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The Program Correctness Problem

?

• Conventional models of using computers – not easy to determine correctness!

� Has become a very important issue, not just in safety-critical apps.
� Components with assured quality, being able to give a warranty, ...
� Being able to run untrusted code, certificate carrying code, ...
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A Simple Imperative Program

• Example:

#include <stdio.h>

main() {

int Number, Square;

Number = 0;

while(Number <= 5)

{ Square = Number * Number;

printf("%d\n",Square);

Number = Number + 1; } }

• Is it correct? With respect to what?

• A suitable formalism:

� to provide specifications (describe problems), and
� to reason about the correctness of programs (their implementation).

is needed.
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Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

� verbose
� vague
� ambiguous
� needs context (assumed information)
� ...

Philosophers and Mathematicians already pointed this out a long time ago...
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Logic

• A means of clarifying / formalizing the human thought process

• Logic for example tells us that (classical logic)
Aristotle likes cookies, and
Plato is a friend of anyone who likes cookies
imply that
Plato is a friend of Aristotle

• Symbolic logic:
A shorthand for classical logic – plus many useful results:
a1 : likes(aristotle, cookies)

a2 : ∀X likes(X, cookies)→ friend(plato, X)

t1 : friend(plato, aristotle)

T [a1, a2] ` t1

• But, can logic be used:

� To represent the problem (specifications)?
� Even perhaps to solve the problem?
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Using Logic

?
YES / NOProof

(Logic)
Specs

Semantics

• For expressing specifications and reasoning about the correctness of programs
we need:

� Specification languages (assertions), modeling, ...
� Program semantics (models, axiomatic, fixpoint, ...).
� Proofs: program verification (and debugging, equivalence, ...).
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Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:
0→ 0 1→ s(0) 2→ s(s(0)) 3→ s(s(s(0))) . . .

• Defining the natural numbers:
nat(0) ∧ nat(s(0)) ∧ nat(s(s(0))) ∧ . . .

• A better solution:
nat(0) ∧ ∀X (nat(X)→ nat(s(X)))

• Order on the naturals:
∀X (le(0, X)) ∧

∀X∀Y (le(X, Y )→ le(s(X), s(Y ))

• Addition of naturals:
∀X (nat(X)→ add(0, X, X)) ∧

∀X∀Y ∀Z (add(X, Y, Z)→ add(s(X), Y, s(Z)))
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Generating Squares: A Specification (II)

• Multiplication of naturals:
∀X (nat(X)→ mult(0, X, 0)) ∧

∀X∀Y ∀Z∀W (mult(X, Y, W ) ∧ add(W, Y, Z)→ mult(s(X), Y, Z))

• Squares of the naturals:
∀X∀Y (nat(X) ∧ nat(Y ) ∧mult(X, X, Y )→ nat square(X, Y ))

We can now write a specification of the (imperative) program, i.e., conditions that we
want the program to meet:

• Precondition:
empty.

• Postcondition:
∀X(output(X)← (∃Y nat(Y ) ∧ le(Y, s(s(s(s(s(0)))))) ∧ nat square(Y, X)))
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Alternative Use of Logic?

• So, logic allows us to represent problems (program specifications).

to also improve:
But, it would be interesting

i.e., the process of implementing solutions to problems.

• The importance of Programming Languages (and tools).

• Interesting question: can logic help here too?
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From Representation/Specification to Computation

• Assuming the existence of a mechanical proof method (deduction procedure)
a new view of problem solving and computing is possible [Greene]:

� program once and for all the deduction procedure in the computer,
� find a suitable representation for the problem (i.e., the specification),
� then, to obtain solutions, ask questions and let deduction procedure do rest:

Representation (specification)

Questions Deduction
system

Problem

(Correct) Answers / Results• No correctness proofs needed!
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Computing With Our Previous Description / Specification

Query Answer

nat(s(0)) ? (yes)

∃X add(s(0), s(s(0)), X) ? X = s(s(s(0)))

∃X add(s(0), X, s(s(s(0)))) ? X = s(s(0))

∃X nat(X) ? X = 0 ∨X = s(0) ∨X = s(s(0)) ∨ . . .

