Capítulo 2 Transistores Unipolares

Contenido

- 2.1 Introducción , 2.2
- 2.2 Transistores de puerta de unión: JFET, 2.3
 - 2.2.1 Estudio cualitativo del transistor JFET, 2.3
 - 2.2.2 Estudio cuantitativo del transistor JFET, 2.11
 - 2.2.3 Aproximaciones de las expresiones de las corrientes de lo, 2.15
 - 2.2.4 Resumen de ecuaciones y características de entrada y sali, 2.17
 - 2.2.5 Resumen de ecuaciones y características de entrada y sali, 2.20
 - 2.2.6 Método para el análisis de circuitos con JFET ´s, 2.24
 - 2.2.7 Estructuras prácticas de JFETs., 2.26
- 2.3. Capacidad MOS, 2.28
 - 2.3.1 Estructura ideal de la capacidad MOS., 2.28
 - 2.3.2 Estudio cualitativo de la capacidad MOS, 2.29
 - 2.3.3 Ancho de la zona de vaciamiento (W) y tensión umbral (VT, 2.33
- 2.4 Transistores MOSFET de acumulación, 2.42
 - 2.4.1 Funcionamiento cualitativo, 2.45
 - 2.4.2 Funcionamiento cuantitativo de los MOSFET, 2.50
 - 2.4.3 Aproximaciones de las expresiones de las corrientes de lo, 2.56
 - 2.4.4 Método para el análisis de circuitos con MOSFETs de acum, 2.60
- 2.5 MOSFET de deplexión, 2.67
 - 2.5.1 Estudio cualitativo, 2.69
- 2.6 Transistores MESFET, 2.79
- 2.7 Efectos de segundo orden en transistores unipolares., 2.81
 - 2.7.1 Modulación de la longitud del canal y Efecto Early, 2.81

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

2.1 Introducción

Los transistores unipolares, o *transistores de efecto de campo*, FET (Field Effect Transistor) son dispositivos de estado sólido de dos uniones en los que un campo eléctrico controla el flujo de los portadores mayoritarios en un canal de conducción, de ahí su denominación de *efecto de campo*.

A diferencia de los transistores bipolares, en los transistores unipolares la corriente total en el canal de conducción se debe únicamente a portadores mayoritarios del canal. Esta es la razón por la que a estos transistores también se les conoce como *transistores unipolares*.

Las primeras propuestas de este tipo de transistores datan de los años 1920 (casi 20 años antes que los transistores bipolares). Si embargo su desarrollo no fue posible hasta 1953 (el primer transistor unipolar fue presentado y analizado por W. Shockley en 1952, y en 1953 Dacey y Ross construyeron el primer prototipo), porque no se contaba ni con los materiales semiconductores ni con las técnicas apropiadas. Hubo que esperar al desarrollo de otros dispositivos, tales como los transistores bipolares, para poder desarrollar los transistores unipolares.

Como se pondrá de manifiesto más adelante, los transistores unipolares presentan ventajas y desventajas frente a los bipolares. Entre las ventajas se pueden destacar el que generan menos ruido, son más sencillos y ocupan menos espacio en los circuitos integrados. Dentro de las desventajas cabe destacar que como amplificador (aplicaciones de pequeña señal) la ganancia que se puede conseguir es menor (transconductancia menor que en los bipolares).

En la figura 2.1 se muestran los diferentes tipos de transistores de efecto de campo. Como se puede observar existen cuatro clases básicas de transistores FET ´s:

- 1. Transistores de puerta de unión. Dentro de éstos existen dos tipos:
 - 1.a. FET de unión o J-FET (Junction FET). Normalmente se hace referencia a ellos como FET. Existen dos tipos: canal **p** y canal **n**.
 - 1.b. Metal -Semiconductor FET o MESFET (metal-semiconductor field effect transistor).
- 2. Transistores de puerta aislada o MOSFET (metal-oxide-semiconductor FET). Dentro de ellos existen dos tipos:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

aunque se trate de un transistor de puerta de unión, es porque su funcionamiento tiene un gran parecido con los MOSFET de deplexión canal **n**.

