A Motivational Introduction to Computational Logic
and (Constraint) Logic Programming

The following people have contributed to this course material:

Manuel Hermenegildo (editor), Technical University of Madrid, Spain and University of New Mexico, USA; Francisco Bueno, Manuel
Carro, Pedro Lépez, and Daniel Cabeza, Technical University of Madrid, Spain; Maria José Garcia de la Banda, Monash University,

Australia; David H. D. Warren, University of Bristol, U.K.; Ulrich Neumerkel, Technical University of Vienna, Austria; Michael Codish,

Ben Gurion University, Israel




Computational Logic

programming
logic algorithms
lambda calculus

verification _
logic and Al

logic programming knowledge representation

functional programming

constraints logic of programming

declarative programming

Logic of Computation Declarative Programming

program verification direct use of logic
proving properties as a programming tool




The Program Correctness Problem

e Conventional models of using computers — not easy to determine correctness!

<~ Has become a very important issue, not just in safety-critical apps.
<~ Components with assured quality, being able to give a warranty, ...
< Being able to run untrusted code, certificate carrying code, ...




A Simple Imperative Program

e Example:

#include <stdio.h>
main() {
int Number, Square;
Number = 0;
while (Number <= 5)
{ Square = Number * Number;
printf ("%d\n",Square) ;
Number = Number + 1; } }

e Is it correct? With respect to what?
e A suitable formalism:

© to provide specifications (describe problems), and
© to reason about the correctness of programs (their implementation).

IS needed.




Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.
|deal at first sight, but:

o verbose

o vague

<~ ambiguous

< needs context (assumed information)

<

Philosophers and Mathematicians already pointed this out a long time ago...




Logic

e A means of clarifying / formalizing the human thought process

e Logic for example tells us that (classical logic)
Aristotle likes cookies, and
Plato is a friend of anyone who likes cookies
imply that
Plato is a friend of Aristotle

e Symbolic logic:
A shorthand for classical logic — plus many useful results:
a1 : likes(aristotle, cookies)
as : VX likes(X, cookies) — friend(plato, X)
t1 : friend(plato, aristotle)
T[a,l, az] = tl

e But, can logic be used:

< To represent the problem (specifications)?
o Even perhaps to solve the problem?




Using Logic

1.

gy
-

Specs
(Logic)

N |

Semantics

Y e
> Proof iYES / NO

e For expressing specifications and reasoning about the correctness of programs
we need:

< Specification languages (assertions), modeling, ...
< Program semantics (models, axiomatic, fixpoint, ...).
< Proofs: program verification (and debugging, equivalence, ...).




Generating Squares: A Specification (1)

Numbers —we will use “Peano” representation for simplicity:
0—0 1 — s(0) 2 — s(s(0)) 3 — s(s(s(0)))

e Defining the natural numbers:
nat(0) A nat(s(0)) A nat(s(s(0))) A ...

e A better solution:
nat(0) AVX (nat(X) — nat(s(X)))

e Order on the naturals:
VX (le(0, X)) A
VXYY (le(X,Y) — le(s(X),s(Y))

e Addition of naturals:
VX (nat(X) — add(0, X, X)) A
VXVYVZ (add(X,Y, Z) — add(s(X),Y, s(Z)))




Generating Squares: A Specification (Il)

e Multiplication of naturals:
VX (nat(X) — mult(0, X,0)) A
VXVYNVINW (mult(X,Y, W) A addW,Y, Z) — mult(s(X),Y, Z))

e Squares of the naturals:
VXVY (nat(X) Anat(Y) Amult(X, X,Y) — nat_square(X,Y))

We can now write a specification of the (imperative) program, i.e., conditions that we
want the program to meet:

e Precondition:
empty.

e Postcondition:
VX (output(X) «— (Y nat(Y) Ale(Y, s(s(s(s(s(0)))))) A nat_square(Y, X)))




Alternative Use of Logic?

e So, logic allows us to represent problems (program specifications).

% But, it would be interesting
to also improve: - -,

i.e., the process of implementing solutions to problems.

e The importance of Programming Languages (and tools).

e Interesting question: can logic help here too?




