
Python and Bioinformatics

Pierre Parutto

October 9, 2016

Contents

1 Common Data Structures 2
1.1 Sequences . 2

1.1.1 Manipulating Sequences 2
1.1.2 String . 3

1.1.2.1 Definition . 3
1.1.3 List . 4

1.1.3.1 Definition . 4
1.1.3.2 Appending Elements 5
1.1.3.3 Element Modification 5

1.1.4 Tuple . 5
1.1.4.1 Definition . 6

1.1.5 Concatenation Between Sequences 6
1.1.6 Sequence Traversal . 7

1.2 Dictionary . 7
1.2.1 Definition . 7
1.2.2 Accessing Elements . 8
1.2.3 Adding New Elements . 8

2 Manipulating Sequences 9
2.1 Slicing . 9

2.1.1 Example . 9
2.1.2 Shortcuts . 9

2.2 for loop . 10
2.2.1 Example . 10

2.3 Range Function . 11
2.3.1 The Three Ways Of Using range 11
2.3.2 range and for . 12

1

Chapter 1

Common Data Structures

During the fist classes, we used types representing a single piece of information:
boolean, integer or float. We also started manipulating string but only as a single
value and not as an ensemble of characters.

In this class we will see how to manipulate types that can represent multiple
values at once. There exist multiple ways to organize multiple values together
(mainly linearly and hierarchically), we call them data structures. We will
see two main data structures present that are directly available in Python:
sequences and dictionaries.

1.1 Sequences

Sequences organize values in a linear ordered manner. Each value in a sequence
can be accessed by an integer representing its position in the chain. There
exist two main types of sequences in Python: string and list. We will start by
explaining their common features and then look at their differences.

1.1.1 Manipulating Sequences

Elements in a sequence are accessed using their positions.

Warning

In Python positions in start at 0.

Hence the first element of a sequence is at position 0, the second at position
1 and the last at the position: ”number of elements of the sequence” -1.

Definition 1 The built-in function len(s: sequence) -> int returns the
number of elements contained in the sequence s.

2

The syntax to access an individual element in a sequence is to put the se-
quence name and then the position in-between square brackets. If s a sequence
then s[i] accesses to the element of s at position i.

Remark

The valid positions in a sequence s are between 0 (first element) and
len(s)-1 (last element).

Warning

If you try to access to an invalid position i of a sequence s, for example
when i >= len(s), you will get an error:

>>> s = "ATGT"

>>> s[4]

IndexError: string index out of range

Remark

Accessing to a negative position do not produce an error, instead Python
consider it as a position starting from the end of the sequence:

>>> s = "ATGT"

>>> s[-1]

T

>>> s[-2]

G

1.1.2 String

Strings are represented in Python by the type str and can only contain character
values.

1.1.2.1 Definition

Strings are defined by an ensemble of characters in-between double quotes:
"...".

Example :

>>> "azadazkp"

"azadazkp"

>>> "3459034E*"

"3459034E*"

>>> type("3459034E*")

str

3

Empty String The empty string is simply two successive double quotes: "",
it has a length of 0.

Warning

If you do not put double quotes around the string you want to define,
Python will consider the string as a variable name:

>>> azdkj

NameError: name ’apzlpzda’ is not defined

Warning

In Python, it is not possible to modify the elements of a string:

>>> s = "ATG"

>>> s[0] = "C"

TypeError: ’str’ object does not support item assignment

1.1.3 List

A list (of type list) is a sequence that can contain values of any type.

1.1.3.1 Definition

Lists are defined by an ensemble of values separated by comas, in-between square
brackets: [val1, ..., valN].

Example :

>>> [1, 2, 3, 4]

[1, 2, 3, 4]

>>> ["A", "B", 1, 2.0]

["A", "B", 1, 2.0]

Empty List The empty list is obtained by an opening followed by a closing
square bracket: [], it has a length of 0.

Example :

>>> [1,2,3] + ["A", "B", "C"]

[1,2,3,"A","B","C"]

>>> [1,2,3] + []

4

[1,2,3]

1.1.3.2 Appending Elements

To add a new elements at the end of a list, Python provides the function append.