⁽¹⁾ También se conocen por: MISFET (Metal-Isolate-Semiconductor FET) e IGFET (Isolate-Gate FET)
 ⁽²⁾ También se conocen por: "Enriquecimiento" o "Canal Inducido"
 ⁽³⁾También se conocen por: "Empobrecimiento" o "Canal Difundido"

Figura 2.1 Clases básicas de *transistores de efecto de campo* (transistores unipolares).

2.2 Transistores de puerta de unión: JFET

2.2.1 Estudio cualitativo del transistor JFET

Se empezará mostrando los símbolos utilizados para este tipo de transistores, así como la forma en que se definen las corrientes y tensiones. En la figura 2.2 se muestran estos símbolos, tanto para el caso de canal p como n. Como se puede comprobar son dispositivos de tres terminales que reciben el nombre de: drenador (D, Drain), fuente (S, Source) y puerta (G, Gate). El nombre que reciben estos terminales se justifica por la función que realizan en el funcionamiento del transistor. Así el drenador es el terminal que "drena" (por el que salen) portadores mayoritarios, y la fuente es el terminal que "inyecta" portadores mayoritarios. En el caso de un transistor canal p los portadores mayoritarios son los huecos y en el caso de un canal n los portadores mayoritarios son los electrones. El terminal de puerta es el que actúa como terminal de control de la corriente por el canal.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.2 Símbolos y definición de corrientes y tensiones para transistores J-FET. (a) Canal p, (b) Canal n.

En la figura 2.3 se muestran las secciones transversales de las estructuras básicas de los transistores J-FET, que como se puede observar está formada por:

Figura 2.3 Secciones transversales de las estructuras básica de transistores JFET. (a) Canal *n*, (b) Canal *p*.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

uniones (que es el modo de funcionamiento normal de las mismas, como se verá mas adelante) la región de vaciamiento sea mucho más pronunciada en la zona del canal que en la de puerta.

En la descripción del funcionamiento en continua (hablaremos, por tanto, de tensiones y corrientes en continua) de estos transistores se usará un transistor canal n (un razonamiento similar se podrá hacer para el caso de canal p).

Para ello se supondrá condiciones normales de polarización. Estas condiciones deben garantizar que las uniones *p-n* que se forman entre el canal y la zona de puerta deben estar polarizadas siempre en inverso (lo que supone que la corriente de puerta será muy pequeña, prácticamente nula , $I_G \approx 0$). Para ello se debe cumplir: $V_{GS} \le 0$ y $V_{DS} \ge 0$ (esta última condición garantiza que $V_{GD} < 0$). En la figura 2.4 se muestra un ejemplo de polarización. Obsérvese que con $V_{DS} > 0$ la corriente (que representa el movimiento de los huecos) es la que se indica por I_D y, dado que el transistor es canal *n* (los portadores mayoritarios son electrones), los electrones se mueven en sentido contrario, por tanto "salen" electrones por el terminal que se ha denominado Drenador (D), lo que coincide con la definición dada anteriormente (por el terminal S se "inyectan" electrones). En resumen en un transistor canal *n* la tensión entre **Drenador y Fuente (V**_{DS}) tiene que ser positiva ($V_{DS} \ge 0$)

Con el único objetivo de facilitar la compresión del funcionamiento, en el estudio que se realiza a continuación se va a suponer $V_{GS} = 0$. Posteriormente se verá el efecto de $V_{GS} < 0$.

Figura 2.4 Condiciones de polarización para el estudio cualitativo.