∃X∃Y add(X, Y, s(0)) ? (X = 0 ∧ Y = s(0)) ∨ (X = s(0) ∧ Y = 0)

∃X nat square(s(s(0)), X) ? X = s(s(s(s(0))))

∃X nat square(X, s(s(s(s(0))))) ? X = s(s(0))

∃X∃Y nat square(X, Y ) ? (X = 0 ∧ Y = 0) ∨ (X = s(0) ∧ Y = s(0)) ∨ (X =

s(s(0)) ∧ Y = s(s(s(s(0))))) ∨ . . .

∃Xoutput(X) ? X = 0 ∨ X = s(0) ∨ X = s(s(s(s(0)))) ∨ X =

s9(0) ∨ X = s16(0) ∨ X = s25(0)
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Which Logic?

• We have already argued the convenience of representing the problem in logic, but

� which logic?
* propositional
* predicate calculus (first order)
* higher-order logics
* modal logics
* λ-calculus, ...

� which reasoning procedure?
* natural deduction, classical methods
* resolution
* Prawitz/Bibel, tableaux
* bottom-up fixpoint
* rewriting
* narrowing, ...
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Issues

• We try to maximize expressive power.

• But one of the main issues is whether we have an effective reasoning procedure.

• It is important to understand the underlying properties and the theoretical limits!

• Example: propositions vs. first-order formulas.

� Propositional logic:

“spot is a dog” p
“dogs have tail” q

but how can we conclude that Spot has a tail?

� Predicate logic extends the expressive power of propositional logic:

dog(spot)

∀Xdog(X)→ has tail(X)

now, using deduction we can conclude:

has tail(spot)
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Comparison of Logics (I)

• Propositional logic:

“spot is a dog” p
+ decidability/completeness
- limited expressive power
+ practical deduction mechanism

→ circuit design, “answer set” programming, ...

• Predicate logic: (first order)

“spot is a dog” dog(spot)
+/- decidability/completeness
+/- good expressive power
+ practical deduction mechanism (e.g., SLD-resolution)

→ classical logic programming!
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Comparison of Logics (II)

• Higher-order predicate logic:

“There is a relationship for spot” X(spot)
- decidability/completeness
+ good expressive power
– practical deduction mechanism

But interesting subsets→ HO logic programming, functional-logic prog., ...

• Other logics: decidability? Expressive power? Practical deduction mechanism?
Often (very useful) variants of previous ones:

� Predicate logic + constraints (in place of unification)
→ constraint programming!
� Propositional temporal logic, etc.

• Interesting case: λ-calculus

+ similar to predicate logic in results, allows higher order
- does not support predicates (relations), only functions

→ functional programming!
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Generating squares by SLD-Resolution – Logic Programming (I)

• We code the problem as definite (Horn) clauses:
nat(0)

¬nat(X) ∨ nat(s(X))

¬nat(X) ∨ add(0, X, X))

¬add(X, Y, Z) ∨ add(s(X), Y, s(Z))

¬nat(X) ∨mult(0, X, 0)

¬mult(X, Y, W ) ∨ ¬add(W, Y, Z) ∨mult(s(X), Y, Z)

¬nat(X) ∨ ¬nat(Y ) ∨ ¬mult(X, X, Y ) ∨ nat square(X, Y )

• Query: nat(s(0)) ?

• In order to refute: ¬nat(s(0))

• Resolution:
¬nat(s(0)) with ¬nat(X) ∨ nat(s(X)) gives ¬nat(0)

¬nat(0) with nat(0) gives 2

• Answer: (yes)
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Generating squares by SLD-Resolution – Logic Programming (II)

nat(0)

¬nat(X) ∨ nat(s(X))

¬nat(X) ∨ add(0, X, X))

¬add(X, Y, Z) ∨ add(s(X), Y, s(Z))

¬nat(X) ∨mult(0, X, 0)

¬mult(X, Y, W ) ∨ ¬add(W, Y, Z) ∨mult(s(X), Y, Z)

¬nat(X) ∨ ¬nat(Y ) ∨ ¬mult(X, X, Y ) ∨ nat square(X, Y )

• Query: ∃X∃Y add(X, Y, s(0)) ?