Example :

>>> l = [1,2,3]

>>> l.append(4)

>>> l

[1,2,3,4]

>>> l.append([])

[1,2,3,4,[]]

Warning

append does not return any value ! Do not do something like:
l = l.append(elt). Here is an example of what happen if you do that:

>>> l = [1,2,3]

>>> l = l.append(4)

>>> l

None

Remark

append is not exactly a function, it uses a dotted notation: l.append(elt)
where l is a list. The dot means that the function append will be applied
to the list l.

1.1.3.3 Element Modification

In lists, one can directly modify the elements:

>>> l = [1,2,3]

>>> l[0] = False

>>> l

>>> [False, 1, 2]

1.1.4 Tuple

A tuple has the same properties than a list but its elements cannot be modified.

5

1.1.4.1 Definition

Tuples are defined by an ensemble of values separated by coma in-between
parenthesis: (val1, ..., valN).

Example :

>>> t = (1,2,"A", [4])

(1,2,"A", [4])

>>> t[0] = 2

TypeError: ’tuple’ object does not support item assignment

Empty Tuple The empty list is obtained by an opening followed parenthesis
directly followed by a closing one: (), it has a length of 0.

1.1.5 Concatenation Between Sequences

The concatenation between two sequences s1 and s2, s = s1 + s2 creates
the new sequence s1[0]...s1[len(s1)-1]s2[0]...s2[len(s2)-1] of length
len(s1) + len(s2).

Example :

>>> "abc" + "def"

"abcdef"

>>> "def" + "abc"

"defabc"

>>> s1 = "123"

>>> s2 = "456"

>>> s1 + s2

"123456"

Remark

The empty sequence (either "" or []) is the neutral element for the con-
catenation (as the 0 for the addition): s1 + [] = [] + s1 = s1:

>>> [1, 2, 3] + []

[1, 2, 3]

>>> [] + [1, 2, 3]

[1, 2, 3]

Warning

Note that the operator + can only concatenate two strings, if any of the

6

two values is not of type string, Python will throw an error:

>>> 1 + "ABC"

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

>>> "ABC" + 1

TypeError: Can’t convert ’int’ object to str implicitly

Note that the errors are different: in the first case Python tells you that
it does not know how to add an integer and a string. In the second case it
tells you that it does not know how to convert 1 into a string.

1.1.6 Sequence Traversal

Definition 2 Traversal: accessing all the elements of a sequence.

The standard piece of code to perform a traversal is the following:

s = ... #s is some sequence

cpt = 0

while cpt < len(s):

#s[cpt] is the element at position cpt

cpt = cpt + 1

Remark

This code has to be adapted (replace the comment line by one or more
lines) to the specific processing you have to perform.

1.2 Dictionary

In sequences, an integer representing a position is associated to each element. A
dictionary is a data structure that allows to associate keys of any type to each
element.

For example, in real life a dictionary associates a word to a definition (sen-
tences).

1.2.1 Definition

Dictionaries are defined by providing an ensemble of pairs key:value separated
by comas in-between (curly) brackets: {key1:val1, ..., keyN:valN}.

Example :

>>> d = {"a":1,"b":2,"c":3}

>>> d = {1:"a",2:"b"}

>>> d = {1:"a","b":2}

7

Remark

The keys and values can be of different types.

Empty Dictionary The empty dictionary is defined by an opening bracket
directly followed by a closing one: {}.

1.2.2 Accessing Elements

Elements in a dictionary d are simply accessed using their associated key value
key in between square brackets: d[key].

Example :

>>> d = {"a":1,"b":2,"c":3}

>>> d["a"]

1

>>> d["b"]

2

Warning

If the key you try to access does not exist, Python will throw an error:

>>> d = {"a":1,"b":2,"c":3}

>>> d["toto"]

KeyError: ’toto’

1.2.3 Adding New Elements

To add a new element to a dictionary d, the syntax consist in assigning the
value to the corresponding key: d[key] = value.

>>> d = {}

>>> d[1] = True

>>> d

{1: True}

>>> d[1]

True

8

Chapter 2

Manipulating Sequences

2.1 Slicing

In addition to accessing single elements, Python also allows to access a sub-
sequence between two indices called slicing.

Definition 3 Given two integers i < j and a sequence s, the syntax s[i:j]
creates the sequence s[i],s[i+1], ..., s[j-1].

