

Filtros de microondas

Sergio Llorente Romano, Daniel Segovia Vargas

Dept. de Teoría de la Señal y Comunicaciones Universidad Carlos III de Madrid

Avda. de la Universidad 30, 28911 Leganés, Madrid

12 de febrero de 2013

• Dispositivo de dos puertos con comportamiento selectivo en frecuencia.

- Dispositivo de dos puertos con comportamiento selectivo en frecuencia.
 - (Casi) Transparente en la banda de paso.
 - (Casi) Opaco para en la banda atenuada.
 - Modifica la fase de la señal según su frecuencia.

- Dispositivo de dos puertos con comportamiento selectivo en frecuencia.
 - (Casi) Transparente en la banda de paso.
 - (Casi) Opaco para en la banda atenuada.
 - Modifica la fase de la señal según su frecuencia.

Tipos de filtros:

- Activos.
- Pasivos.
 - ► Tipo RC.
 - Reactivos, sin pérdidas, o tipo LC.

▶ ...

• ..

- Dispositivo de dos puertos con comportamiento selectivo en frecuencia.
 - (Casi) Transparente en la banda de paso.
 - (Casi) Opaco para en la banda atenuada.
 - Modifica la fase de la señal según su frecuencia.

Tipos de filtros:

- Activos.
- Pasivos.
 - ► Tipo RC.
 - Reactivos, sin pérdidas, o tipo LC.
 - ► ...

• ..

- Carga en cada lado \Rightarrow generación/consumo de potencia.
- Transferencia de potencia de un lado al otro del cuadripolo.

• Circuito de elementos concentrados

• Circuito de microondas.

Potencias involucradas

Potencias involucradas

Funciones de transferencia

•
$$|H|^2 = \frac{P_2}{P_{\text{máx}}} \Rightarrow H = 2\sqrt{\frac{R_1}{R_2}} \frac{V_2}{V_g} = \frac{b_2}{a_1} = S_{21}$$

• $|\rho|^2 = \frac{P_r}{P_{\text{máx}}} \Rightarrow \rho = \frac{Z_1 - R_1}{Z_1 + R_1} = \frac{b_1}{a_1} = S_{11}$

Potencias involucradas

Funciones de transferencia

•
$$|H|^2 = \frac{P_2}{P_{\text{máx}}} \Rightarrow H = 2\sqrt{\frac{R_1}{R_2}} \frac{V_2}{V_g} = \frac{b_2}{a_1} = S_{21}$$

• $|\rho|^2 = \frac{P_r}{P_{\text{máx}}} \Rightarrow \rho = \frac{Z_1 - R_1}{Z_1 + R_1} = \frac{b_1}{a_1} = S_{11}$

Ecuación de Feldtkeller

$$P_1 = P_2 = P_{max} - P_r \Rightarrow \boxed{|H|^2 + |\rho|^2} = 1 \Rightarrow \boxed{|H|^2 = \frac{1}{1 + \left|\frac{\rho}{H}\right|^2}}$$

Función característica

Definición $F_c(\omega^2)$

$$F_c(\omega^2) \triangleq \left| \frac{\rho(\omega)}{H(\omega)} \right|^2 = \frac{P_r}{P_2}$$

$$|H|^2 = \frac{1}{1+F_c}$$

Propiedades:

• Function racional real par: $F_c = F_c(\omega^2) = \frac{N(\omega^2)}{M(\omega^2)}$.

Función característica

Definición $F_c(\omega^2)$

$$F_c(\omega^2) \triangleq \left| \frac{\rho(\omega)}{H(\omega)} \right|^2 = \frac{P_r}{P_2}$$

$$|H|^2 = \frac{1}{1 + F_c}$$

Propiedades:

• Función racional real par: $F_c = F_c(\omega^2) = \frac{N(\omega^2)}{M(\omega^2)}$.

•
$$0 \leq F_c(\omega^2) \leq \infty$$
.
 $F_c(\omega_{a,i}^2) = 0 \Leftrightarrow \alpha(\omega_{a,i}) = 0 \text{ dB. Ceros de reflexión.}$
 $F_c(\omega_{z,i}^2) \to \infty \Leftrightarrow \alpha(\omega_{z,i}) \to \infty \text{ dB. Ceros de transmisión.}$
 $F_c(\omega_c^2) = 1 \Leftrightarrow \alpha(\omega_c) \simeq 3 \text{ dB.}$

 Fácil visualización de las características de la banda de paso (ceros) y la banda atenuada (polos).

