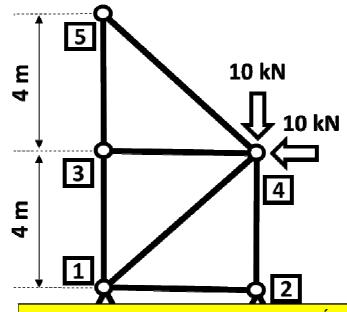


ALUMNO:_____

DIIN

Asignatura: IME111- Cálculo de Estructuras

MF5129- Teoría de Estructuras y Construcciones Industriales


Cuatrimestre: 1º Examen: Final Convocatoria: Ordinaria
Grupo: 4ME-4AUT-5INTCurso: 2014/2015 Fecha: 26-ene-2015

PARTE PRÁCTICA

EJERCICIO 1 (2 Puntos)

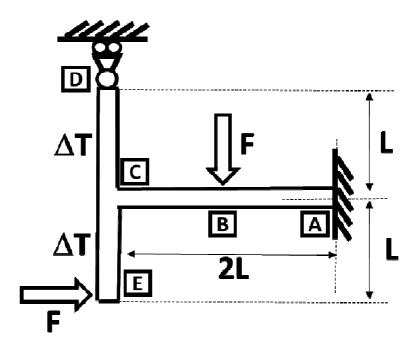
1º) Calcular el desplazamiento vertical del nudo 5 de la celosía de la figura sabiendo que las barras son cilíndricas, de acero S235, E=210 GPa, de 10 mm de diámetro. (75%)

2º) Coeficiente de seguridad de la estructura. (25%)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70


EJERCICIO 2 (4 Puntos)

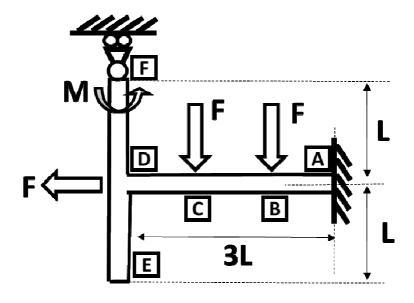
Se tiene el pórtico de la figura, cargado por dos fuerzas F en los nudos B y E según se muestra en la figura, formado por vigas IPN 100 y acero S235 de E=210GPa, y cuyas barras DC y CE sufren un incremento de temperatura de 100ºC respecto al resto de la estructura.

Se pide resolver los siguientes puntos por el método de la FLEXIBILIDAD:

- 1º) Hiperestaticidad de la estructura (5%).
- 2º) Hallar la reacción en D (40%)
- 3º) Hallar los esfuerzos N (10%) y momentos M (25%) en toda la estructura.
- 4º) Hallar el giro en el punto D (20%).

Datos adicionales: L= 5m, F=10 kN y el coeficiente de dilatación del acero α =1,2·10⁻⁵ ($^{\circ}$ C⁻¹)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70


- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

EJERCICIO 3 (2 Puntos)

Dado el pórtico de la figura, formado por vigas IPN 100 y acero S235 de E=210GPa, a resolver por el método de la RIGIDEZ, con L= 5m; F= 10 kN y M=1 Tn·cm.

Se pide:

- 1º) Matriz de conectividad, vector de fuerzas y de desplazamientos Δ iniciales en todos los grados de libertad.
- 2º) Extraer de la matriz de rigidez KG global de la estructura los siguientes valores.

вх	ВУ	Bg	DX	DY	Dg	FX	FY	Fg
	вх	BX BY	BX BY Bg	BX BY Bg DX	BX BY Bg DX DY	BX BY Bg DX DY Dg	BX BY Bg DX DY Dg FX	BX BY Bg DX DY Dg FX FY

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70