Boundary Layer Theory Aerodynamics

F. Mellibovsky

Escola d'Enginyeria de Telecomunicació i Aeroespacial de Castelldefels Universitat Politècnica de Catalunya

November 13, 2018

Summary

Introduction Viscous Effects in Aerodynamics Drag Coefficient of Several Flows Shortcomings of Potential Flow Theory

Laminar Boundary Layer Boundary Layer Hypothesis Equations & Solution Methods

Turbulent Boundary Layer Transition & Turbulent Flows Equations & Solution Methods Boundary Layer Structure

Extensions of Boundary Layer Theory Compressibility & Thermal Effects 3-Dimensional Boundary Layer Laminar-Turbulent Transition

Bibliography

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Outline

Introduction Viscous Effects in Aerodynamics Drag Coefficient of Several Flows Shortcomings of Potential Flow Theory

Laminar Boundary Layer Boundary Layer Hypothesis Equations & Solution Methods

Turbulent Boundary Layer Transition & Turbulent Flows Equations & Solution Methods Boundary Layer Structure

Extensions of Boundary Layer Theory Compressibility & Thermal Effects 3-Dimensional Boundary Layer Laminar-Turbulent Transition

Bibliography

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

► Rate-of-change of fluid vol: $\vec{u}(\vec{r} + d\vec{r}) = \vec{u}(\vec{r}) + \nabla \vec{u} d\vec{r} + O(||d\vec{r}||^2)$

► Rate-of-change of fluid vol: $\vec{u}(\vec{r} + d\vec{r}) = \vec{u}(\vec{r}) + \nabla \vec{u} d\vec{r} + O(||d\vec{r}||^2)$

$$\nabla \vec{u} = \underbrace{\frac{1}{3} (\nabla \cdot \vec{u}) \vec{l}}_{\text{volume}} + \underbrace{\left[\frac{1}{2} (\nabla \vec{u} + \nabla \vec{u}^{T}) - \frac{1}{3} (\nabla \cdot \vec{u}) \vec{l}\right]}_{\text{shear}} + \underbrace{\frac{1}{2} (\nabla \vec{u} - \nabla \vec{u}^{T})}_{\text{rotation}}$$

• Stress Tensor:
$$\vec{\sigma} = \vec{\sigma}_p + \vec{\tau}$$

(Isotropic newtonian fluid)

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

Elastic Stress Tensor:

$$\vec{\sigma}_p = -\frac{1}{3}trace(\vec{\sigma})\vec{l} = -p\vec{l}$$

Viscous Stress Tensor:

Stokes hypothesis

$$\vec{\tau} = \overbrace{\zeta(\nabla \cdot \vec{u})\vec{l}}^{\uparrow} + 2\mu \left(\frac{1}{2}\left(\nabla \vec{u} + \nabla \vec{u}^{T}\right) - \frac{1}{3}\left(\nabla \cdot \vec{u}\right)\vec{l}\right)$$

0

- Transverse velocity gradient:
 - shear stress:

$$\tau = \mu \frac{\partial u}{\partial y}$$

- Newton's law of friction
- Generalises to Stokes' law of friction
- Viscosity:
 - physical property of the fluid
 - strongly dependent on T.
 - friction between adjacent fluid layers
 - μ : dynamic viscosity. [Pas]
 - $\nu = \mu / \rho$: kinematic viscosity. $[m^2/s]$

- Viscous Regimes:
 - Newtonian
 - Non-Newtonian

- Friction Drag
 - shear stress at walls
- Viscous Blockage
 - Pressure Drag (wake)
 - massflow reduction
 - Potential for Separation
 - momentum reduction
- Lift Production
 - due to vorticity generation⁽¹⁾

$$rac{dec{\omega}}{dt} = (ec{\omega}\cdot
abla)ec{u} +
u
abla^2ec{\omega}$$

- Potential for Turbulent Regime
 - increased friction
 - separation delayed

$$(1) \quad \frac{d\vec{\omega}}{dt} = \frac{\partial\vec{\omega}}{\partial t} + (\vec{u}\cdot\nabla)\vec{\omega} = (\vec{\omega}\cdot\nabla)\vec{u} - \vec{\omega}(\nabla\cdot\vec{u}) + \frac{\nabla\rho\times\nabla\rho}{\rho^2} + \nabla\times\left(\frac{\nabla\cdot\vec{\tau}}{\rho}\right) + \nabla\times\vec{\tau}$$

Viscous Effects (Airfoil)

- \blacktriangleright Boundary layer \longrightarrow LIFT and FRICTION DRAG
 - Laminar
 - Turbulent
- $\blacktriangleright \text{ Wake} \longrightarrow \text{FORM DRAG}$

Turbulence

Laminar Flow:

Orderly motion of fluid particles

Turbulent Flow:

- Disorderly motion (deterministic chaos)
- Origin: Instability of the laminar flow
- ► Factors:
 - High Reynolds Number
 - Adverse pressure gradients
 - Wall roughness
 - Preturbulence in outer flow
 - Secondary flows
- Consequences:
 - 3D non-stationary flow
 - Efficient Mixing
 - Homogeneisation of properties
 - Increased wall fricition

Separation

- ► 2D Flow:
 - Adverse pressure gradient
 - Wall friction cancels
 - Recirculated flow
- ▶ 3D Flow (e.g. swept wing):
 - Wall friction needs not cancel
 - Flow may not recirculate
 - Vortical structure formation

Turbulence-Delayed Separation

Laminar Boundary Layer:

- Low friction, but
- Little momentum
 - cannot resist strong adverse pressure gradients
 - early separation: high form drag

Turbulent Boundary Layer

- Higher friction, but
- Increased momentum due to mixing
 - better resistance to adverse pressure gradients
 - delayed separation: smaller form drag

$${
m Re}=2,5,6 imes10^4$$

Flow Around a Streamlined Body

Laminar BL:

- Low friction
- Turbulent BL:

Flow Around a Sphere

Subcritical Regime:

- ► Laminar BL
- ▶ Low friction / big wake

Supercritical Regime:

- Turbulent BL
- Higher friction / smaller wake

Flow Around a Cylinder

Even Greater Complexity (at low Re)

- Intermediate Laminar Regimes
- Symmetry Disruption
- Space-time Symmetries

Airfoil Drag Coefficient

What about airfoils?