- Ceros de reflexión suelen estar situados en el eje $j\omega$
- Ceros de tx. en filtros de fase mínima están siempre en el eje $j\omega$.
- El cálculo de ceros y polos de $Fc(\omega^2)$ es un problema unidimensional.

- Sólo es útil para diseñar respuestas en amplitud.
- Para cumplir especificaciones en fase (Arg{H(s)}) o en el dominio del tiempo h(t) = L⁻¹{H(s)}, es necesario sintetizar directamente H(s).

Definición

Todos los ceros de transmisión y los ceros de atenuación (o ceros de reflexión) están en el eje $j\omega$.

$$F_{c}(\omega^{2}) = K^{2} \omega^{2n_{0}} \frac{\prod_{i=1}^{L} (\omega^{2} - \omega_{a,i}^{2})^{2}}{\prod_{n=1}^{M} (\omega^{2} - \omega_{z,i}^{2})^{2}}$$

Filtros de fase mínima

Definición

Todos los ceros de transmisión y los ceros de atenuación (o ceros de reflexión) están en el eje $j\omega$.

$$F_{c}(\omega^{2}) = K^{2} \omega^{2n_{0}} \frac{\prod_{i=1}^{L} (\omega^{2} - \omega_{a,i}^{2})^{2}}{\prod_{n=1}^{M} (\omega^{2} - \omega_{z,i}^{2})^{2}}$$

Si $Fc(\omega^2) = \frac{N(\omega^2)}{M(\omega^2)}$

- Orden de la aproximación: grado del polinomio N o del polinomio M.
- Número total de ceros de transmisión (incluyendo los que pueda haber en $\omega \to \infty$.)
- Número total de ceros de reflexión (incluyendo los que pueda haber en $\omega \to \infty.)$
- Complejidad mínima de sintesis: número mínimo de elementos LC.

•
$$\alpha = -10 \log_{10} |H|^2 = 10 \log_{10} (1 + Fc)$$

•
$$\alpha(\omega) < \alpha_p$$
, si $|\omega| < \omega_p$

Chebychev: equirrizada

•
$$\alpha = -10 \log_{10} |H|^2 = 10 \log_{10} (1 + Fc)$$

• $\alpha(\omega) < \alpha_p$, si $|\omega| < \omega_p$

Butterworth: maximal. plana	Chebychev: equirrizada
• <i>N</i> ceros de tx. en $\omega \to \infty$.	
• <i>N</i> ceros de reflexion. en	
$\omega = 0.$	

•
$$\alpha = -10 \log_{10} |H|^2 = 10 \log_{10} (1 + Fc)$$

• $\alpha(\omega) < \alpha_p$, si $|\omega| < \omega_p$

Butterworth: maximal. plana	Chebychev: equirrizada
• <i>N</i> ceros de tx. en $\omega \to \infty$.	
• <i>N</i> ceros de reflexion. en	
$\omega = 0.$	
• $Fc = K(\frac{\omega}{\omega_p})^{2N}$.	

•
$$\alpha = -10 \log_{10} |H|^2 = 10 \log_{10} (1 + Fc)$$

• $\alpha(\omega) < \alpha_p$, si $|\omega| < \omega_p$

Butterworth: maximal. plana	Chebychev: equirrizada
• <i>N</i> ceros de tx. en $\omega \to \infty$.	
• <i>N</i> ceros de reflexion. en	
$\omega = 0.$	
• $Fc = K(\frac{\omega}{\omega_p})^{2N}$.	
• $K = 10^{lpha_p/10} - 1$	

•
$$\alpha = -10 \log_{10} |H|^2 = 10 \log_{10} (1 + Fc)$$

•
$$\alpha(\omega) < \alpha_p$$
, si $|\omega| < \omega_p$

Butterworth: maximal. plana	Chebychev: equirrizada
• <i>N</i> ceros de tx. en $\omega \to \infty$.	• <i>N</i> ceros de tx. en $\omega \to \infty$.
• <i>N</i> ceros de reflexion. en	
$\omega = 0.$	
• $Fc = K(\frac{\omega}{\omega_p})^{2N}$.	
• $K = 10^{lpha_p/10} - 1$	

•
$$\alpha = -10 \log_{10} |H|^2 = 10 \log_{10} (1 + Fc)$$

• $\alpha(\omega) < \alpha_p$, si $|\omega| < \omega_p$

Butterworth: maximal. plana

- *N* ceros de tx. en $\omega \to \infty$.
- *N* ceros de reflexion. en ω = 0.