Como se puede observar en la figura 2.4 con $V_{DS} \ge 0$ la corriente fluye de Drenador (D) a Fuente (S). Para ver el comportamiento del transistor J-FET basta recordar que cuando una

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

una suma de resistencias r_k , tal como se indica en la figura 2.5. Con ello la tensión entre cada punto, k, del canal y el terminal de puerta viene dada por (con $V_{GS}=0$):

$$V_{Gk} = V_{GS} - V_{kS} = -\frac{V_{DS}}{R_{DS}} \cdot \sum_{i=1}^{k} r_i$$
 <2.2>

Para los puntos más próximos al terminal de fuente (S) esta tensión tiende a:

$$V_{Gk} = V_{GS} - V_{kS} \rightarrow 0 \tag{2.3}$$

y para los puntos próximos a drenador :

$$V_{Gk} = V_{GS} - V_{kS} \rightarrow -V_{DS} \qquad <2.4>$$

Por tanto, dado que $V_{DS} \ge 0$ y $V_{GS} = 0$, las zonas de la unión *p***-n** más próximas a fuente (S) están menos polarizadas en inverso que las más próximas a drenador (D). Por ello el perfil que presentarán las zonas de vaciamiento será el mostrado en las figuras 2.6 y 2.7.

Para explicar, de forma cualitativa, la variación de la corriente de drenador en función de la

Manuel Mazo, J. Jesús García Domínguez

de donde se obtiene:

$$\Delta V_{DS} = I_D \Delta R_{DS} + R_{DS} \Delta I_D \qquad <2.6>$$

A partir de estas dos últimas expresiones se pueden obtener las siguientes conclusiones, para los dos márgenes de valores más significativos de V_{DS}:

- Para $V_{DS} \ge 0$, pero inferiores a la que produce el estrangulamiento del canal. A medida que se incremente V_{DS} la sección transversal del canal disminuye y con ello R_{DS} aumenta. Observando la ecuación <2.6> se puede ver que ante $\Delta V_{DS} > 0$ se producen $\Delta I_D > 0$, que para I_D pequeñas e ΔR_{DS} pequeñas (lo que sucede para V_{DS} próximas a cero, recuérdese que si R = K/A, entonces $\Delta R/\Delta A = K/A^2$, donde *A* representa la sección transversal del material) la variación de I_D con V_{DS} es casi lineal. A medida que se incrementa V_{DS} , tanto I_D como ΔR_{DS} y R_{DS} tienen valores más elevados lo que significa que para un mismo ΔV_{DS} , ΔI_D es menor. Esta situación se muestra en la figura 2.6.
- Para V_{DS} superiores o iguales a la que hace que el canal se estrangule. En este caso la sección transversal del canal tiende a cero (A 0) en uno (situación límite) o varios puntos. Ello supone que R_{DS} \rightarrow . Por tanto, observando la ecuación <2.6>, se puede ver que la única solución es que $\Delta I_D \rightarrow 0$. Lo que significa que $I_D = I_{Dsat}$ = cte. (ver figura 2.7)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

La tensión V_{DS} mínima para la cual se alcanza el "estrangulamiento" o "cierre" (pinch-off) del canal se le conoce como V_{Dsat} .

Como es lógico, el grado de estrechamiento del canal depende de la tensión inversa aplicada entre la zona \boldsymbol{n} y \boldsymbol{p} , y ésta viene dada, para el caso más desfavorable (zona más próxima a drenador), por V_{GS} - V_{DS} ya que V_{DS} >0.

Por tanto, la corriente por el canal no sólo depende de la tensión V_{DS} sino también de la tensión V_{GS} . A la diferencia de potencial entre la zona **p** y **n** necesaria para producir el estrangulamiento del canal se le denomina por V_{P} :

$$V_{GS} - V_{DS} = V_P \tag{2.7}$$

Ya que las uniones deben estar polarizadas en inverso, para un transistor canal **n** se cumple que V_P<0; y para un canal **p** V_P>0. Además V_P constituye un parámetro propio del transistor. Es evidente (ver ecuación <2.7>), que para V_{GS}=0 el estrangulamiento del canal se produce cuando V_{DS}= V_{Dsat} = - V_P, y para V_{DS} = 0, la tensión que hay que aplicar entre puerta y fuente

Figura 2.7 Variación de la corriente de drenador para tensiones V_{DS} superiores o iguales a las que producen el estrangulamiento del canal ($V_{DS} \ge V_{DSsat}$).

para estrangular el canal es $V_{\text{GS}}{=}~V_{\text{P}}$.