• In order to refute: ¬add(X, Y, s(0))

• Resolution:
¬add(X, Y, s(0)) with ¬nat(X) ∨ add(0, X, X)) gives ¬nat(s(0))

¬nat(s(0)) solved as before

• Answer: X = 0, Y = s(0)

• Alternative:
¬add(X, Y, s(0)) with ¬add(X, Y, Z) ∨ add(s(X), Y, s(Z)) gives ¬add(X, Y, 0)
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Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,[’bf/af’]).

nat(0) <- .

nat(s(X)) <- nat(X).

le(0,_X) <- .

le(s(X),s(Y)) <- le(X,Y).

add(0,Y,Y) <- nat(Y).

add(s(X),Y,s(Z)) <- add(X,Y,Z).

mult(0,Y,0) <- nat(Y).

mult(s(X),Y,Z) <- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) <- nat(X), nat(Y), mult(X,X,Y).

output(X) <- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).
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Generating Squares in a Practical Logic Programming System (II)

Query Answer

?- nat(s(0)). yes

?- add(s(0),s(s(0)),X). X = s(s(s(0)))

?- add(s(0),X,s(s(s(0)))). X = s(s(0))

?- nat(X). X = 0 ; X = s(0) ; X = s(s(0)) ; ...

?- add(X,Y,s(0)). (X = 0 , Y=s(0)) ; (X = s(0) , Y = 0)

?- nat square(s(s(0)), X). X = s(s(s(s(0))))

?- nat square(X,s(s(s(s(0))))). X = s(s(0))

?- nat square(X,Y). (X = 0 , Y=0) ; (X = s(0) , Y=s(0)) ; (X

= s(s(0)) , Y=s(s(s(s(0))))) ; ...

?- output(X). X = 0 ; X = s(0) ; X =

s(s(s(s(0)))) ; ...
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Introductory example (I) – Family relations

father of(john, peter)
father of(john, mary)
father of(peter, michael)
mother of(mary, david)
∀X∀Y (∃Z(father of(X, Z) ∧ father of(Z, Y ))→ grandfather of(X, Y ))
∀X∀Y (∃Z(father of(X, Z) ∧mother of(Z, Y ))→ grandfather of(X, Y ))

father_of(john, peter).

father_of(john, mary).

father_of(peter, michael).

mother_of(mary, david).

grandfather_of(L,M) :- father_of(L,K),

father_of(K,M).

grandfather_of(X,Y) :- father_of(X,Z),

mother_of(Z,Y).

John

Peter Mary

DavidMichael

• How can grandmother_of/2 be represented?

• What does grandfather_of(X,david) mean? And grandfather_of(john,X)?
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A (very brief) History of Logic Programming (I)

• 60’s

� Greene: problem solving.
� Robinson: linear resolution.

• 70’s

� (early) Kowalski: procedural interpretation of Horn clause logic. Read:
A if B1 and B2 and · · · and Bn as:
to solve (execute) A, solve (execute) B1 and B2 and,..., Bn

� (early) Colmerauer: specialized theorem prover (Fortran) embedding the procedural
interpretation: Prolog (Programmation et Logique).
� In the U.S.: “next-generation AI languages” of the time (i.e. planner) seen as inefficient and

difficult to control.
� (late) D.H.D. Warren develops DEC-10 Prolog compiler, almost completely written in Prolog.

Very efficient (same as LISP). Very useful control builtins.
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A (very brief) History of Logic Programming (II)

• Late 80’s, 90’s

� Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth
Generation Project), US (MCC), Europe (ECRC, ESPRIT projects).
� Numerous commercial Prolog implementations, programming books, and a de facto standard,

the Edinburgh Prolog family.
� First parallel and concurrent logic programming systems.
� CLP – Constraint Logic Programming: Major extension – many new applications areas.
� 1995: ISO Prolog standard.
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Currently

• Many commercial CLP systems with fielded applications.

• Extensions to full higher order, inclusion of functional programming, ...

• Highly optimizing compilers, automatic parallelism, automatic debugging.

• Concurrent constraint programming systems.

• Distributed systems.

• Object oriented dialects.

• Applications

� Natural language processing
� Scheduling/Optimization problems
� AI related problems
� (Multi) agent systems programming.
� Program analyzers
� ...
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