Low α :

- \blacktriangleright ~ Streamlined Body
- keep laminar BL

Large α :

- \blacktriangleright ~ Cylinder
- better turbulent BL

Э

Non-Dimensional Navier-Stokes Equations

Equations in non-dimensional form:

- Mass Conservation: $\partial_t \rho + \nabla \cdot (\rho \vec{u}) = 0$
- Momentum Conservation:

$$\rho \,\partial_t \vec{u} + \rho \left(\vec{u} \cdot \nabla \right) \vec{u} = \frac{-1}{\gamma M^2} \nabla p + \frac{1}{Re} \nabla \cdot \vec{\tau} + \frac{\rho}{Fr^2} \frac{\vec{f}}{f}$$

Energy Conservation:

$$\rho \partial_t e + \rho \nabla e \cdot \vec{u} = -(\gamma - 1) p (\nabla \cdot \vec{u}) + \frac{\gamma}{Pr Re} \nabla \cdot (\lambda_c \nabla T) + \gamma (\gamma - 1) M^2 \left(\Theta + \frac{1}{Re} \Phi_D\right)$$

Shear Stress Tensor: $\vec{\tau} = \mu \left(\left(\nabla \vec{u} + \nabla \vec{u}^T\right) - \frac{2}{3} \left(\nabla \cdot \vec{u}\right) \vec{\vec{l}} \right); \ \Phi_D = \frac{1}{2\mu} \vec{\tau}^2$

Non-Dimensional Groupings:

- $M = \frac{u_r}{\sqrt{\gamma p_r/\rho_r}}$: Mach Number
- $Re = \frac{\rho_r u_r l_r}{\mu_r}$: Reynolds Number
- $Fr = \frac{u_r}{\sqrt{fI}}$: Froude Number

- $Pr = \frac{\mu_r C_p}{\lambda_r}$: Prandtl Number
- $\Theta = \frac{\phi_{\tau} I_r}{u_r^3}$: Non-dimensional external heat production

イロト イロト イモト イモト 三日

Properties of High-Reynolds number flows

Navier-Stokes Equations:

- Nonlinear equations, 2nd Order space derivatives
- Boundary Conditions: No-Slip at walls.

In Aerodynamics:

- ▶ High speed flow / low viscosity fluid: $\textit{Re} \longrightarrow \infty$
- Consequences:
 - Euler Equations (1st Order)
 - Further Simplification (incompressibility) leads to Bernoulli Equation
 - ► Barotropic fluid / homentropic flow + conservative body force:
 - \blacktriangleright Irrotational Flow \longrightarrow Scalar Potential for velocity
 - Potential flows:
 - Incompressible flow
 - Compressible Subcritical flow
 - Supercritical and Supersonic flows (attached shock waves), but only approximately

3

イロト 人口 ト イロト

Shortcomings of Potential Flow Theory

Shortcomings:

- ► No-slip boundary conditions not applicable!
- ▶ Irrotational flow: no vorticity \longrightarrow no circulation \longrightarrow no Lift!
- Aerodynamic lift artificially introduced through an arbitrary circulation (Kutta condition)
 - \blacktriangleright Vortex potential: irrotational except at singularity \longrightarrow circulation.
- No aerodynamic drag force predicted in many cases (d'Alembert's paradox for 2D flows) or seriously underestimated.
 - Lift-induced drag in 3D.
- Several observed phenomena cannot be explained or predicted:
 - turbulence
 - wakes
 - detached/separated flow

Outline

Introduction Viscous Effects in Aerodynamics Drag Coefficient of Several Flows Shortcomings of Potential Flow Theory

Laminar Boundary Layer Boundary Layer Hypothesis Equations & Solution Methods

Turbulent Boundary Layer Transition & Turbulent Flows Equations & Solution Methods Boundary Layer Structure

Extensions of Boundary Layer Theory Compressibility & Thermal Effects 3-Dimensional Boundary Layer Laminar-Turbulent Transition

Bibliography

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

L. Prandtl (1904): Über Flüssigkeitsbewegungen bei sehr kleiner Reibung (Fluid Flow in Very Little Friction)

In most of the fluid domain:

Inviscid flow remains a valid hypothesis

Close to walls:

 Recover the no-slip boundary condition by considering the effects of viscosity.

Mechanisms for Momentum Transport

Advection:

- Transport along streamlines
- Characteristic Time: $t_a \sim \frac{L}{U}$ Diffusion
 - Transport across streamlines
 - Interaction at the molecular level through viscosity
 - Characteristic Time: $t_v \sim \frac{\delta^2}{\nu}$

Comparison: $\frac{t_v}{t_a} \sim \left(\frac{\delta}{L}\right)^2 Re_L$

Viscosity affects a thin layer such that $t_v \sim t_a$ (BL Hypothesis):

$$\delta^* = \frac{\delta}{L} \sim \frac{1}{\sqrt{Re_L}}$$

Dimensional Analysis

Nondimensionalising with L and U (ρ and μ constants)^(*):

► Continuity:

$$\frac{\partial u^*}{\partial x^*}_{O(1)} + \frac{\partial v^*}{\partial y^*} = 0 \longrightarrow v^* \sim \delta^*$$

► x-momentum:

$$\underbrace{\frac{\partial u^*}{\partial t^*}}_{O(1)} + \underbrace{u^* \frac{\partial u^*}{\partial x^*}}_{O(1)} + \underbrace{v^* \frac{\partial u^*}{\partial y^*}}_{O(\delta^* \cdot \frac{1}{\delta^*})} = -\underbrace{\frac{\partial p^*}{\partial x^*}}_{O(1)} + \underbrace{\frac{1}{Re_L}}_{O(\delta^{*2})} \left[\underbrace{\frac{\partial^2 u^*}{\partial x^{*2}}}_{O(1)} + \underbrace{\frac{\partial^2 u^*}{\partial y^{*2}}}_{O(\frac{1}{\delta^*})} \right]$$

y-momentum:

$$\underbrace{\frac{\partial v^*}{\partial t^*}}_{O(\delta^*)} + \underbrace{u^* \frac{\partial v^*}{\partial x^*}}_{O(\delta^*)} + \underbrace{v^* \frac{\partial v^*}{\partial y^*}}_{O(\delta^* \cdot \frac{\delta^*}{\delta^*})} = -\underbrace{\frac{\partial p^*}{\partial y^*}}_{O(\frac{1}{\delta^*})} + \underbrace{\frac{1}{Re_L}}_{O(\delta^{*2})} \left[\underbrace{\frac{\partial^2 v^*}{\partial x^{*2}}}_{O(\delta^*)} + \underbrace{\frac{\partial^2 v^*}{\partial y^{*2}}}_{O(\frac{1}{\delta^*})}\right]$$

(*)Similar analyses hold for compressible flow and for variable viscosity

イロト イポト イヨト イヨト

2D Boundary Layer Equations

For Stationary, incompressible flow:

Continuity:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

► y-momentum^(*):

$$\frac{\partial p}{\partial y} = 0$$

x-momentum:

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{dp}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right)$$

(*) Assuming small curvature: $\delta << R(x) = 1/\kappa(x)$

NS: elliptic equations; BL: parabolic equations: ve cannot be imposed!