Para ver esta dependencia de I_D con V_{GS} se van a analizar tres situaciones.

1. V_{GS} es suficientemente negativa ($V_{GS} < <0$)como para hacer que el canal se estrangule

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

seguirá hasta que se produzca el estrangulamiento del canal ($V_{DS} = V_{DSsat}$), permaneciendo constante de valor $I_D = I_{DSS}$ (I_{DSS} es un parámetro del transistor).

3. V_{GS} es negativa pero insuficiente por si sola para estrangular el canal. En estas condiciones con V_{DS} = 0 la corriente será cero y la resistencia del canal será mayor que en la situación 2 (ya que existe un estrechamiento inicial del canal). Si ahora se incrementa V_{DS} la corriente I_D empezará a crecer hasta que el canal se estrangule. Lógicamente, el valor de V_{DS} para que se alcance el estrangulamiento será menor que en el caso 2.

En la figura 2.8 se muestra la dependencia de I_D con V_{GS} y V_{DS} , que refleja las conclusiones de este estudio. En el estudio cuantitativo se obtendrán las expresiones de estas curvas. Obsérvese que el estrangulamiento del canal se produce para valores de V_{GS} y V_{DS} que cumplan la ecuación <2.7>, o lo que es lo mismo: $V_{DS} = V_{GS} - V_P$

Hay que destacar que para garantizar que las uniones *p*-*n* no queden polarizadas en directo en el caso de un transistor canal *n* se debe cumplir que $V_{GS} \le 0$.

Si se tratase de un transistor canal *p*, el razonamiento de su funcionamiento sería el mismo, si

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

ecuación <2.7> ($V_{DS} = V_{GS} - V_{P}$), siendo ahora V_{P} un valor positivo (V_{P} >0).

Figura 2.9 Condiciones de polarización para transistores JFET canal p.

Figura 2.10 Curvas características de (a) entrada y (b) salida de un transistor JFET canal p.

Como resumen en la tabla 2.1 se indica el signo que deben tener las tensiones para transistores unipolares canal n y p, así como el signo de la corriente de drenador.

 Tabla 2.1
 Signos de las diferentes tensiones y corrientes para transistores JFET

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

2.2.2 Estudio cuantitativo del transistor JFET

El estudio cuantitativo se va a realizar de nuevo para el caso de un transistor canal n (para el caso de transistores canal p el estudio es similar).

Para hacer el estudio se parte de una estructura básica como la indicada en la figura 2.11. Sobre la misma se especifican sus dimensiones y las coordenadas. Como se puede observar se ha supuesto un canal de longitud L, una anchura Z y una distancia 2·a entre los contactos superior e inferior de las zonas p^+ .

El objetivo de este estudio es obtener la expresión de la corriente de drenador (I_D) en función de las tensiones V_{GS} y $V_{DS'}$, esto es:

Figura 2.11 Estructura básica, dimensiones y coordenadas del JFET utilizado en el estudio cuantitativo.

Dicho estudio se va a realizar bajo las siguientes aproximaciones:

1. Las uniones p^+ -n son abruptas, estando dopadas uniformemente, siendo la

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

5. L > >a. Esta aproximación permite suponer que la dependencia de las variables electroestáticas (potencial, campo eléctrico, etc) en la dirección del eje y es una función mucho más gradual que la dependencia de estas mismas variables en la dirección del eje x. Por tanto, las variaciones en la dimensión y tienen poco efecto en las variables electroestáticas en la dirección x.

En la figura 2.12 se muestra la vista ampliada de la región de canal. Sobre esta figura se indican las variables que serán utilizadas en este estudio:

V(y) : Potencial en un punto "y" del canal

W(y): Ancho de una de las zonas de vaciamiento en el punto de coordenada "y". Se supone que W(y) puede crecer hasta "a" (mitad del ancho del canal) sin que se produzca la ruptura de la unión.

Figura 2.12 Vista ampliada de la región del canal de la figura 2.11.

Bajo la suposición de que no hay estrangulamiento del canal, esto es:

 $V_{DS} \leq V_{GS} - V_P \rightarrow \text{ para canal n}$

 $V_{DS} \ge V_{GS} - V_P \rightarrow \text{ para canal p}$

la densidad de corriente, supuesto un transistor canal *n*, viene dada por:

Corriente de arrastre Corriente de difusion

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

La corriente fluye casi exclusivamente en la dirección del eje "y".

Por tanto, la ecuación < 2.9> se puede escribir

$$J_{ny} = q \cdot \mathbf{m}_n \cdot N_D \cdot E = q \cdot \mathbf{m}_n \cdot N_D \cdot \left(-\frac{dV}{dy}\right) = -q \cdot \mathbf{m}_n \cdot N_D \cdot \frac{dV}{dy}$$
 <2.10>

donde μ_n es la movilidad de los electrones.

Dado que se supone que en el canal no existen ni sumideros ni fuentes, la corriente que atraviesa cualquier sección normal del canal debe ser I_D . Por tanto, I_D se puede obtener sin más que integrar la densidad de corriente en toda el área de la sección normal del canal en cualquier punto de coordenada "y":

$$I_{D} = -\iint J_{n}(y)dxdz = -J_{n}(y)\iint dxdz = -J_{n}(y)\int_{0}^{Z} \int_{W(y)}^{2a-W(y)}dxdz$$
 <2.11>

el signo menos en la ecuación anterior se debe a que el sentido de la corriente (que coincide con los huecos) coincide con "-y".

Al suponer que Z es constante para todo punto "y", la ecuación <2.11> se puede escribir: 2q-W(y)

$$I_{D} = -J_{n}(y) \cdot Z \cdot \int_{W(y)}^{2a} dx = -J_{n}(y) \cdot Z \cdot [2a - 2W(y)]$$

= $-2 \cdot J_{n}(y) \cdot Z \cdot a \cdot \left[1 - \frac{W(y)}{a}\right]$
<2.12>

Dado que la corriente se mantiene constante a lo largo de todo el canal, entonces se cumple:

$$\int_{0}^{L} I_{D} \cdot dy = I_{D} \cdot L \qquad \qquad <2.13>$$

Por tanto, a partir de $\langle 2.12 \rangle$, $\langle 2.13 \rangle$ y $\langle 2.10 \rangle$ se obtiene:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

de donde:

$$I_D = \frac{2 \cdot q \cdot \mathbf{m}_n \cdot Z \cdot a \cdot N_D}{L} \cdot \int_{V(y=0)}^{V(y=L)=V_{DS}} \left(1 - \frac{W(V)}{a}\right) \cdot dV$$
 <2.15>

Para determinar el valor de I_D sólo hay que establecer la relación que existe entre el ancho de la zona de transición, W(y) o W(V), en un punto "y", en función de V(y). Considerando la aproximación 5, para obtener el valor de W(y) se puede utilizar la expresión unidimensional que se obtuvo en el libro *Dispositivos Electrónicos I*:

$$W(V) = \left[\frac{2 \cdot K_{S} \cdot \boldsymbol{e}_{O}}{q} \cdot \frac{N_{A} + N_{D}}{N_{A} \cdot N_{D}} (V_{O} - V_{A})\right]^{1/2} \approx \left[\frac{2 \cdot K_{S} \cdot \boldsymbol{e}_{O}}{q} \cdot \frac{1}{N_{D}} (V_{O} - V_{A})\right]^{1/2} < 2.16 > 16$$

De no utilizar la aproximación 5, el problema electroestático del JFET es de naturaleza bidimensional, lo que supone que para obtener W(V) habría que resolver la ecuación de Poisson, teniendo en cuenta las variaciones tanto en "x" como en "y".

La aproximación de que $N_A >> N_D$ es debido a que se ha supuesto que la zona p^+ está más dopada que la zona de canal, n. En la expresión <2.16>: K_s = cte. dieléctrica relativa del semiconductor, ε_O = cte. dieléctrica en del vacío, V_O = potencial de contacto y V_A representa la tensión aplicada entre el lado " p^+ " y la tensión en un punto genérico "y". Esto es, en nuestro caso: $V_A = V_{GS}$ -V siendo V el potencial en un punto "y" del canal.

Por tanto, se puede escribir:

$$W(V) = \left[\frac{2 \cdot K_{S} \cdot e_{O}}{q} \cdot \frac{1}{N_{D}} [V_{O} - (V_{GS} - V)]\right]^{1/2}$$
 <2.17>

Como además se sabe que si $V_{GS}-V=V_p$ entonces el canal alcanza justo la situación de estrangulamiento, esto es: W= a. Suponiendo que $V_{DS}=0$, el canal se estrangula para $V_{GS} = V_p$ y de la ecuación <2.17> se puede escribir:

$$a = \left| \frac{2 \cdot K_{\rm s} \cdot e_{\rm o}}{q} \cdot \frac{1}{N_{\rm p}} [V_{\rm o} - V_{\rm p}] \right|^{1/2}$$

<2.18>

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Introduciendo este valor en la expresión <2.15> se obtiene:

$$I_{D} = \frac{2 \cdot q \cdot \mathbf{m}_{n} \cdot Z \cdot a \cdot N_{D}}{L} \cdot \int_{0}^{V_{DS}} (1 - \left(\frac{V_{0} - V_{GS} + V}{V_{0} - V_{P}}\right)^{1/2}) dV =$$

$$= \frac{2 \cdot q \cdot \mathbf{m}_{n} \cdot Z \cdot a \cdot N_{D}}{L} \cdot \left[V_{DS} - \frac{2}{3}(V_{0} - V_{P}) \left[\left(\frac{V_{0} - V_{GS} + V_{DS}}{V_{0} - V_{P}}\right)^{3/2} - \left(\frac{V_{0} - V_{GS}}{V_{0} - V_{P}}\right)^{3/2}\right]\right]$$
<2.20>

Hay que incidir que esta expresión de la corriente de drenador es válida hasta que el canal alcance el punto de estrangulamiento. Esto es, para valores de V_{DS} y V_{GS} tales que: $V_{DS} \leq V_{GS}$ - V_p (para el caso de transistores canal *n*). Por tanto, el valor de la corriente cuando se alcanza la situación de estrangulamiento del canal viene dada por (basta sustituir en la ecuación <2.20>, $V_{DS} = V_{GS} - V_p$):

$$I_{Dsat} = \frac{2 \cdot q \cdot \mathbf{m}_{n} \cdot Z \cdot a \cdot N_{D}}{L} \cdot \left[V_{GS} - V_{P} - \frac{2}{3} (V_{0} - V_{P}) \left[1 - \left(\frac{V_{0} - V_{GS}}{V_{0} - V_{P}} \right)^{3/2} \right] \right] < 2.21 > 0$$

Esta última expresión es válida, por tanto, para $V_{DS} \ge V_{GS} - V_{P}$

En el caso de transistores canal \boldsymbol{p} , las expresiones de las corrientes antes y después de alcanzar el estrangulamiento del canal coinciden con las <2.20> y <2.21>, sin más que sustituir en ellas los valores de μ_n por μ_p y N_D por N_A e incluir un signo menos delante de la expresión de I_D ya que el sentido de la corriente es de fuente (S) a drenador (D) (ver figura 2.9).

