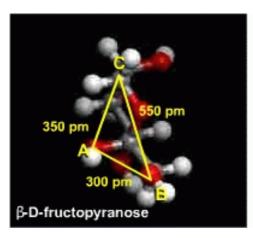
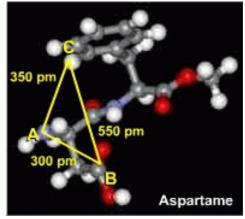
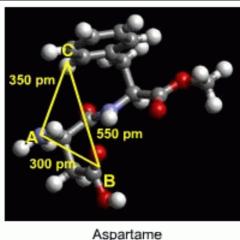
TORIAS

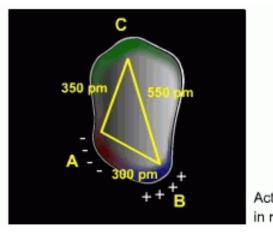



Geometría molecular: ría de Repulsión de los Pares de Electrones de la Capa de Valencia (RPECV)

ogía:

tría molecular: distribución tridimensional de los núcleos os en una molécula.


piedades físicas, químicas y bioquímicas dependen de la olecular. Ej: EL TRIANGULO DULCE



as distintas pero con una parte geométricamente equivalente omportamiento <mark>bioquímico similar</mark> (sabor dulce en este caso).

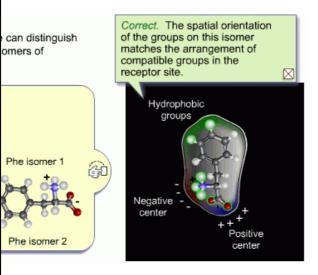
Active site in receptor

pyranose

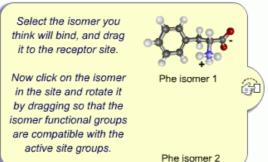
CLASES

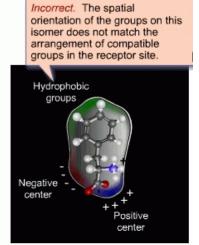
PARTICULARES,

TORIAS


TECNICAS

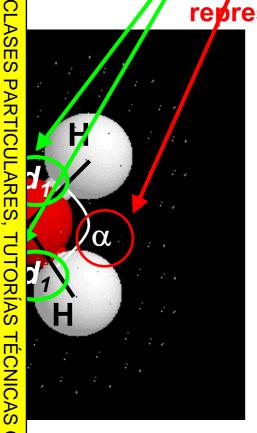
ENVIA WHATSAPP: 689 45


44 70

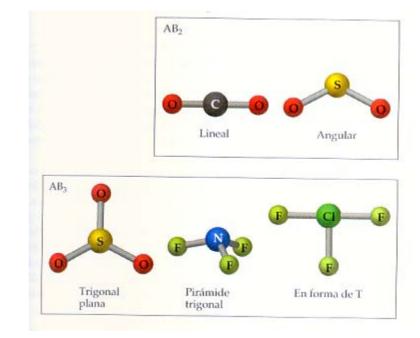

LLAMA

ros de una misma sustancia tienen propiedades diferentes

The protein receptor binding site can distinguish between the two mirror-image isomers of phenylalanine.


rtagenay

tros que definen la geometría molecular son:

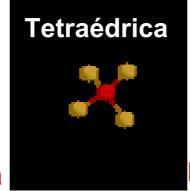

Distancias y ángulos de enlace

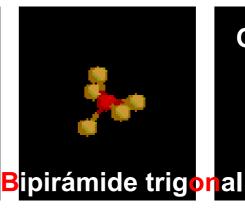
de enlace: distancias entre los núcleos.

enlace: // ángulos entre líneas adyacentes que representan los enlaces.

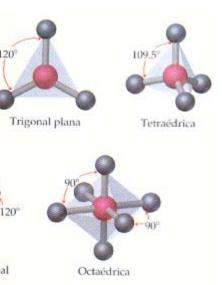
Moléculas con la misma estequiometría pueden tener diferentes geometrías

CLASES


PARTIC


ULARES,

TUTORIAS


ometrías frecuentes:

La geometría de una molécula se describe por un **término específico** y por los **ángulos de enlace**.

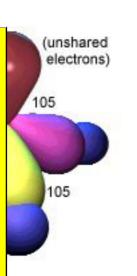
puede predecir la geometría de una molécula nociendo el número de electrones (de pares) que rodean a los átomos centrales.

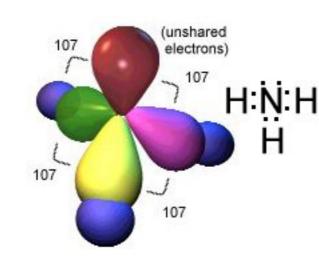
Repulsión de los Pares de Electrones de la Capa de Valencia (RPECV)

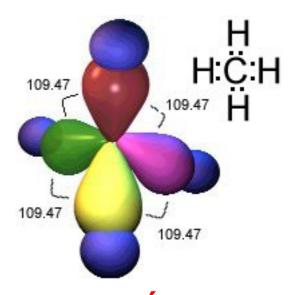
pares de electrones de la capa de valencia de un átomo se n entre sí, tanto si están en enlaces químicos (pares intes) como si no están compartidos (pares solitarios).

pares de electrones se disponen alrededor de un átomo con aciones (*direcciones estereoactivas*) que minimicen las iones.

nes adicionales:


es dobles y triples se tratan como si fueran enlaces sencillos no central se puede manejar individualmente. na determinada molécula se pueden construir dos o más estructuras es, el modelo RPECV se puede aplicar a cualquiera de ellas etría de los pares estereoactivos y de la molécula pueden ser



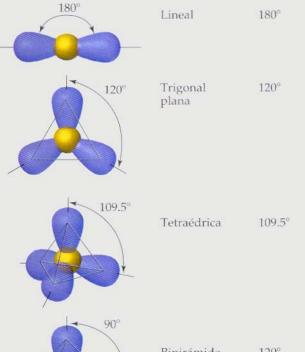

de los pares estereoactivos y geometría molecular

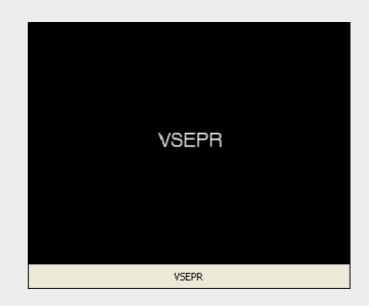
os casos la geometría de los

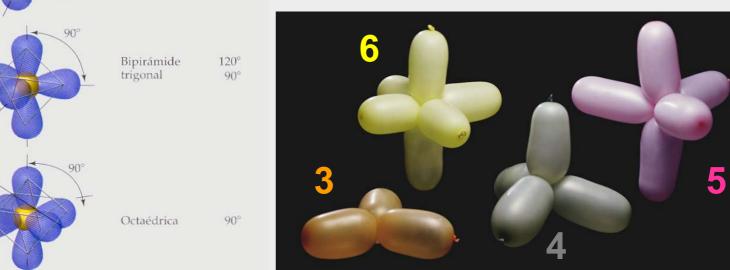
pares estereoactivos es TETRAÉDRICA

LAR

PIRÁMIDE TRIGONAL


TETRAÉDRICA


GEOMETRÍA MOLECULAR


Lartagenayy ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70 LLAMA O ENVIA WHATSAPP: 689 45 44 70 CLASES PARTICULARES, **TUTORÍAS TÉCNICAS ONLINI**

Geometría de los Pares Estereoactivos

Geometría Angulos

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70 LLAMA O ENVIA WHATSAPP: 689 45 44 70

artagenay

3

Geometría Molecular

Pares

del modelo RPECV a moléculas cuyo tral no tiene pares libres

Geometría de pares

Casos AB_n (n=2..6)

Ejemplo

Geometría

Pares

	estereoactivos	enlazantes	libres	molecular	
CLA	Lineal	2	0	B A B	ö=c=ö
CLASES PARTICULARES	Trigonal plana	3	0	B B Trigonal plana	:;;: ';:
	Tetraédrica	4	0	B B B Tetraédrica	H H
TUTORÍAS TÉCN	Bipirámide trigonal	5	0	Bipirámide trigonal	PCl ₅
TÉCNICAS ONLIN	Octaédrica	6	0	B B B B Octaédrica	SF ₆

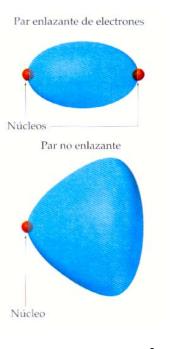
del modelo RPECV a moléculas cuyo tral tiene uno o más pares libres

onsiderar tres tipos de interacciones repulsivas:

nte - Par enlazante

(P_E-P_E)

Par libre


 (P_L-P_L)

nte - Par libre

 (P_E-P_L)

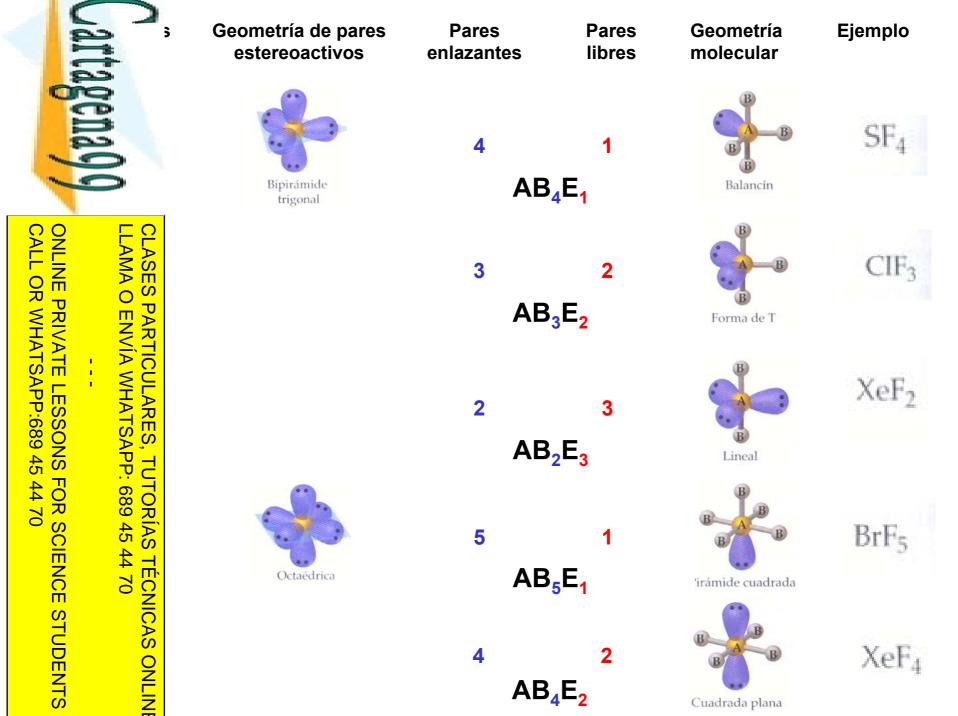
al, las fuerzas de repulsión disminuyen:

$$P_L-P_L > P_E-P_L > P_E-P_E$$

s enlazantes están atraídos por dos núcleos, luego ocupan menos espacio nor repulsión.