From Representation/Specification to Computation

e Assuming the existence of a mechanical proof method (deduction procedure)
a new view of problem solving and computing is possible [Greene]:

© program once and for all the deduction procedure in the computer,
o find a suitable representation for the problem (i.e., the specification),
< then, to obtain solutions, ask questions and let deduction procedure do rest:

Problem —
O "=
Y —
Questions
|

» No correctness proofs needed! (Correct) Answers / Results




Computing With Our Previous Description / Specification

Query Answer
nat(s(0)) ? (yes)
X add(s(0), s(s(0)), X) ? X = s(s(s(0)))
X add(s(0), X, s(s(s(0)))) ? X = 5(s(0))
AX nat(X) ? X=0VvX=s50)VX=s(s0)V
3X3Y add(X,Y, s(0)) ? (X =0AY =5(0) V(X =50)AY =0)
AX nat_square(s(s(0)), X) ? = 5(s(s(s(0))))

), X) X
X nat_square(X, s(s(s(s(0))))) ? X = s(s(0))
XY nat_square(X,Y) ? X

=0ANY =0)V(X=50)AY =5(0)) V(X =
s(s(0)) AY = s(s(s(s(0))))) V...
X output(X) ? X=0V X=50)V X =s(s(s(s(0))) vV X =
) s°0) Vv X =5




Which Logic?

e We have already argued the convenience of representing the problem in logic, but

< which logic?
* propositional
* predicate calculus (first order)
* higher-order logics
* modal logics
* A-calculus, ...
< which reasoning procedure?

* natural deduction, classical methods
* resolution

* Prawitz/Bibel, tableaux

* bottom-up fixpoint

* rewriting

* narrowing, ...




Issues

e We try to maximize expressive power.

e But one of the main issues is whether we have an effective reasoning procedure.
e It is important to understand the underlying properties and the theoretical limits!

e Example: propositions vs. first-order formulas.

< Propositional logic:

“spot is a dog” p
“dogs have tail” q

but how can we conclude that Spot has a tail?

o Predicate logic extends the expressive power of propositional logic:

dog(spot)
VXdog(X) — has_tail(X)

now, using deduction we can conclude:

has tail(spot)




Comparison of Logics ()

e Propositional logic:

“spot is a dog” p
+ decidability/completeness

- limited expressive power

+ practical deduction mechanism

— circuit design, “answer set” programming, ...
e Predicate logic: (first order)

“spot is a dog” dog(spot)

+/- decidability/completeness

+/- good expressive power

+ practical deduction mechanism (e.g., SLD-resolution)

— classical logic programming!




Comparison of Logics (Il)

e Higher-order predicate logic:

“There is a relationship for spot” X(spot)
- decidability/completeness

+ good expressive power

— practical deduction mechanism

But interesting subsets — HO logic programming, functional-logic prog., ...

e Other logics: decidability? Expressive power? Practical deduction mechanism?
Often (very useful) variants of previous ones:

< Predicate logic + constraints (in place of unification)
— constraint programming!

< Propositional temporal logic, etc.

e Interesting case: A-calculus

+ similar to predicate logic in results, allows higher order
- does not support predicates (relations), only functions

— functional programming!




Generating squares by SLD-Resolution — Logic Programming (I)

e We code the problem as definite (Horn) clauses:
nat(0)
—nat(X) V nat(s(X))
—nat(X) V add(0, X, X))
—add(X,Y, Z) V add(s(X),Y, s(Z))
—nat(X) V mult(0, X, 0)
—~mult(X, Y, W)V —add(W,Y, Z) V mult(s(X),Y, Z)
—nat(X)V —nat(Y)V —mult(X, X,Y) V nat_square(X,Y)

e Query: nat(s(0)) ?
e In order to refute: —nat(s(0))

e Resolution:
—nat(s(0)) with —nat(X) V nat(s(X)) gives —nat(0)
—nat(0) with nat(0) gives O

e Answer: (yes)




Generating squares by SLD-Resolution — Logic Programming (lI)

nat(0)

—nat(X) V nat(s(X))

—nat(X) V add(0, X, X))

—add(X,Y, Z) V add(s(X),Y, s(Z))

—nat(X) V mult(0, X, 0)