With boundary conditions:

- Wall: u(x,0) = v(x,0) = 0
- ▶ B.L. edge: $u(x,\infty) \longrightarrow u_e(x)$

$$\rho_e u_e \frac{du_e}{dx} = -\frac{dp}{dx}$$

• On $x = x_0$: $u(x_0, y) = u_0(y)$

イロト イポト イヨト イヨト

Boundary Layer Characteristic Properties

► Wall Shear Stress:

$$\tau_{\mathsf{w}} = \mu \left(\frac{\partial u}{\partial \mathsf{y}}\right)_{\mathsf{w}}$$

Skin Friction Coefficient:

$$C_f = \frac{\tau_w}{\frac{1}{2}\rho_e u_e^2}$$

Displacement Thickness:

$$\delta_1 = \int_0^\delta \left(1 - \frac{\rho u}{\rho_e u_e} \right) dy$$

Momentum Thickness:

$$\delta_2 = \theta = \int_0^\delta \frac{\rho u}{\rho_e u_e} \left(1 - \frac{u}{u_e}\right) dy$$

► Form Factor:

$$H = \frac{\delta_1}{\theta}$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Boundary Layer Integral Equations

Integration with respect to y yields 1-dimensional equations:

$$\int_0^{\delta} [Eq] \, dy$$

► Continuity:

$$\frac{1}{u_e}\frac{d}{dx}\left(u_e\left(\delta-\delta_1\right)\right)=\frac{d\delta}{dx}-\frac{v_\delta}{u_e}=C_E$$

Momentum:

$$\frac{d\theta}{dx} + \theta \left(\frac{H+2}{u_e}\frac{du_e}{dx}\right) = \frac{C_f}{2}$$

 $\exists \mapsto$

Solution Methods

- Solve the Navier-Stokes Equations with no assumptions
- ▶ Exploit that *Re_L* >> 1
 - Inviscid Flow Boundary Layer Coupling
 - 1 Solve Euler Equations around airfoil $\longrightarrow p(x)$
 - 2 Solve Boundary Layer Equations $\longrightarrow u, v(x, y) \longrightarrow \delta_1(x), \tau_w(x)$
 - 3 Solve Euler Equations around modified airfoil and wake \rightarrow new p(x)

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- Airfoil Performance Calculations:
 - Lift: integration of p(x) from step 3
 - Form Drag: integration of p(x) from step 3
 - Friction Drag: integration of $\tau_w(x)$ from step 2
- Options for step 2:
 - Numerical solution of the local equations
 - Self-Similar Solutions (Falkner-Skan)
 - Integral Methods (approximate)

Wedge Flows:

- Complex Potential: $F(z) = \frac{k}{m+1} z^{m+1}$
 - $\psi(r,\theta) = \operatorname{Im}[F] = \frac{k}{m+1}r^{m+1}\sin((m+1)\theta)$
- Complex Velocity: $w^*(z) = \frac{dF}{dz} = kz^m$

•
$$u_r(r,\theta) = \frac{1}{r} \frac{d\psi}{d\theta} = kr^m \cos((m+1)\theta)$$

- Streamlines through origin: $\theta_w = \frac{n\pi}{m+1}$
 - interpret as walls: $u_r(r, \theta_w) = kr^m (-1)^n$

• Wall velocity:
$$u_e(x) = kx^m$$

Deflection Angle:

$$\alpha = \frac{\pi\beta}{2} \qquad \beta = \frac{2m}{m+1}$$

Cases:

- decelerated flow: $-0.5 \le m < 0$
- flate plate: m = 0
- accelerated flow: $0 \le m < 1$
- stagnation point: m = 1

Non-dimensional self-similar variables:

$$rac{u}{u_e} = f'(\eta)$$
 $\xi = x$ and $\eta = rac{y}{g(x)}$

With the scaling:

$$g(x) = \sqrt{\frac{2}{m+1} \frac{\nu x}{u_e}} \sim \delta(x)$$

The Boundary Layer equations read:

$$f^{\prime\prime\prime} + f f^{\prime\prime} + \beta \left(1 - f^{\prime 2}\right) = 0$$

with boundary conditions:

$$f(0) = f'(0) = 0, \qquad f'(\infty) = 1$$

► Wall Friction Factor:

$$\frac{\tau_w}{\rho_e u_e^2} \sqrt{\frac{u_e x}{\nu}} = \frac{C_f}{2} \sqrt{Re_x} = f''(0) \sqrt{\frac{m+1}{2}}$$

Displacement Thickness:

$$rac{\delta_1}{x}\sqrt{Re_x} = l_1\sqrt{rac{2}{m+1}}$$
 with $l_1 = \int_0^\infty (1-f')d\eta$

Momentum Thickness:

$$rac{ heta}{x}\sqrt{ extsf{Re}_{x}}=l_{2}\sqrt{rac{2}{m+1}}\qquad extsf{with}\qquad l_{2}=\int_{0}^{\infty}f'(1-f')d\eta$$

► Form Factor:

$$H=\frac{I_1}{I_2}$$

4	Þ	< P	►	≡ →	Э	►	Ξ	500

	β	m	$\frac{Re_{\theta}}{\sqrt{Re_X}}$	$\frac{Re_{\delta_1}}{\sqrt{Re_X}}$	н	$\frac{C_f}{2}\sqrt{Re_X}$	$\frac{C_f}{2} Re_{\theta}$	$\frac{\theta Re_{\theta}}{u_e} \frac{du_e}{dx}$	$Re_{\theta} \frac{d\theta}{dx}$
	20.00000	-1.11111	0.35112	0.73026	2.07979	1.22111	0.42876	0.13698	-0.13014
	10.00000	-1.25000	0.32592	0.68101	2.08950	1.29939	0.42350	0.13278	-0.11950
	2.00000	∞	0.00000	0.00000	2.15541	∞	0.38938	0.10652	-0.05326
SP	1.00000	1.00000	0.29234	0.64789	2.21623	1.23259	0.36034	0.08546	0.00000
	0.50000	0.33333	0.42899	0.98537	2.29694	0.75745	0.32494	0.06134	0.06134
	0.28571	0.16666	0.50895	1.20511	2.36781	0.58255	0.29649	0.04317	0.10793
FP	0.00000	0.00000	0.66411	1.72079	2.59110	0.33206	0.22052	0.00000	0.22052
	-0.04000	-0.01961	0.69419	1.84404	2.65639	0.29052	0.20168	-0.00945	0.24567
	-0.08000	-0.03846	0.72786	1.99731	2.74409	0.24512	0.17841	-0.02038	0.27508
	-0.12000	-0.05660	0.76628	2.20057	2.87177	0.19351	0.14828	-0.03324	0.31021
	-0.16000	-0.07407	0.81115	2.50823	3.09067	0.12981	0.10535	-0.04879	0.35370
Sep	-0.19884	-0.09043	0.86811	3.49779	4.02923	0.00000	0.00000	-0.06815	0.41088
	-0.16000	-0.07407	0.76792	5.18496	6.75200	-0.08544	-0.06561	-0.04368	0.31669
	-0.12000	-0.05660	0.63692	6.40508	10.05630	-0.09817	-0.06253	-0.02296	0.21432
	-0.08000	-0.03846	0.47987	7.90226	16.46750	-0.09169	-0.04400	-0.00886	0.11957
	-0.04000	-0.01961	0.28891	10.38459	35.94357	-0.06766	-0.01955	-0.00164	0.04255

