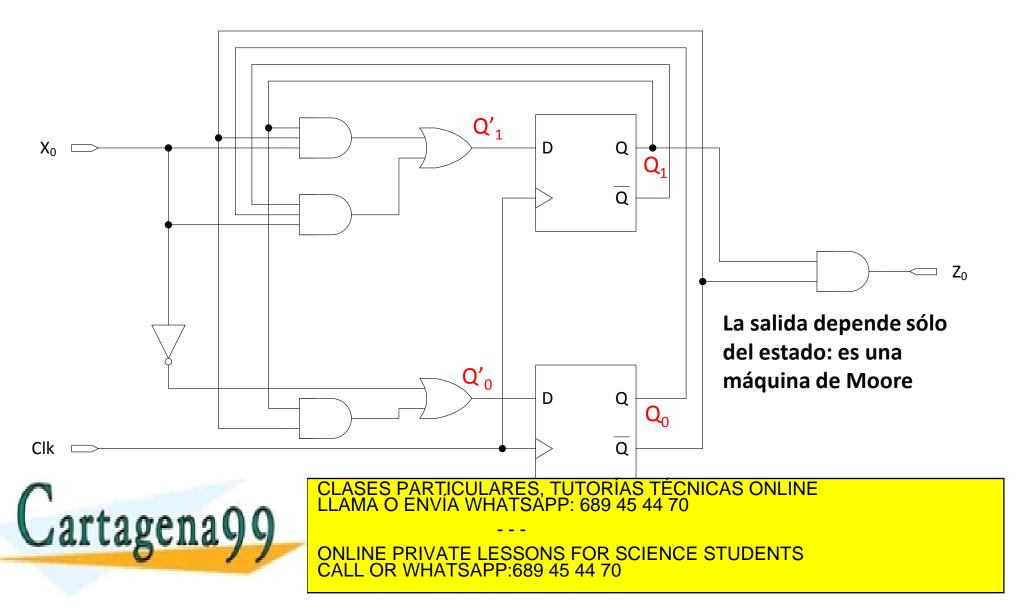
Asignamos nombres y valores a las entradas, los estados y la salida.

S(t)		X _o		Ent	Entrada		ida	ı	Estado)
Q_1	Q_0	0	1	X_{0}	X(t)	Z_0	Z(t)	Q_1	Q_0	S(t)
0	0	01/0	00/0	0	а	0	р	0	0	S_0
0	1	01/0	10/0	1	b	1	q	0	1	S ₁
1	0	01/0	00/1		1		I	1	0	S ₂
1	1	01/0	10/1					1	1	S ₃
										l

Estado	Entrada actual					
actual	а	b				
S_0	S₁/p	S ₀ /p				


Cartagena99

CLASES PARTICULARES, TUTÓRÍAS TÉCNICAS ÓNLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70


ANÁLISIS DE FSM: EJEMPLO 2

Partimos de la siguiente FSM:

ANÁLISIS DE FSM: IDENTIFICACIÓN

ANÁLISIS DE FSM: ECUACIONES Y TABLAS - MOORE

Función de transición

 $D_0 = Q'_0 (Q_1, Q_0, X_0) = Q_1 \cdot \overline{Q_0} + \overline{X_0}$

$$D_1 = Q_1'(Q_1,Q_0,X_0) = Q_1 \cdot \overline{Q_0} \cdot X_0 + \overline{Q_1} \cdot Q_0 \cdot X_0$$

	9	S(t), X	S(t+1)			
	Q_1	Q_0	X	Q' ₁	Q_0'	
•	0	0	0	0	1	
	0	0	1	0	0	
	0	1	0	0	1	
	0	1	1	1	0	
	1	0	0	0	1	

Q_1	Q_0	0	1
0	0	01	00
0	1	01	10

S(t)

Función de salida

$$Z_0(Q_1,Q_0) = Q_1 \cdot Q_0$$

La salida depende sólo del estado (Moore)

S((t)	Z
Q_1	Q_0	Z_0
0	0	0
0	1	0

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

X

ANÁLISIS DE FSM: DECODIFICACIÓN Y REPRESENTACIÓN FORMAL - MOORE

Asignamos nombres y valores a las entradas, los estados y la salida.

	Tabla de estados			Tabla de salida						
S(t)		X _o		S(t)		Z	Ent	ntrada		
	Q_1	\mathbf{Q}_{0}	0	1	Q_1	Q_0	Z _o	X ₀	X(t)	Z
	0	0	01	00	0	0	0	0	а	C
	0	1	01	10	0	1	0	1	b	1
	1	0	01	11	1	0	0			
	1	1	01	00	1	1	1			

Salida		Estado			
Z_0	Z(t)	Q_1	Q_0	S(t)	
0	р	0	0	S_0	
1	q	0	1	S_1	
	'	1	0	S_2	
		1	1	S_3	
	Z ₀	Z ₀ Z(t) 0 p	Z ₀ Z(t) Q ₁ 0 p 0 1 q 0	Z_0 $Z(t)$ Q_1 Q_0 0 p 0 0 1 q 0 1 1 0 0 0	

Estado	Entr	adas
actual	а	b
S_0	S ₁	S_0

Estado	Salida
S ₀	р

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ANÁLISIS DE FSM: REPRESENTACIÓN FORMAL - MOORE

Estado	Entr	adas			
actual	а	b		Estado	Salida
S_0	S ₁	S ₀	_	S_0	р
S_1	S ₁	S_2		S_1	р
S_2	S ₁	S_3		S_2	р
S_3	S_1	S_0		S_3	q
b S_0/p S_1/p S_1/p S_2/p					

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -