Python and Bioinformatics

Pierre Parutto

September 28, 2016

Contents

I Functions]
[1.1 The Problem With Input And Output Variables|

[1.4 Prototype Ot A Function|
[1.5 Input And Ouput Variables With Functions|
1.6 Examples Of Function Calls|

Chapter 1

Functions

Most of the computer programs possess the same structure: they receive one (or
multiple) input value(s), perform some internal computations and then provide
a result in the form of one (or multiple) output value(s).

In lab2, we wrote different pieces of code to perform computations, for exam-
ple the scalar product between two vectors. In our programs, we distinguished
three types of variables:

e Input variable(s);
e Internal variable(s);

o Output variable(s).

From the point of view of the Python interpreter, these variables are all the
same, simply variables, the distinction comes from how we use them in the code.
The internal variables are the variables that you need to perform the desired
computation. Input and output variables are variables with specific names that
the user uses to give input values to your code and retrieve the result(s) of the
computation.

1.1 The Problem With Input And Output Vari-
ables

From the previous classes, we know two ways of providing input values to a
program. We will illustrate these two ways through an example. Consider the
question of computing the square root of a positive number a. A simple method,
called the Babylonian method, computes the following:

1 S

Up = 7(7-’/7171 +
2 Up—1

)

Va = lim u,
n—roo

where S is a positive number, we will consider S = a and ug = a. With this
method, we need the user to provide two values: the number a from which to
compute the square root, and the rank n at which we shall stop the computation
of the sequence. The block of code implementing this method will thus possess
two input variables, let’s call them a and n and one output variable containing
an approximation of y/a, let’s call it res. The implementation of the method is
the following:

res a

=

i =
while i <= n:
res = 0.5 * (res + a/res)
i=1i+1

If we try to run our code, saving it to a file named my_sqrt.py, and then
pressing the green arrow in Spyder:

runfile("/tmp/my_sqrt.py")
NameError: name ’a’ is not defined

Which is expected because we never defined the name a (nor n). But a and n
must not be defined by the programmer as they are input values to the program
and must be set by the user. The two methods to circumvent this problem of
definition of input variables are the following:

1. Define a and n at the beginning of the program:

a =2
n =10
res = a
i=1

while i <= n:
res = 0.5 * (res + a/res)
i=1i+1

If we run this code, it works:

runfile("/tmp/my_sqrt.py")
res
1.414213562373095

But what if the user wants to compute v/9 with 10 steps instead ? He has
to go into your code and modify himself the values of a and n.

2. A second manner is to let the user set the input values beforehand in the
interpreter. This is what we did in lab2, it can be done as follows:

a=2
n = 10
runfile("/tmp/my_sqrt.py")
res
1.414213562373095
a=9
n = 10
runfile("/tmp/my_sqrt.py")
3.0

So now it is easier for the user to enter new input values, but it is still
tedious to use the code as one has to switch between the interpreter and
the code file.

In the end, we would like to be able to easily run a group of instructions
depending on some input values and get an output value.

1.2 Functions

Functions allow to solve the previous problem nicely, a function possesses a
name, some input values, a block of code and an output value.

Definition 1 We call arguments the input values of a function.

Definition 2 We call return value the output value of a function.

Definition 3 A function is a name and some arguments associated to a
block of code.

1.2.1 Definition

Python defines the keyword def to define functions, it works as follows:

def nameFunction(nameArgumentl, nameArgument2, , nameArgumentn) :
GROUP
OF
INSTRUCTIONS

where
e nameFunction is the name given to the function;

e nameArgumentl, nameArgument2, , nameArgumentn are the names
of the arguments;

e GROUP OF INSTRUCTIONS is the group of instructions that will be executed
when the function is called.

1.2.2 Usage

The syntax for using functions correspond to the one you know from mathe-
matics:

nameFunction(valueArgumentl, valueArgument?2, , valueArgumentn)

Warning

If there are multiple arguments, you have to respect the order of the argu-
ments when you call the function.

1.2.3 Return Value

The return value is the output of a function, it is specified inside the body of
the function using the return keyword:

return EXPRESSION

Where EXPRESSION is some expression (some computation that evaluates to
a value).

Warning

There can be only one return value for a function.

Warning

The line containing the return keyword is always the LAST line exe-
cuted in the function, even if you have some instructions after the return
line, they will not be executed.

Warning

If a function does not end by a return keyword then its return value is
. This value corresponds to an absence of value.

1.2.4 Vocabulary

Definition 4 We call definition the line containing the def keyword plus
the body of the function.

Definition 5 We call function call or call the action of using a function.

1.3 Instruction Flow Of Functions

Functions modify the instruction flow as follows:

ldef name (namel, name?2)
}INSTRUCTION
GROUP — default
lreturn value

} INSTRUCION

} INSTRUCION)

} name (valuel, value2)

V INSTRUCTION

¥ INSTRUCTION

valuel
value2

—> function call

namel
name?2
value

Basically:

e When Python encounters a def keyword it remembers the function name
with its arguments. The instruction flow does not go through the in-
struction group of the function.

e When Python encounters a function call it performs the following actions
in this order:

1. it jumps to the first line of the instruction group corresponding to
the function name.

2. The argument variables are defined their corresponding values are in
the corresponding order: the first argument value is associated to the
first name, the second argument value to the second name, etc.

3. Python goes through the body of the function and returns the value
specified by the return keyword.

4. The function call is then replaced by the return value.

Remark

The arguments are nothing more than variables that are defined ONLY
in the body of a function. Their values are automatically set by python
during the function call.

Remark

In the body of a function you can manipulate the arguments as any other
variable: you can assign them values, delete them, etc.

1.4 Prototype Of A Function

When using input and output variables, the programmer has to give the names
of these variables to the user so he knows what are the variables to modify and
the variables to read. It is still true when using functions, you have to give the
user the name of the function and the meaning and type of each argument and

of the return value.

Definition 6 We call prototype of a function a line providing to the user
all the information to call a function. It has the following form:

functionName (Namel: type, Name2: type, , Namen: type) -> type

Where to each argument (Namel, ..., Namen) is associated a type and
-> type is the type of the returned value.

Warning

The prototype of a function, although very close to the syntax used to
define functions in Python, cannot be directly copy/pasted in a code. In
Python you do not specify the types of the arguments nor the type of the
returned value. This prototype is only used to inform the user about how
to use your function.

1.5 Input And Ouput Variables With Functions

Let’s go back to the problem of computing /a, we are going to create a function
called my_sqrt that has the following prototype:

my_sqrt(a: int, n: int) -> float

It reads as follows: the function my_sqrt possesses two arguments: a of type
int and n also of type int and returns a value of type float.

The implementation is the following:

def my_sqrt(a,n):
res = a
i=1
while i <= n:
res = 0.5 * (res + a/res)
i=1i+1
return res

And now, saving this code into a file named my_sqrt.py and executing it by
pressing the green triangle in Spyder we get:

runfile("/tmp/my_sqrt.py")
my_sqrt(2, 10)
1.414213562373095
my_sqrt(9, 10)
3.0

We can now use the function as much as we want without running our code
file as before (except if we change the code of the function). This is the best
possible method to provide input values and retrieve output values from a block
of code.

1.6 Examples Of Function Calls

In the following I provide more example of what you can do with function calls.
Remember, a function call returns a value, so Python simply consider it as a
value. You can thus use a function call wherever you can use a value. Consider
the following function:

def my_add(a,b):
return a + b

All the following calls are valid:

my_add(3,2)
5

my_add(3,2) + 5
10

my_add(3,2) - my_add(4, 5)
-4

my_add (my_add(4,5), 5%6)
39

a = my_add(2,3)

a
5

my_add(a, my_add(1l, 2)) *x 2
64

	Functions
	The Problem With Input And Output Variables
	Functions
	Definition
	Usage
	Return Value
	Vocabulary

	Instruction Flow Of Functions
	Prototype Of A Function
	Input And Ouput Variables With Functions
	Examples Of Function Calls