- ► SP: Stagnation Point
- ► FP: Flat Plate
- ► Sep: Separation

$$Re_x = \frac{u_e x}{\nu}$$
 $Re_{\delta_1} = \frac{u_e \delta_1}{\nu}$ $Re_{\theta} = \frac{u_e \theta}{\nu}$

イロト イロト イヨト イヨト

Two Useful Cases

Flat Plate Boundary Layer (Blasius)

Wall Friction Factor:

 $\tau_w = 0.332 \, \rho_e u_e^2 \, Re_x^{-1/2}$

Displacement Thickness:

 $\delta_1/x = 1.7208 Re_x^{-1/2}$

Momentum Thickness:

 $\theta/x = 0.664 Re_x^{-1/2}$

- Form Factor: H = 2.591
- Friction force: $F/b = \rho_e u_e^2 \theta(L)$

2D Stagnation Point ($u_e = kx$)

Wall Friction Factor:

$$au_{w}=1.2326\,
ho_{e}\,k\!x\,\sqrt{k
u}$$

Displacement Thickness:

$$\delta_1 = 0.6479 \sqrt{
u/k}$$

Momentum Thickness:

$$heta=0.2923\,\sqrt{
u/k}$$

イロト 不得 トイヨト イヨト

- Form Factor: H = 2.2162
- $\tau_w = 0$ at stagnation point

Open Problem:

▶ 1 equation:

$$\frac{d\theta}{dx} + \theta\left(\frac{H+2}{u_e}\frac{du_e}{dx}\right) = \frac{C_f}{2}$$

▶ 3 unknowns: θ , H and C_f

Closure: Assume Flat Plate laws hold (approximate)

Assumptions:

$$\frac{C_f}{2}Re_\theta = b = 0.2205 \qquad \text{and} \qquad H = 2.591$$

Approximate equation:

$$\frac{d\theta}{dx} + \theta \left(\frac{H+2}{u_e}\frac{du_e}{dx}\right) = \frac{b\nu}{u_e\theta}$$

Solution:

$$\left[\theta u_{e}^{(H+2)}\right]_{x_{1}}^{2} = \left[\theta u_{e}^{(H+2)}\right]_{x_{0}}^{2} + 2b \int_{x_{0}}^{x_{1}} \frac{u_{e}^{2(H+2)}}{u_{e}/\nu} dx$$

Alternative closure:

Pohlhausen's polynomial approximation (4th order):

$$rac{u}{u_e}\equiv f(\eta)$$
 with $\eta=rac{y}{\delta}$

- ▶ BC at η = 0: f(0) = 0
- BC at η = 1: f(1) = 1 and f'(1) = 0
- Analyticity across $\eta = 1$: $f''(1) = f'''(1) = f^{iv}(1) = 0$ From BL equation at $\eta = 0$: $f''(0) = -\frac{\delta^2}{\nu} \frac{du_e}{dx} \equiv -\Lambda$
- From BL' equation at $\eta = 0$: f'''(0) = 0

$$f(\eta) = 2\eta - 2\eta^3 + \eta^4 + \frac{1}{6}\Lambda\eta (1 - \eta)^3$$

Cases:

- $\Lambda = 0$: Flat plate boundary layer.
- $\Lambda = 12$: First overshooting velocity profile.
- $\Lambda = -12$: Separation profile.

Using this profile:

$$\begin{aligned} & \leftarrow \frac{C_f}{2} = \frac{\nu}{u_e\delta} \left(2 + \frac{1}{6}\Lambda \right) \\ & \leftarrow \delta_1 = \delta \left(\frac{3}{10} - \frac{1}{120}\Lambda \right) \\ & \leftarrow \theta = \frac{\delta}{315} \left(37 - \frac{1}{3}\Lambda - \frac{5}{144}\Lambda^2 \right) \end{aligned}$$

Substitute in momentum integral equation and solve for Λ:

$$\frac{d\Lambda}{dx} = \frac{1}{u_e} \frac{du_e}{dx} \frac{-90720 - 10512\Lambda + 282\Lambda^2 - 10\Lambda^3}{-5328 + 48\Lambda + 5\Lambda^2} + \frac{\frac{d^2u_e}{dx^2}}{\frac{du_e}{dx}} \frac{\Lambda^2}{2}$$

- Method:
 - Pick $\frac{du_e}{dx}$ from inviscid calculation.
 - Choose initial value for δ (or θ).
 - Integrate to find evolution of Λ.
 - Obtain the boundary layer thickness δ .

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Alternative closure:

- Thwaites' correlation method
 - exploit correlation of analytical and experimental results.

•
$$H = H(\lambda)$$
 and $\frac{C_f}{2}Re_{\theta} \equiv I = I(\lambda)$
• with $\lambda = \frac{\theta^2}{\nu}\frac{du_e}{dx}$, a nondimensional pressure gradient parameter

The momentum integral equation becomes:

$$\frac{u_e}{\nu}\frac{d\theta^2}{dx} = 2\left[I(\lambda) - \lambda\left(H(\lambda) + 2\right)\right] \equiv F(\lambda) \approx 0.45 - 6.0\lambda$$

▶ resulting, after integration, in [Cebeci & Bradshaw]

$$\begin{aligned} \frac{\theta^2 u_e^6}{\nu} &= 0.45 \int_0^x u_e^5 dx + \left(\frac{\theta^2 u_e^6}{\nu}\right)_0 \\ I &= \begin{cases} 0.22 + 1.57\lambda - 1.80\lambda^2 & \text{for } 0 < \lambda < 0.1 \\ 0.22 + 1.402\lambda + 0.018 \frac{\lambda}{\lambda + 0.107} & \text{for } -0.1 < \lambda < 0 \end{cases} \\ H &= \begin{cases} 2.61 - 3.75\lambda + 5.24\lambda^2 & \text{for } 0 < \lambda < 0.1 \\ 2.088 + \frac{0.0731}{\lambda + 0.14} & \text{for } -0.1 < \lambda < 0 \end{cases} \end{aligned}$$

Outline

Introduction

Viscous Effects in Aerodynamics Drag Coefficient of Several Flows Shortcomings of Potential Flow Theory

Laminar Boundary Layer Boundary Layer Hypothesis Equations & Solution Methods

Turbulent Boundary Layer Transition & Turbulent Flows Equations & Solution Methods Boundary Layer Structure

Extensions of Boundary Layer Theory Compressibility & Thermal Effects 3-Dimensional Boundary Layer Laminar-Turbulent Transition

Bibliography

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Boundary Layer Laminar-Turbulent Transition

Typical Transition Scenario:

- Laminar flow over a short distance
- Instability to small perturbations
 - Tollmien-Schlichting waves
- Linear growth of waves
- Nonlinear saturation
- Turbulence

Factors & Properties of Turbulent Flow

Factors influencing transition:

- Reynolds number
- External perturbations:
 - Preturbulence levels
 - wall roughness
- Pressure gradient (2D)
- Transverse flow (3D)
- Wall suction
- Others: compressibility, wall curvature, heat transfer...

Transition prediction:

- No general method
 - Different Criteria

Properties of Turbulent Flow:

- High Reynolds numbers
- Mixing capabilities
 - better than viscous diffusion
 - homogeneisation
- faster BL thickness growth
- ► Flow is intrinsically 3D
- Flow is intrinsically time-dependent
- High energy dissipation
- Navier-Stokes hold (turbulent scales >> mollecular scales)

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Deterministic chaos

Methods for Solving Turbulent Flows

- Direct Navier Stokes (DNS)
- Reynolds Averaging (RANS)
 - Solve transport equation for mean flow
 - All turbulent scales are modeled
- Filtering (LES)
 - Solve transport equation for resolvable scales
 - Large turbulent scales (large eddies) are solved
 - Small turbulent scales are modeled

Reynolds Averaged Navier Stokes (RANS)

Decompose field f in the sum of an average \overline{f} (filtering or ensemble averaging) plus a fluctuation f'

$$f = \overline{f} + f$$

with

$$\overline{f} = rac{1}{\Delta t} \int_t^{t+\Delta t} f \ dt \qquad ext{or} \qquad \overline{f} = \lim_{N o \infty} rac{1}{N} \sum_{i=0}^N f_i \qquad ext{and} \qquad \overline{f'} = 0$$

Some averaging properties (f, g turbulent and α non-turbulent fields):

$$\overline{f + g} = \overline{f} + \overline{g} \qquad \qquad \overline{\partial f} = \frac{\partial \overline{f}}{\partial t} = \frac{\partial \overline{f}}{\partial t} \\
\overline{f g} = \overline{f} \overline{g} + \overline{f'g'} \qquad \qquad \overline{\partial f} = \frac{\partial \overline{f}}{\partial t} \\
\overline{\partial f} = \alpha \overline{f} \qquad \qquad \overline{\partial f} = \frac{\partial \overline{f}}{\partial x_i} = \frac{\partial \overline{f}}{\partial x_i}$$

For compressible flows: (density-weighted) Favre averaging

$$\widetilde{f} = \overline{\rho f}/\overline{\rho}$$
 and $f' = f - \widetilde{f}$

Reynolds Averaged Navier Stokes (RANS)

Mass Conservation:

$$\frac{\partial \overline{u_j}}{\partial x_j} = 0$$

Momentum Conservation:

$$\rho \frac{\partial \overline{u_i}}{\partial t} + \rho \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\mu \frac{\partial \overline{u_i}}{\partial x_j} - \rho \overline{u_i' u_j'} \right)$$

Turbulent Fluctuations Kinetic Energy Equation:

Reynolds Averaged Navier Stokes (RANS)

Open Problem:

- 4 equations:
 - mass
 - momentum (3)
- 10 unknowns:
 - ► p
 - ► $\overline{u_i}$ (\overline{u} , \overline{v} , \overline{w})
 - 6 Reynolds stresses: $\rho \overline{u'_i u'_j}$

$$\vec{\vec{\tau}}_t = -\rho \overline{u'_i u'_j} =$$

$$= -\rho \left(\frac{\overline{u'^2}}{\overline{u'v'}}, \frac{\overline{u'v'}}{\overline{v'2}}, \frac{\overline{u'w'}}{\overline{v'w'}} \right)$$

Closure:

- Reynolds Stress Model
- Turbulent Viscosity Models:

$$-\overline{u_i'u_j'} \equiv \nu_t \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i}\right) - \frac{2}{3}k\delta_{ij}$$

- Algebraic:
 - Mixing length (Baldwin-Lomax, Cebeci-Smith...)
- 1 transport equation models:
 - Prandtl's one-equation
 - Spallart-Almaras
 - Baldwin-Barth
- 2 transport equations models:
 - ► k- ϵ : Std, RNG, Realizable: $\nu_t = C_\mu \frac{k^2}{\epsilon}$

IIPC

• k-
$$\omega$$
: Std, SST ($\omega \sim \epsilon/k$): $\nu_t = \gamma \frac{1}{2}$

- Nonlinear Eddy Viscosity Models:
 - Explicit nonlinear contitutive relation
 - ► v2-f models $(\overline{v^2} f, \zeta f)$

Alternatives to RANS

Scale Resolving Simulations (SRS): Small scale filtering

- ► Approach:
 - Solve large turbulent scales
 - Model small turbulent scales
- Methods:
 - Large Eddy Simulation (LES)
 - Hybrid RANS-LES Models
 - Dettached Eddy Simulation (DES)
 - Scale Adaptive Simulation (SAS)

2D Turbulent Boundary Layer Equations

For 2D, Stationary, incompressible flow:

► Continuity:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

► y-momentum^(*):

$$\frac{\partial p}{\partial y} = 0$$

x-momentum:

 $\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{dp}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} - \rho \overline{u'v'} \right)$

(*) Assuming small curvature: $\delta << R(x) = 1/\kappa(x)$

NS: elliptical equations; BL: parabolic equations: ve cannot be imposed!