—~mult(X, Y, W)V —add(W,Y, Z) V mult(s(X),Y, Z)
—nat(X)V —nat(Y)V —-mult(X, X,Y) V nat_square(X,Y)

e Query: 3JX3Y add(X,Y,s(0)) ?
e In order to refute: —add(X,Y, s(0))

e Resolution:
—add(X, Y, s(0)) with =nat(X) V add(0, X, X)) gives —nat(s(0))
—nat(s(0)) solved as before

e Answer: X =0,Y = s(0)

o Alternative:
—add(X,Y,s(0)) with madd(X,Y, Z) V add(s(X),Y, s(Z)) gives —add(X, Y, 0)




Generating Squares in a Practical Logic Programming System (1)

:— module(_,_,[’bf/af’]).

nat(0) <- .
nat(s(X)) <- nat(X).

1le(0,_X) <- .
le(s(X),s(Y)) <- 1le(X,Y).

add(0,Y,Y) <- nat(Y).
add(s(X),Y,s(Z)) <- add(X,Y,Z).

mult(0,Y,0) <- nat(Y).
mult(s(X),Y,Z) <- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) <- nat(X), nat(Y), mult(X,X,Y).

output (X) <- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).




Generating Squares in a Practical Logic Programming System (lI)

Query Answer
?-nat(s(0)). yes
?- add(s(0),s(s(0)),X). X = s(s(s(0)))
?- add (s(0),X,s(s(s(0)))). X = s(s(0))
?- nat (X). X=0; X=s(0); X=s(0); ...
?- add(X,Y,s(0)). X =0, ¥Y=s(0)) ; X=1s8(0) , Y =0)
?- nat_square(s(s(0)), X). X = s(s(s(s(0))))

?- nat _square(X,s(s(s(s(0))))). X = s(s(0))

?- nat_square(X,Y). X=0, Y=0) ; X=1s800), Y=s00)) ; X
= s(s(0)) , Y=s(s(s(s(0))))) ; ...
?- output (X). X=0 ; X=s(0) ; X-=

s(s(s(s(0))))




Introductory example (I) — Family relations

father_of(john, peter)

father_of(john, mary)

father_of (peter, michael)

mother_of(mary, david)

VXVY (3Z(father of (X, Z) A father of (Z,Y)) — grandfather of(X,Y))
VXYY (3Z(father_of (X, Z) AN mother of (Z,Y)) — grandfather of(X,Y))

father_of (john, peter). @
father_of (john, mary).
father_of (peter, michael).

mother_of (mary, david).

grandfather_of (L,M) :- father_of(L,K),

father_of (K,M).

grandfather_of (X,Y) :- father_of(X,Z),
mother_of (Z,Y).

e How can grandmother_of/2 be represented?

e What does grandfather_of (X,david) mean? And grandfather_of (john,X)?




A (very brief) History of Logic Programming (I)

e 60’s
~ Greene: problem solving.
<~ Robinson: linear resolution.

e 70’s

o (early) Kowalski: procedural interpretation of Horn clause logic. Read:
Aif Byand B; and - - - and B,, as:
to solve (execute) A, solve (execute) B; and B, and.,..., B,

o (early) Colmerauer: specialized theorem prover (Fortran) embedding the procedural
interpretation: Prolog (Programmation et Logique).

o In the U.S.: “next-generation Al languages” of the time (i.e. planner) seen as inefficient and
difficult to control.

< (late) D.H.D. Warren develops DEC-10 Prolog compiler, almost completely written in Prolog.
Very efficient (same as LISP). Very useful control builtins.




A (very brief) History of Logic Programming (Il)

e Late 80’s, 90’s
o Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth
Generation Project), US (MCC), Europe (ECRC, ESPRIT projects).

<~ Numerous commercial Prolog implementations, programming books, and a de facto standard,
the Edinburgh Prolog family.

o First parallel and concurrent logic programming systems.
o~ CLP — Constraint Logic Programming: Major extension — many new applications areas.
< 1995: ISO Prolog standard.




Currently

e Many commercial CLP systems with fielded applications.

e Extensions to full higher order, inclusion of functional programming, ...

e Highly optimizing compilers, automatic parallelism, automatic debugging.
e Concurrent constraint programming systems.

e Distributed systems.

e Obiject oriented dialects.

e Applications

< Natural language processing

o Scheduling/Optimization problems
< Al related problems

o (Multi) agent systems programming.
o Program analyzers

(O