•
$$Fc = K(\frac{\omega}{\omega_p})^{2N}$$

•
$$K = 10^{\alpha_p/10} - 1$$

Chebychev: equirrizada

- *N* ceros de tx. en $\omega \to \infty$.
- *N* ceros de reflexion distribuidos en $|\omega| < \omega_p$.

•
$$\alpha = -10 \log_{10} |H|^2 = 10 \log_{10} (1 + Fc)$$

• $\alpha(\omega) < \alpha_p$, si $|\omega| < \omega_p$

Butterworth: maximal. plana

- *N* ceros de tx. en $\omega \to \infty$.
- N ceros de reflexion. en ω = 0.

•
$$Fc = K(\frac{\omega}{\omega_p})^{2N}$$
.

•
$$K = 10^{\alpha_p/10} - 1$$

Chebychev: equirrizada

- *N* ceros de tx. en $\omega \to \infty$.
- *N* ceros de reflexion distribuidos en $|\omega| < \omega_p$.

•
$$Fc = \epsilon^2 T_N^2(\frac{\omega}{\omega_p}).$$

•
$$\alpha = -10 \log_{10} |H|^2 = 10 \log_{10} (1 + Fc)$$

•
$$\alpha(\omega) < \alpha_p$$
, si $|\omega| < \omega_p$

Butterworth: maximal. plana

- *N* ceros de tx. en $\omega \to \infty$.
- N ceros de reflexion. en ω = 0.

•
$$Fc = K(\frac{\omega}{\omega_p})^{2N}$$
.

•
$$K = 10^{\alpha_p/10} - 1$$

Chebychev: equirrizada

- *N* ceros de tx. en $\omega \to \infty$.
- *N* ceros de reflexion distribuidos en $|\omega| < \omega_p$.

•
$$Fc = \epsilon^2 T_N^2(\frac{\omega}{\omega_p}).$$

•
$$\epsilon^2 = 10^{\alpha_p/10} - 1$$

Polinomios de Chebyshev: $T_N(x)$

Polinomios acotados en $\left[-1,1\right]$ que más rápidamente crecen en $\left|x\right|>1$

ω

Filtros de microondas

Chebychev con diferentes rizados $\omega_p = 1, N = 4$

Fórmulas de Diseño Filtros paso bajo de Butterworth y Chebychev

Filtros LC en escalera

12 de febrero de 2013 18 / 43

Filtros LC en escalera

Circuitos de N elementos con respuestas de orden N donde sus N ceros de transmisión están en $\omega\to\infty$

Diseños tabulados: Prototipos de Butterworth Diseños normalizados: $\omega_p = 1$, $\alpha_p = 3 dB$

$lpha = 10 \log_{10}(1+\omega^{2N})$									
$orall N$ g $_0=1$, $\omega_{3 m dB}=1$									
Ν	g_1	g 2	g 3	g 4	g 5	g 6	g7	g_8	
1	2.0000	1.0000							
2	1.4142	1.4142	1.0000						
3	1.0000	2.0000	1.0000	1.0000					
4	0.7654	1.8478	1.8478	0.7654	1.0000				
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000			
6	0.5176	1.4142	1.9319	1.9319	1.4142	0.5176	1.0000		
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000	

•
$$R_0 = g_0 \Omega$$

• $C_i = g_i F, i = 1, 3, ...$
• $L_i = g_i H, i = 2, 4, ...$
• $\begin{cases} N \text{ impar: } C_N = g_N F; R_{N+1} = g_{N+1} \Omega\\ N \text{ par: } L_N = g_N H; R_{N+1}^{-1} = g_{N+1} \mho. \end{cases}$

•
$$R_0^{-1} = g_0 \mho$$

• $L_i = g_i H, i = 1, 3, ...$
• $C_i = g_i F, i = 2, 4, ...$
• $\begin{cases} N \text{ impar: } L_N = g_N H; \ R_{N+1}^{-1} = g_{N+1} \mho \\ N \text{ par: } L_N = g_N H; \ R_{N+1} = g_{N+1} \Omega \end{cases}$