With boundary conditions:

- Wall: $u = v = \overline{u'v'} = 0$
- B.L. edge: $u \rightarrow u_e$ and $\overline{u'v'} \rightarrow 0$

 $\rho_e u_e \frac{du_e}{dx} = -\frac{dp}{dx}$

• On $x = x_0$: laminar BL results Assuming $\overline{u'w'} = \overline{v'w'} = 0$

イロト イポト イヨト イヨト

Turbulent BL Solution Methods

- Solve Local Equations
 - Needs turbulent model for closure
- Self-Similar Solutions
 - Universal profile close to the wall (viscous sublayer)
 - Self-similar log-law in most of the boundary layer
- Integral Methods
 - Integral equations formally identical to laminar case
 - Experimental input is needed

Experimental Results for the Flat Plate Boundary Layer:

- $\blacktriangleright~H \rightarrow 1$ as $\textit{Re} \rightarrow \infty~(H \sim 1.3, 1.4~\text{for}~\textit{Re} \sim 10^6, 10^7)$
- Empirical law for fricition factor:

$$C_{f} = \frac{0.0368}{Re_{x}^{1/6}} \qquad \frac{\frac{d\theta}{dx} = \frac{C_{f}}{2}}{Re_{x}^{1/6}} \qquad C_{f} = \frac{0.0172}{Re_{\theta}^{1/5}}$$

・ロト ・ 理ト ・ ヨト ・ ヨト

-

Integral Method (Laminar and Turbulent BL)

Open Problem:

▶ 1 equation:

$$\frac{d\theta}{dx} + \theta\left(\frac{H+2}{u_e}\frac{du_e}{dx}\right) = \frac{C_f}{2}$$

▶ 3 unknowns: θ , H and C_f

Closure: Assume Flat Plate laws hold (approximate)

Assumptions:

$$rac{C_f}{2} = rac{b}{Re_{ heta}^{m_0}} \qquad ext{and} \qquad H ext{ constant}$$

		m_0	b	Н
 with 	laminar	1	0.2205	2.591
	turbulent	1/5	0.0086	1.4

Solution:

$$\left[\theta u_e^{(H+2)}\right]_{x_1}^{m_0+1} = \left[\theta u_e^{(H+2)}\right]_{x_0}^{m_0+1} + (m_0+1)b\int_{x_0}^{x_1} \frac{u_e^{(m_0+1)(H+2)}}{(u_e/\nu)^{m_0}} dx$$

Integral Method (Flow Around Airfoil)

- Set $x_0 = 0$ at the stagnation point
 - ▶ Assume laminar BL at x₀
 - Use Falkner-Skan solution (m = 1) to compute $\theta(0)$
- Use laminar integral method from x_0 to x_T
- x_T , the transiton point, is:
 - known or assumed
 - determined with some transition criterion
- Assume continuity of θ at x_T : $\theta_{lam}(x_T) = \theta_{turb}(x_T)$
- Use turbulent integral method beyond x_T

Integral Method (Results For Flat Plate)

Assuming the BL starts directly at the leading edge:

$$p = \frac{k_1}{Re_x^{s_0}} \qquad p = \frac{k_2}{Re_\theta^{m_0}}$$

	Lam	inar	Turbulent			
	m_0	= 1	$m_0 = 1/5$			
	$s_0 =$	1/2	$s_0 = 1/6$			
р	k_1	k ₂	k_1	k ₂		
θ/x	0.664	0.441	0.0221	0.0103		
δ_1/x	1.721 1.143		0.0309	0.0144		
C _f	0.664	0.441	0.0368	0.0172		

Relations for turbulent flows:

$$\begin{array}{lll} H &=& 1.4 \\ C_{f} &=& \frac{0.0368}{Re_{x}^{1/6}} \end{array} \end{array} \end{array} \xrightarrow{\begin{array}{lll} \frac{d\theta}{dx} = \frac{C_{f}}{2}}{2} \xrightarrow{\theta} \frac{\theta}{x} (Re_{x}) \longrightarrow \left\{ \begin{array}{c} \frac{\theta}{x} (Re_{\theta}) \\ C_{f} (Re_{\theta}) \end{array} \right\} \xrightarrow{\begin{array}{lll} \delta_{1} = \theta H \\ C_{f} (Re_{\theta}) \end{array}} \left\{ \begin{array}{c} \frac{\delta_{1}}{x} (Re_{x}) \\ \frac{\delta_{1}}{x} (Re_{\theta}) \end{array} \right\} \xrightarrow{\begin{array}{lll} 0.0368 \\ \frac{\delta_{1}}{x} (Re_{\theta}) \end{array}$$

Turbulent BL Structure

- fluctuation velocities self-correlation $\overline{u_i'^2}$
 - $\overline{u_i^{\prime 2}} = 0$ at the wall
 - Rapid increase to a maximum
 - Slow decrease to outer flow levels
 - $\bullet \ \overline{u'^2} > \overline{w'^2} > \overline{v'^2}$
- friction stress $\tau = \mu \frac{\partial u}{\partial v} \rho \overline{u'v'}$
 - Viscous Sublayer: $\mu \frac{\partial u}{\partial v}$ dominates
 - Log layer: $-\rho \overline{u'v'}$ dominates
- velocity and length scales:
 - Shear (or friction) velocity and length:

$$u_{ au} = \sqrt{rac{ au_w}{
ho}} \qquad l_{ au} = rac{
u}{u_{ au}}$$

Wall variables:

$$u^+ = rac{u}{u_ au} \qquad y^+ = rac{y \ u_ au}{
u}$$

Prandtl (1925): A fluid particle with mean longitudinal velocity u(y), and transversally displaced by the transversal veocity fluctuation v' retains its momentum over a length *I*. The longitudinal velocity fluctuation is then $u' = u(y + I) - u(y) \simeq I \frac{\partial u}{\partial v}$. We then assume $v' \simeq -u'$

Model for Reynold-Stresses:

$$-\overline{u'v'} = F^2 l^2 \left(\frac{\partial u}{\partial y}\right)^2$$

Experimental Mixing Length:

Ι	— 0.085 taph	(χ	У∖
$\overline{\delta}$	= 0.005 tann	10).085	$\overline{\delta}$

- $\chi = 0.41$ von Karman constant
- Damping Function:

$$F = 1 - exp\left(-rac{y^+}{A^+}
ight); \ A^+ = 26$$

Prandtl (1925): A fluid particle with mean longitudinal velocity u(y), and transversally displaced by the transversal veocity fluctuation v' retains its momentum over a length *I*. The longitudinal velocity fluctuation is then $u' = u(y + I) - u(y) \simeq I \frac{\partial u}{\partial y}$. We then assume $v' \simeq -u'$

Model for Reynold-Stresses:

$$-\overline{u'v'} = F^2 l^2 \left(\frac{\partial u}{\partial y}\right)^2$$

Experimental Mixing Length:

$$\frac{l}{\delta} = 0.085 \tanh\left(\frac{\chi}{0.085} \frac{y}{\delta}\right)$$