res están atraídos por un único núcleo, luego ocupan mayor espacio y res repulsiones. es de electrones se orientan en el espacio de modo

es de electrones se orientan en el espacio de modo minimicen las repulsiones entre pares de electrones



del modelo RPECV a moléculas cuyo tral tiene uno o más pares libres

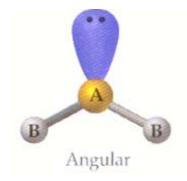
Casos $AB_{n-m}E_m$ (n=2..6)

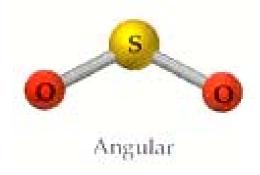
Ejemplo

		-		
3	Geometría de pares estereoactivos	Pares enlazantes	Pares libres	Geometría molecular
CLASES PARTICULARES,	Trigonal plana	2 AB	1 ₂ E ₁	B Angular
	Tetraédrica	3 AB	1 ₃ E ₁	B B B Pirámide trigonal
TUTORÍAS TÉCNICAS ONLI		2 AB	2 ₂ E ₂	B A Angular

Estructura de Lewis

$$\overline{o} = \overline{s} = \overline{o}$$


; enlaces se consideran como sencillos. recciones estereoactivas en torno al átomo de S


lazantes + 1 par libre)

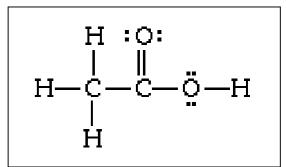
AB₂E₁

de pares ctivos

Geometría molecular

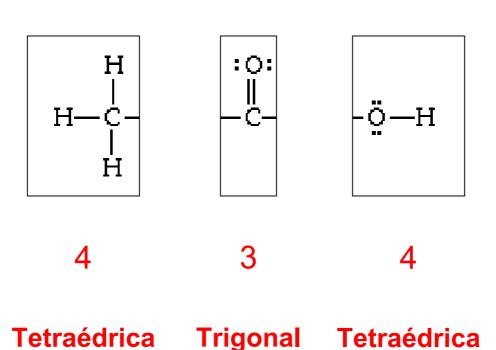
CLASE PARTICULARES, TUTORIAS **TÉCNICAS ONLINI**

lana


Repulsión $P_L-P_E > Repulsión P_E-P_E$ (O-S-O)_{exp}≈ 119.5°

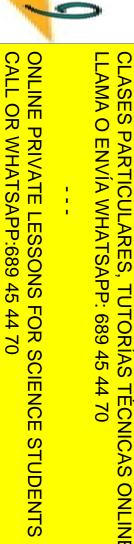
ico: C₂O₂H₄

Estructura de Lewis


) la RPECV a cada átomo central de la) de Lewis se puede determinar la ,a de moléculas complejas.

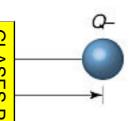
ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS

CALL OR WHATSAPP:689 45 44 70

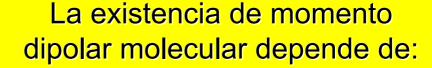

plana

120°

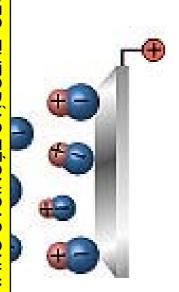
109.5°


109.5°

Geometría y Polaridad molecular

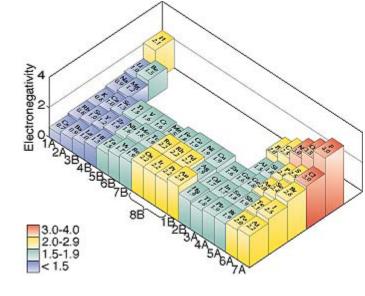

éculas con una diferente distribución de la carga eléctrica negativa y positiva (núcleos) que origina una separación de cargas y la e un DIPOLO ELÉCTRICO o MOMENTO DIPOLAR (μ_D).

$$\mu = Qr$$

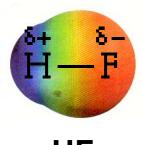

1 Debye = Q (coulombios) r (m) / 3.355 x10⁻³⁰

n de moléculas n campo eléctrico

- 2. Geometría (simetría) molecular.
- 3. Los pares de electrones sin compartir.

