The Finite Element Method

Section 3

Dr. Matthew Santer
Department of Aeronautics, I.C.L.
m.santer@imperial.ac.uk

Section Objectives

In the last section we showed how the solution to the 1-D Poisson Equation could be approximated using two degrees of freedom.

In this section we will:

- show how to move from a global to local description of the approximating functions
- introduce local descriptions of 'finite elements'
- introduce an implementation of a local-to-global assembly operator

Finite Elements: global description

We have seen a 2-dof approximation of the 1-D domain. Accuracy of approximation may clearly be improved by increasing the number of degrees of freedom.

Finite Element: global description

Domain
Nodes
DoF
Shape Functions
Interpolation Function

$$
\begin{aligned}
& {\left[x_{A}, x_{A+1}\right]} \\
& \left\{x_{A}, x_{A+1}\right\} \\
& \left\{d_{A}, d_{A+1}\right\} \\
& \left\{N_{A}, N_{A+1}\right\} \\
& u^{h}(x)=N_{A}(x) d_{A}+N_{A+1}(x) d_{A+1}
\end{aligned}
$$

Finite Elements: local description

We notice that the individual basis functions are highly localized in space and have the same repeated form. We can therefore standardize a single local element description.

Finite Element: local description

Domain	$\left[\xi_{1}, \xi_{2}\right]$
Nodes	$\left\{\xi_{1}, \xi_{2}\right\}$
DoF	$\left\{d_{1}, d_{2}\right\}$
Shape Functions	$\left\{N_{1}, N_{2}\right\}$
Interpolation Function	$u^{h}(\xi)=N_{1}(\xi) d_{1}+N_{2}(\xi) d_{2}$

Local to Global Mapping

The local coordinate ξ is related to the global coordinate x via an affine transformation (i.e. a linear transformation followed by a translation)

$$
\xi:\left[x_{A}, x_{A+1}\right] \rightarrow\left[\xi_{1}, \xi_{2}\right]
$$

such that $\xi\left(x_{A}\right)=\xi_{1}$ and $\xi\left(x_{A+1}\right)=\xi_{2}$.

Visualizer

Determine $\xi(x)$ and $x(\xi)$ for the 2-dof finite element and consider the form of the shape functions
N.B. upper-case subscripts refer to the global element description, and lower-case subscripts refer to the local element description

Element 'Stiffness' Matrix and 'Force' Vector

Consider a finite element approximation to the 1D BVP with $n_{e l}$ elements and element numbers $e=1,2, \cdots, n_{e l}$.

Recall that we have previously defined the global 'stiffness' matrix $\mathbf{K}=\left[K_{A B}\right]$ and 'force' vector $\mathbf{F}=\left\{F_{A}\right\}$ with

$$
K_{A B}=a\left(N_{A}, N_{B}\right)=\int_{0}^{1} N_{A, x} N_{B, x} d x
$$

and
$F_{A}=\left(N_{A}, I\right)+\delta_{A 1} h-a\left(A_{A}, N_{n+1}\right) g=\int_{0}^{1} N_{A} / d x+\delta_{A 1} h-\int_{0}^{1} N_{A, x} N_{n+1, x} d x g$

Assembly: global sense

$$
\begin{aligned}
\mathbf{K} & =\sum_{e=1}^{n_{e l}} \mathbf{K}^{e}, \quad \mathbf{K}^{e}=\left[K_{A B}^{e}\right] \\
\mathbf{F} & =\sum_{e=1}^{n_{e l}} \mathbf{F}^{e}, \quad \mathbf{F}^{e}=\left\{F_{A}^{e}\right\}
\end{aligned}
$$

in which

$$
K_{A B}^{e}=a\left(N_{A}, N_{B}\right)^{e}=\int_{\Omega^{e}} N_{A, x} N_{B, x} d x
$$

and

$$
\begin{aligned}
F_{A}^{e} & =\left(N_{A}, I\right)^{e}+\delta_{e 1} \delta_{A 1} h-a\left(A_{A}, N_{n+1}\right)^{e} g \\
& =\int_{\Omega^{e}} N_{A} / d x+\delta_{e 1} \delta_{A 1} h-\int_{\Omega^{e}} N_{A, x} N_{n+1, x} d x g
\end{aligned}
$$

The elemental domain is defined as $\Omega^{e}=\left[x_{1}^{e}, x_{2}^{e}\right]$.

Assembly: local sense

It is much more convenient to define an individual stiffness matrix and force vector for the eth element with respect to local node numbering:

$$
\begin{gathered}
\mathbf{k}^{e}=\left[k_{a b}\right] \quad \mathbf{f}^{e}=\left[f_{a}\right] \\
k_{a b}^{e}=a\left(N_{a}, N_{b}\right)^{e}=\int_{\Omega^{e}} N_{a, x} N_{b, x} d x \\
f_{a}^{e}=\int_{\Omega^{e}} N_{a} l d x+\left\{\begin{array}{rl}
\delta_{a 1} h & e=1 \\
0 & e=2,3, \cdots, n_{e l}-1 \\
-k_{a 2}^{e} g & e=n_{e l}
\end{array}\right.
\end{gathered}
$$

These expressions may be determined from the global definitions by inspection.

1-D Assembly Operator Implementation

We can obtain the global stiffness matrix and force vector from the locally-defined elemental stiffness matrix and force vector by defining an assembly operator $\mathbf{A}(\cdot)$ such that

This operator may be implemented computationally for the 1-D case by means of a Location Matrix (LM) which has dimensions $n_{e n} \times e$.

Global eqn. no. $A=L M(a, e)=\left\{\begin{array}{cc}e & \text { if } a=1 \\ e+1 & \text { if } a=2\end{array}\right.$

Visualizer

Example assembly operation for a 1-D problem approximated with 4 elements each having 2-dof

Summary

This section has introduced one of the most important aspects of the finite element method: the local element representation.

- Local element definitions are transformed to global coordinates via an affine mapping
- An assembly operator has been introduced which generates global ''stiffness' matrices and 'force' vectors from local element stiffnesses and forces
- A computational implementation of the assembly operator for a 1-D problem has been demonstrated

1-D problems are useful to consider for fundamental understanding, but it is now time to move to the use of the finite element for 2-D domains with applicability to 'real' engineering problems.