Diseños tabulados: Prototipos de Butterworth Diseños normalizados: $\omega_p = 1$, $\alpha_p = 3 dB$

$lpha = 10 \log_{10}(1+\omega^{2N})$								
$orall N \ g_0 = 1, \ \omega_{3 \mathrm{dB}} = 1$								
Ν	g_1	g 2	g 3	g 4	g 5	g 6	g7	g_8
1	2.0000	1.0000						
2	1.4142	1.4142	1.0000					
3	1.0000	2.0000	1.0000	1.0000				
4	0.7654	1.8478	1.8478	0.7654	1.0000			
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000		
6	0.5176	1.4142	1.9319	1.9319	1.4142	0.5176	1.0000	
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000

Diseños tabulados: Prototipos de Butterworth Diseños normalizados: $\omega_p = 1$, $\alpha_p = 3 dB$

$lpha = 10 \log_{10}(1+\omega^{2N})$										
$orall N \ g_0 = 1, \ \omega_{3 \mathrm{dB}} = 1$										
N	g_1	g 2	g 3	g 4	g 5	g 6	g7	g 8		
1	2.0000	1.0000								
2	1.4142	1.4142	1.0000							
3	1.0000	2.0000	1.0000	1.0000						
4	0.7654	1.8478	1.8478	0.7654	1.0000					
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000				
6	0.5176	1.4142	1.9319	1.9319	1.4142	0.5176	1.0000			
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000		

Diseños tabulados: Prototipos de Chebychev I Diseños normalizados: $\omega_p = 1$

 $\alpha = 10 \log_{10}(1 + \epsilon^2 T_N^2(\omega))$

 $\forall N \ g_0 = 1, \ \omega_p = 1, \ \alpha_p = 0,005 \ dB, \ \epsilon^2 = 0,0012, \ |\rho|_p = -29.8 \ dB$

n	g_1	g 2	g 3	g 4	g 5	g 6	g ₇	g_8
1	0.0679	1.0000						
2	0.3748	0.3502	1.0702					
3	0.5502	0.8968	0.5502	1.0000				
4	0.6352	1.1407	1.2208	0.5935	1.0702			
5	0.6801	1.2554	1.4899	1.2554	0.6801	1.0000		
6	0.7063	1.3167	1.6119	1.5062	1.4092	0.6599	1.0702	
7	0.7226	1.3532	1.6764	1.6166	1.6764	1.3532	0.7226	1.0000

 $\forall N \ g_0 = 1, \ \omega_p = 1, \ \alpha_p = 0.01 \ dB \ \epsilon^2 = 0.0023, \ |\rho|_p = -26.4 \ dB$

n	g_1	g 2	g 3	g4	g 5	g 6	g7	g 8
1	0.0960	1.0000						
2	0.4489	0.4078	1.1007					
3	0.6292	0.9703	0.6292	1.0000				
4	0.7129	1.2004	1.3213	0.6476	1.1007			
5	0.7563	1.3049	1.5773	1.3049	0.7563	1.0000		
6	0.7814	1.3600	1.6897	1.5350	1.4970	0.7098	1.1007	
7	0.7969	1.3924	1.7481	1.6331	1.7481	1.3924	0.7969	1.0000

Diseños tabulados: Prototipos de Chebychev II Diseños normalizados: $\omega_p = 1$

$lpha = 10 \log_{10}(1 + \epsilon^2 T_N^2(\omega))$											
	$\forall N \ g_0 = 1, \ \omega_p = 1, \ \alpha_p = 0.05 dB \ \epsilon^2 = 0.0116, \ \rho _p = -19.4 dB$										
n	g_1	g 2	g 3	g 4	g 5	g 6	g7	g 8			
1	0.2152	1.0000									
2	0.6923	0.5585	1.2396								
3	0.8794	1.1132	0.8794	1.0000							
4	0.9588	1.2970	1.6078	0.7734	1.2396						
5	0.9984	1.3745	1.8283	1.3745	0.9984	1.0000					
6	1.0208	1.4141	1.9183	1.5475	1.7529	0.8235	1.2396				
7	1.0346	1.4369	1.9637	1.6162	1.9637	1.4369	1.0346	1.0000			
	$\forall N$	$g_0=1$, ω_c	$_{p}=1,\ \alpha_{p}$	= 0,1 dB	$\epsilon^2 = 0,023$	3, $ \rho _{\rho} =$	-16,4 dB				
n	g_1	g 2	g 3	g 4	g 5	g 6	g7	g 8			
1	0.3052	1.0000									
2	0.8430	0.6220	1.3554								
3	1.0316	1.1474	1.0316	1.0000							
4	1.1088	1.3062	1.7704	0.8181	1.3554						
5	1.1468	1.3712	1.9750	1.3712	1.1468	1.0000					
6	1.1681	1.4040	2.0562	1.5171	1.9029	0.8618	1.3554				
7	1.1812	1.4228	2.0967	1.5734	2.0967	1.4228	1.1812	1.0000			