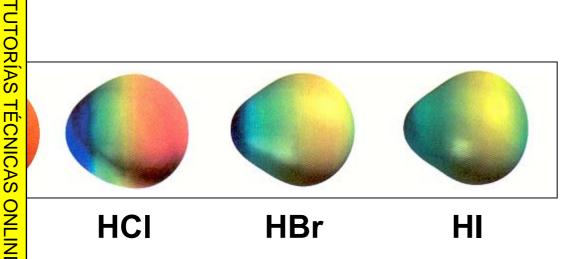

LLAMA O ENVIA WHATSAPP: 689 45 44 70

PARTICULARES,



ación de enlaces.

diferencias de electronegatividad enlazados los electrones de enlace PARTEN SIMÉTRICAMENTE.


PARACION de CARGA

Aparece momento dipolar de enlace

$$\delta$$
+ δ - \rightarrow H-F

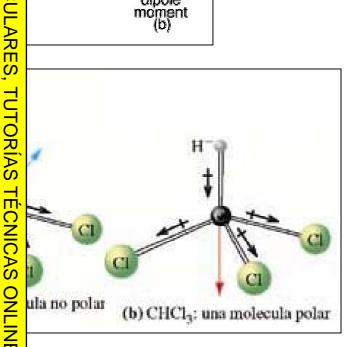
HF

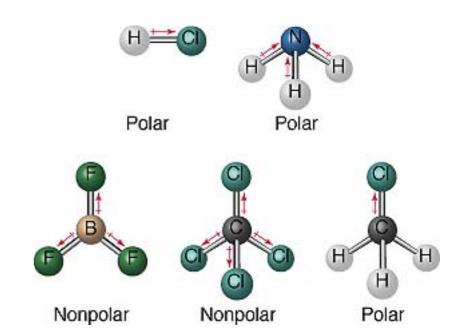
ENVIA WHATSAPP: 689 45

stría (simetría) molecular.

dipolar eléctrico de una molécula es la suma de los momentos dipolares enlaces:

Bond dipoles

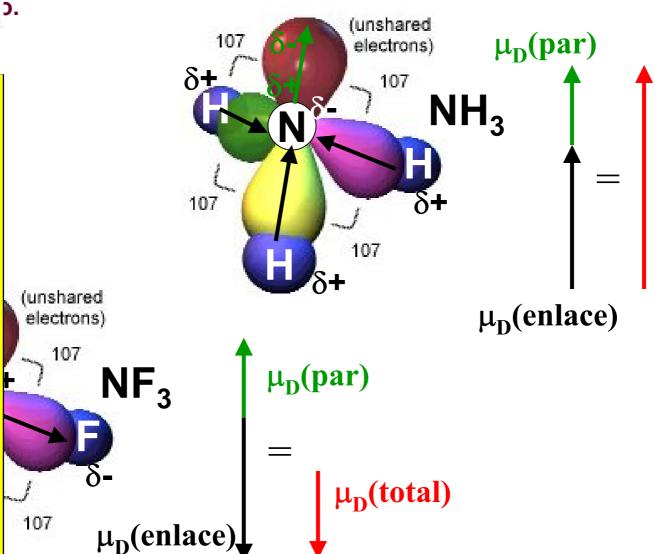

les


PARTICULATION

Bond dipoles

Overall dipole moment (b)

Para algunas geometrías moleculares esta SUMA es NULA aunque los enlaces estén polarizados: lineal, tetraédrica, octaédrica, bipirámide trigonal, plana simétrica (triangular, cuadrada, etc..)



ONLINI

res de electrones sin compartir.

electrones sin compartir son zonas negativas con respecto al núcleo ta; esto contribuye al momento dipolar molecular reforzándolo o

 $\mu_D(total)$