2.1.1 Example

>>> l = [1,2,3,"a",None]

>>> l[1:2]

[2]

>>> l[0:3]

[1,2,3]

>>> l[2:5]

[3,"a",None]

>>> "ABCDEF"[1:4]

"BCD"

Warning

Be careful when slicing, for s[i:j] the last element of the sub-sequence is
s[j-1] and not s[j].

2.1.2 Shortcuts

There exists two specific shortcuts allowed in the slicing syntax, that allow to
quickly select every elements up to some position or starting at some position
up to the end.

9

• s[:j] is equivalent to s[0:j];

• s[i:] is equivalent to s[i:len(s)-1].

2.2 for loop

The for loop provides a simpler way to perform a sequence traversal (go through
all elements) than with a while loop. The classical code for going through a
sequence s with a while loop is the following:

cpt = 0

while cpt < len(s):

#Do something with s[cpt]

cpt = cpt + 1

there we have to define a counter variable cpt, put the condition cpt < len(s)

and not forget to increment the value of cpt at each loop turn. In classical
sequence traversal all these steps are always the same.

The for loop abstracts away all these steps and provides an elegant way to
do a sequence traversal. To traverse a sequence s using a for loop the syntax
becomes:

for varName in s:

#Instruction Group

#that does something with e

Where varname is a variable name that you can choose. At each loop turn
the next value in the sequence s is assigned to the variable varName.

Remark

Using e as variable name, the above for loop is strictly equivalent to the
following while loop:

i = 0

while i < len(s):

e = s[i]

#Do something with e

i = i+1

2.2.1 Example

for e in [1,2,3,None,"a"]

print(e)

Produces the following output:

10

1

2

3

None

a

Remark

I strongly advise you to use for loops instead of while loops when you
need to go through a sequence.

Warning

Using this type of for loop, you cannot modify the elements of the sequence.
The following code do not work:

>>> l = [1,2,3,4]

>>> for e in l:

e = e * 2

>>> l

[1,2,3,4]

2.3 Range Function

The range function allows to generate list of integers. It is very useful in com-
bination with a for where it is used to generate some positions in a sequence
in order to mimick back a while loop.

2.3.1 The Three Ways Of Using range

There exists three possible ways to use the range function:

1. range(n: int) -> list where n is an integer generates the list
[0, 1, ..., n-1]:

>>> range(5)

[0, 1, 2, 3, 4]

2. range(m: int, n: int) -> list where m,n are two integers and m < n

generates the list [m,m+1,...,n-1]:

>>> range(3,10)

[3, 4, 5, 6, 7, 8, 9]

11

3. range(m: int, n: int, s: int) -> list where m,n,s are three inte-
gers and m < n generates the list [m,m+s,m+2*s, ..., m+k*s] where
m+k*s is the greatest value less than n:

>>> range(3,10,2)

[3,5,7,9]

>>> range(0,8,2)

[0,2,4,6]

2.3.2 range and for

We can use the list of positions returned by the range function as the list used
in a for to simulate the behavior of a while loop. With s a sequence:

for i in range(len(s)):

#Do something with s[i]

is equivalent to:

i = 0

while i < len(s):

#Do something with s[i]

i = i + 1

Warning

In a for + range loop over a sequence s, the elements of s are not assigned
to a temporary variable as in the for loop. Instead elements are accessed
directly by specifying their position allowing the content of the list to be
modified.

There exists multiple advantages of using a for + range loop over a while

loop:

1. First, it requires two less lines of code.

2. Second, as we access the items via their position, it is possible to modify
their values in the sequence:

>>> l = [1,2,3,4]

>>> for i in range(len(l)):

l[i] = l[i] * 2

>>> l

[2,4,6,8]

3. Finally, we can easily go through a sequence using different steps or start-
ing positions:

12

>>> s = "ABCDEFGHIJK"

>>> for i in range(3, len(s), 3):

print(s[i])

Produces the following output:

D

G

J

13

	Common Data Structures
	Sequences
	Manipulating Sequences
	String
	Definition

	List
	Definition
	Appending Elements
	Element Modification

	Tuple
	Definition

	Concatenation Between Sequences
	Sequence Traversal

	Dictionary
	Definition
	Accessing Elements
	Adding New Elements

	Manipulating Sequences
	Slicing
	Example
	Shortcuts

	for loop
	Example

	Range Function
	The Three Ways Of Using range
	range and for