Diseños tabulados: Prototipos de Chebychev III Diseños normalizados: $\omega_{\rho} = 1$

$lpha = 10 \log_{10}(1 + \epsilon^2 T_N^2(\omega))$											
	$\forall N \ g_0 = 1, \ \omega_p = 1, \ \alpha_p = 0.5 dB \ \epsilon^2 = 0.1220, \ \rho _p = -9.6 dB$										
n	g_1	g 2	g 3	g 4	g 5	g 6	g7	g 8			
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841								
3	1.5963	1.0967	1.5963	1.0000							
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000					
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7373	1.2582	2.6383	1.3443	2.6383	1.2582	1.7373	1.0000			
	A	$V M g_0 = 1,$	$\omega_{ m p}=1$, ($\alpha_p = 1 dB$	$\epsilon^2 = 0,25$, $ \rho _{P} = -$	6,8 dB				
n	g_1	g 2	g 3	g 4	g 5	g_6	g 7	g 8			
1	1.0177	1.0000									
2	1.8219	0.6850	2.6597								
3	2.0236	0.9941	2.0236	1.0000							
4	2.0991	1.0644	2.8311	0.7892	2.6597						
5	2.1349	1.0911	3.0009	1.0911	2.1349	1.0000					
6	2.1546	1.1041	3.0634	1.1518	2.9367	0.8101	2.6597				
7	2.1666	1.1115	3.0936	1.1735	3.0936	1.1115	2.1666	1.0000			

$lpha = 10 \log_{10}(1+\epsilon^2 T_N^2(\omega))$											
$\forall N \ g_0 = 1, \ \omega_p = 1, \ \alpha_p = 3 \mathrm{dB} \ \epsilon^2 = 1, \ \rho _p = -3 \mathrm{dB}$											
n	g_1	g 2	g 3	g 4	g 5	g_6	g7	g 8			
1	1.9953	1.0000									
2	3.1013	0.5339	5.8089								
3	3.3487	0.7117	3.3487	1.0000							
4	3.4389	0.7483	4.3470	0.5920	5.8089						
5	3.4813	0.7619	4.5375	0.7619	3.4813	1.0000					
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8089				
7	3.5185	0.7722	4.6390	0.8038	4.6390	0.7722	3.5185	1.0000			

Normalización de impedancias

$$\begin{array}{l} I'_i = \frac{I_i}{\alpha} \\ V'_i = V_i \end{array} \right\} \Rightarrow \text{No varia la función de transferencia } H(\omega).$$

Transformaciones de frecuencia

$$\bar{Z}(\bar{\omega}) = j\bar{\omega}\bar{L} \longrightarrow Z(\omega) = jrac{\omega^2 - \omega_0^2}{B\omega}\bar{L} = j\omegarac{\bar{L}}{B} + rac{1}{j\omegarac{B}{\omega_0^2\bar{L}}}$$

$$\begin{split} \bar{Z}(\bar{\omega}) &= j\bar{\omega}\bar{L} & \longrightarrow & Z(\omega) = j\frac{\omega^2 - \omega_0^2}{B\omega}\bar{L} = j\omega\frac{\bar{L}}{B} + \frac{1}{j\omega\frac{B}{\omega_0^2\bar{L}}}\\ \bar{Y}(\bar{\omega}) &= j\bar{\omega}\bar{C} & \longrightarrow & Y(\omega) = j\frac{\omega^2 - \omega_0^2}{B\omega}\bar{C} = j\omega\frac{\bar{C}}{B} + \frac{1}{j\omega\frac{B}{\omega_0^2\bar{C}}} \end{split}$$

Filtros de microondas

Definir especificaciones.