- $\chi = 0.41$ von Karman constant
- Damping Function:

$$F = 1 - exp\left(-rac{y^+}{A^+}
ight); \ A^+ = 26$$

Universal Turbulent BL Profile

Turbulent BL Inner Region

Near wall hypothesis:

$$t_a >> t_d: \ \frac{\partial \tau}{\partial y} = 0 \longrightarrow \frac{\tau}{\tau_w} = 1$$
$$t = \chi y$$

► Equations:

$$\begin{split} \tau &= \mu \frac{\partial u}{\partial y} + \rho F^2 l^2 \left(\frac{\partial u}{\partial y} \right)^2 = \tau_w \\ \frac{\partial u^+}{\partial y^+} + \chi^2 y^{+2} \left[1 - \exp\left(-\frac{y^+}{A^+} \right) \right]^2 \left(\frac{\partial u^+}{\partial y^+} \right)^2 = 1 \end{split}$$

- ► Solutions:
 - ► Viscous Sublayer (y⁺ < 5): u⁺ = y⁺
 - ▶ Buffer Region (5 < y⁺ < 30)</p>

► Log Law (30 <
$$y^+$$
):
 $u^+ = \frac{1}{\chi} \ln y^+ + C; C \simeq 5.25$

Turbulent BL Outer Region

► Velocity Defect Law:

 $\frac{u_{\mathsf{e}}-u}{u_{\tau}}=-\frac{1}{\chi}\ln\frac{y}{\delta}+D$

région externe (vitesses déficitaires)

Compatibility:

► Turbulent Friction Law: $\left(\frac{C_f}{2}\right)^{-1/2} = \frac{1}{\chi} \ln (Re_{\delta_1}) + D$ ► $D^* = 4.18$ for flat plate

Universal Turbulent BL Profile

Outline

Introduction

Viscous Effects in Aerodynamics Drag Coefficient of Several Flows Shortcomings of Potential Flow Theory

Laminar Boundary Layer Boundary Layer Hypothesis Equations & Solution Methods

Turbulent Boundary Layer Transition & Turbulent Flows Equations & Solution Methods Boundary Layer Structure

Extensions of Boundary Layer Theory Compressibility & Thermal Effects 3-Dimensional Boundary Layer Laminar-Turbulent Transition

Bibliography

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Momentum & Thermal BL

Two Boundary Layers:

- Momentum BL due to velocity profile
- Thermal BL due to temperature profile
 - ► Energy-momentum equations coupling due to variable density:
 - Temperature effects (heating/cooling)
 - Compressibility effects at high Mach number

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Compressibility & Thermal Effects

Incompressible BL if:

•
$$M_e = u_e/\sqrt{\gamma r T_e} \lesssim 0.4, 0.5$$

• T_w close to T_e

Otherwise compressible

Transonic & Supersonic BL:

• $T_i \simeq \text{ct}$ for adiabatic walls

► local M, $T_s \neq$ ct $\longrightarrow \mu$, ρ , λ_c change Wall properties:

- Adiabatic: $\Phi_w = 0$
 - recovery factor: $r = \frac{h_{aw} h_e}{h_{ie} h_e}$
 - ▶ laminar: *r* ≃ 0.85
 - turbulent: $r \simeq 0.9$
- Non-adiabatic wall: T_w
 - ► heat flux coeff: $C_h = \frac{\Phi_w}{\rho_e u_e C_p(T_w T_{aw})}$
 - Reynolds analogy factor: $s = \frac{C_h}{C_f/2}$
 - flat plate: s = 1.24
 - ► pressure gradient: big changes
- Energy Thickness:

$$\delta_{3} = \Delta = \int_{0}^{\delta} \frac{\rho u}{\rho_{e} u_{e}} \left(\frac{h_{i}}{h_{ie}} - 1\right) dy$$

2D Compressible BL Equations

Continuity:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0$$

y-momentum:

$$\frac{\partial p}{\partial y} = 0$$

x-momentum:

$$\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{dp}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right)$$

Energy:

$$\rho \frac{\partial h_i}{\partial t} + \rho u \frac{\partial h_i}{\partial x} + \rho v \frac{\partial h_i}{\partial y} = \frac{\partial p}{\partial t} + \frac{\partial}{\partial y} \left(\mu u \frac{\partial u}{\partial y} + \lambda_c \frac{\partial T}{\partial y} \right)$$

- Boundary Conditions:
 - ► Wall: u(x,0;t) = v(x,0;t) = 0; $T(x,0;t) = T_w(x;t)$
 - ► Edge: $u(x,\infty;t) \longrightarrow u_e(x;t); T(x,\infty;t) \longrightarrow T_e(x;t)$
- Initial Conditions for t = 0

2D Compressible BL Integral Equations

Integration with respect to y yields 1-dimensional equations:

$$\int_0^{\delta} [Eq] \, dy$$

► Continuity:

$$\frac{1}{\rho_e u_e} \frac{d}{dx} \left(\rho_e u_e \left(\delta - \delta_1 \right) \right) = \frac{d\delta}{dx} - \frac{v_\delta}{u_e} = C_E$$

Momentum:

$$\frac{d\theta}{dx} + \theta \left(\frac{H+2}{u_e} \frac{du_e}{dx} + \frac{1}{\rho_e} \frac{d\rho_e}{dx} \right) = \frac{C_f}{2} \qquad \text{with} \qquad \frac{1}{\rho_e} \frac{d\rho_e}{dx} = -\frac{M_e^2}{u_e} \frac{du_e}{dx}$$

► Energy:

$$\frac{1}{\rho_e u_e} \frac{d}{dx} \left(\rho_e u_e \delta_3 \right) = \frac{\phi_w}{\rho_e u_e h_{ie}}$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Flat Plate Compressible BL

Recovery enthalpy:

$$h_{aw} = h_e \left(1 + r rac{\gamma - 1}{2} M_e^2
ight)$$

- recovery factor:
 - laminar: $r = Pr^{1/2}$
 - turbulent: $r = Pr^{1/3}$
- ▶ $Pr_{air} = 0.725 \rightarrow 0.711$
- Reynolds analogy factor:

$$C_h = s \frac{C_f}{2}$$
 with $s = Pr^{-2/3} = 1.24$

- Wall enthalpy:
 - ► Adiabatic wall: h_w = h_{aw}
 - Prescribed T_w : $h_w = C_p T_w$
- ► Reference enthalpy:

$$h^{*} = h_{e} + 0.54 \left(h_{w} - h_{e}\right) + 0.16 \left(h_{aw} - h_{e}\right)$$