ADC

- Definir especificaciones.
- elegir transformación.

- Definir especificaciones.
- elegir transformación.
- Transformar especificaciones.

- Definir especificaciones.
- elegir transformación.
- Transformar especificaciones.
- elegir aproximación.

- Definir especificaciones.
- elegir transformación.
- Transformar especificaciones.
- elegir aproximación.
- 6 Elegir de prototipo.

- Definir especificaciones.
- elegir transformación.
- Transformar especificaciones.
- elegir aproximación.
- Segir de prototipo.
- 6 Escalado de impedancias.

- Definir especificaciones.
- elegir transformación.
- Transformar especificaciones.
- elegir aproximación.
- Segir de prototipo.
- Scalado de impedancias.
- Transformación de frecuencias.

- Definir especificaciones.
- 2 Elegir transformación.
- Transformar especificaciones.
- elegir aproximación.
- Selegir de prototipo.
- Scalado de impedancias.
- Transformación de frecuencias.
- ¿Adaptación de impedancia de generador/carga?

Filtro paso bajo con líneas de transmisión Filtros de saltos de impedancia

Modelo de línea de transmisión corta: $\beta d < \frac{\pi}{2}$

Filtro paso bajo con líneas de transmisión Filtros de saltos de impedancia

Variable de Richard

Filtros de elementos conmensurados

Filtros de elementos conmensurados Ejemplo

Filtros de elementos conmensurados Identidades de Kuroda

Identidades de Kuroda

- Resonador: elemento que puede modelarse como un *tanque LC* (serie o paralelo).
- Cada tecnología suele proporcionar un único tipo de conexión:
 - Conexión serie.
 - Conexión paralelo.
- Las conexiones entre resonadores se modelan mejor mediante inversores de impedancia/admitancia

Inversores de impedancia/admitancia

Definición

Elemento ideal que nos sirve para modelar los acoplos entre resonadores

Filtros de microondas

Definición

Tramos de línea de transmisión cuya longitud es igual a $\lambda/2$ a la frecuencia de resonancia $\omega_0.$

Equivalencia con el tanque *LC*

$$LC = \omega_0^2$$

Modelado como LC serie : $\sqrt{\frac{L}{C}} = Z_0 \frac{\pi}{2}$
lodelado como LC paralelo : $\sqrt{\frac{C}{L}} = Y_0 \frac{\pi}{2}$

2

N

Filtros de cavidades directamente acopladas l $\omega'_1 = 1, x_j = \sqrt{L_j/C_j}$

Filtros de cavidades directamente acopladas II $\omega'_1 = 1, \ b_j = \sqrt{C_j/L_j}$

(a) A GENERALIZED, BAND-PASS FILTER CIRCUIT USING ADMITTANCE INVERTERS

(b) SUSCEPTANCE OF j th RESONATOR

A-3527 -186

$$i_{j}^{\beta} = \frac{\omega_{0}}{2} \frac{dB_{j}(\omega)}{d\omega} \Big|_{\omega = \omega_{0}} \text{ mhos}$$
(1)

= Susceptance Slope Parameter

$$J_{01} = \sqrt{\frac{G_{A}b_{1}w}{g_{0}g_{1}\alpha_{1}'}} \qquad (2) \qquad J_{j,j+1}\Big|_{j=1 \text{ to } n-1} = \frac{w}{\alpha_{1}'}\sqrt{\frac{b_{j}b_{j+1}}{g_{j}g_{j+1}}} \qquad (3)$$
$$J_{n,n+1} = \sqrt{\frac{G_{A}b_{n,w}}{\omega_{1}'g_{n}g_{n+1}}} \qquad (4) \qquad w = \frac{fractional}{bandwidth} = \frac{\omega_{2}-\omega_{1}}{\omega_{0}} \qquad (5)$$

Filtros de microondas

Filtros de cavidades directamente acopladas Acoplo por capacidad

Filtros de cavidades directamente acopladas Acoplo por línea acoplada

$$Z_{0e} = Z_0[1 + JZ_0 + (JZ_0)^2]$$
$$Z_{0o} = Z_0[1 - JZ_0 + (JZ_0)^2]$$

Filtros de cavidades directamente acopladas Cavidades en guía acopladas por postes inductivos