Wall friction:

$$\frac{C_f}{2} = \frac{a f}{Re_x^{s_0}} = \frac{b g}{Re_\theta^{m_0}}$$

Momentum thickness:

$$\frac{\theta}{x} = \frac{k_1 f}{Re_x^{s_0}} = \frac{k_2 g}{Re_{\theta}^{m_0}}$$

Form Factor:

$$\textit{H} = \textit{H}_{\textit{inc}} + \alpha \textit{M}_{e}^{2} + \beta \, \frac{\textit{T}_{w} - \textit{T}_{\textit{aw}}}{\textit{T}_{e}}$$

Compressible deviations:

$$f = \left(\frac{T_e}{T^*}\right)^{1-s_0} \left(\frac{\mu^*}{\mu_e}\right)^{s_0} \quad g = f^{m_0+1}$$

• Sutherland law: (S = 110.4 K)

$$\frac{\mu^*}{\mu_e} = \left(\frac{T^*}{T_e}\right)^{1/2} \frac{1 + S/T_e}{1 + S/T^*}$$

	<i>m</i> ₀	s 0	а	Ь	k_1	k ₂	Hinc	α	β	
laminar	1	1/2	0.332	0.2205	0.664	0.441	2.591	0.667	2.9	UPC
turbulent	1/5	1/6	0.0184	0.0086	0.0221	0.0103	1.4	0,4 :	1.222	20

Flat Plate Compressible BL Wall Friction

16 20

0 4 8

Turb BL, Adiabatic Wall

Turb BL, Conducting Wall

- (同) - (日)

 \equiv

3-Dimensional Boundary Layer

Some examples of 3D-Flows:

- Swept Wing
- Wing-tip vortices
- Fuselage with aoa

Consequences for BL:

- Secondary flows due to transverse pressure gradients
- Friction lines not parallel to external flow
- Instabilities
- Separation

3-Dimensional Boundary Layer

UP

2D Axisymmetric Boundary Layer Equations

For Stationary, 2D Axisymmetric flow:

► Local Equations:

With:

state equation:
$$\frac{p}{\rho} = rT$$

stagnation enthalpy: $h_i = h + \frac{u^2 + v^2}{2} = h + \frac{u^2}{2}$
shear stress: $\tau = \mu \frac{\partial u}{\partial y} - \rho \overline{u'v'}$
heat flux: $\Phi = -\lambda_c \frac{\partial T}{\partial y} + \rho C_\rho \overline{v'T'}$

(E) < E)</p>

2D Axisymmetric Boundary Layer Equations

For Stationary, 2D Axisymmetric flow:

Integral Equations:

mass:

$$\frac{1}{\rho_e u_e R} \frac{d}{dx} \left(\rho_e u_e R \left(\delta - \delta_1 \right) \right) = \frac{d\delta}{dx} - \frac{v_{\delta}}{u_e} = C_E$$
x-momentum:

$$\frac{d\theta}{dx} + \theta \left(\frac{H+2}{u_e} \frac{du_e}{dx} + \frac{1}{\rho_e} \frac{d\rho_e}{dx} + \frac{1}{R} \frac{dR}{dx} \right) = \frac{C_f}{2}$$
energy:

$$\frac{1}{\rho_e u_e R} \frac{d}{dx} \left(\rho_e u_e R \delta_3 \right) = \frac{\phi_w}{\rho_e u_e h_{ie}}$$

► With:

isentropic outer flow:
$$\frac{1}{\rho_e} \frac{d\rho_e}{dx} = -\frac{M_e^2}{u_e} \frac{du_e}{dx}$$

Incompressible 2D Axisymmetric Integral Method

Approximate Solution:

$$\left[\theta R u_e^{(H+2)}\right]_{x_1}^{m_0+1} = \left[\theta R u_e^{(H+2)}\right]_{x_0}^{m_0+1} + (m_0+1)b \int_{x_0}^{x_1} \frac{u_e^{(m_0+1)(H+2)} R^{(m_0+1)}}{(u_e/\nu)^{m_0}} dx^{(m_0+1)(H+2)} R^{(m_0+1)} dx^{(m_0+1)(H+2)} dx^{(m_0+1)(H+2)$$

Laminar-Turbulent Transition

Predicting transition is crucial to drag estimation

- Natural Transition:
 - Orr-Sommerfeld equations (linearised Navier-Stokes)
 - Linear instability: Tollmien-Schlichting waves
 - Secondary instabilities
- Affecting parameters:
 - Adverse pressure gradients
 - Outer flow preturbulent levels and noise
 - Wall-related effects:
 - suction
 - cooling
 - curvature: Görtler vortices
 - rugosity
 - Three-dimensionality:
 - Cross-flow instability (swept wing)
 - Leading edge contamination (fuselage)
- Transition Criteria:
 - ▶ Michele's, Granville, *eⁿ* Method...

イロト 人口 ト イロト

Drag Decomposition

Drag Sources:

- Airfoil drag
 - Parasitic drag
 - Friction drag
 - Form drag
 - Wake drag
 - Interference drag
 - Wave drag
- Lift-induced drag

Outline

Introduction

Viscous Effects in Aerodynamics Drag Coefficient of Several Flows Shortcomings of Potential Flow Theory

Laminar Boundary Layer Boundary Layer Hypothesis Equations & Solution Methods

Turbulent Boundary Layer Transition & Turbulent Flows Equations & Solution Methods Boundary Layer Structure

Extensions of Boundary Layer Theory Compressibility & Thermal Effects 3-Dimensional Boundary Layer Laminar-Turbulent Transition

Bibliography

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Bibliography

- 1. Schlichting, H; Gersten, K: Boundary-Layer Theory (8th ed.). Springer, Berlin, 2000.
- 2. Cousteix, J: Modeling and Computation of Boundary-Layer Flows (2nd ed.). Springer, New York, 2005.
- Anderson, JD: Fundamentals of Aerodynamics (4th ed.). McGraw Hill, New York, 2007.
- 4. White, FM: Fluid Mechanics. McGraw Hill, New York, 2008.
- 5. White, FM: Viscous Fluid Flow (3rd ed.). McGraw Hill, New York, 2005.
- 6. Oertel, H: Prandtl's Essentials of Fluid Mechanics (2nd ed.). Springer, New York, 2004.
- 7. Bonnet, A; Lunneau, J: Théorie de la Dynamique des Fluides. CEPAD, Toulouse, 1989.
- 8. Milne-Thomson, LM: Theoretical Aerodynamics (4th ed.). Dover, New York, 1966.
- 9. Acheson, DJ: Elementary Fluid Dynamics. Oxford University Press, 1998.

3

イロト 不得 トイヨト イヨト