2.2.3 Aproximaciones de las expresiones de las corrientes de los transistores JFET y regiones de funcionamiento.

Si bien las ecuaciones <2.20>y<2.21>, y sus correspondientes en el caso de canal p, son las que definen la relación entre las corrientes de drenador en función de las tensiones aplicadas a los terminales del transistor, en la práctica se suelen utilizar expresiones más sencillas (aproximaciones de las ecuaciones<2.20>y<2.21>), pero no por ello alejadas de la realidad. Estas expresiones se resumen a continuación para cada una de las regiones de

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Para el caso de los transistores unipolares existen básicamente tres posibles regiones o modos de funcionamiento:

1. **Región de corte**: se cumple que $I_D = 0$.

2. **Región de Saturación (Activa):** es la situación en la que el canal está estrangulado, esto es, $I_D = I_{Dsat}$. Este modo de funcionamiento es equivalente a la región activa en los transistores bipolares y por ello nos referiremos a ella también como región activa.

3. **Región óhmica**: es aquella en la que funciona el transistor antes de alcanzar el estrangulamiento del canal. Su nombre se debe a que en esta región la corriente varia de forma lineal con la tensión en extremos del canal, como si de una resistencia se tratase (resistencia que lógicamente, como ya se ha demostrado, depende de la tensión V_{GS} aplicada).

En la tabla 2.2 se muestran las aproximaciones de las ecuaciones < 2.20 > y < 2.21 > para cada una de las regiones de funcionamiento.

Región	Corriente de drenador
Corte	ID=0
Activa o saturación	$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2} = \frac{k}{2} \left(V_{GS} - V_{P} \right)^{2}$
Óhmica	$I_D = \frac{2 \cdot I_{DSS} \cdot V_{DS}}{V_P} \cdot \left(\frac{V_{GS}}{V_P} - \frac{V_{DS}}{2V_P} - 1\right)$

Tabla 2.2Expresiones aproximadas de la corriente de drenador para cada región de
funcionamiento.

Ejemplo 2.1

De un transistor JFET canal **n** se conocen los siguientes datos: L, Z, a, N_D, μ_n , V₀, K_s, ε_0 . Polarizado el transisto<u>r con unas tensiones</u> V_{GS1} <0 y V_{DS1} >0 se observa que los anchos

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

 $W(L) = 3a/4 \text{ y con } V_{DS} = V_{DS1} \cdot i C$ ómo será la corriente de drenador, mayor o menor que I_{D1} ?

Solución

1. Si en y= L/2, W(L/2) = a (2a es el ancho máximo del canal), entonces para y \ge L/2 el canal está estrangulado. Esto supone que el transistor está funcionando en SATURACIÓN (activa).

2. Al aumentar V_{DS} lo único que se consigue es estrangular aun más el canal, por tanto la corriente de drenador será la misma que en el apartado 1.

3. Es evidente que ahora no existe estrangulamiento del canal (V_{GS2} es menos negativa que V_{GS1}) y como la tensión V_{DS} se mantiene, la corriente de drenador es mayor que I_{D1} .

2.2.4 Resumen de ecuaciones y características de entrada y salida para JFET ´s canal *n*

Para el caso de transistores canal *n*, en la tabla 2.2 se resumen las condiciones que deben cumplirse para cada región de funcionamiento, las expresiones aproximadas de la corrientes de drenador para cada una de ellas y los correspondientes circuitos equivalentes.

Como se puede observar en la región óhmica se han supuesto dos posibles aproximaciones. La segunda de ellas es el resultado de considerar que mientras el canal no se estrangula la relación entre la corriente de drenador y la tensión V_{DS} es una constante, lógicamente diferente para cada V_{GS} . Esta constante se denomina R_{DSON} y su valor se puede obtener fácilmente observando las curvas de salida de la figura 2.13 (donde se ha supuesto que en óhmica la relación entre I_D y V_{DS} es lineal). R_{DSON} se puede obtener como el cociente entre el valor de V_{DS} para el cual se produce el estrangulamiento del canal: $V_{DS} = V_{GS} - V_{Pr}$, y la corriente de saturación para la V_{GS} dada. Esto es:

$$R_{DSON} = \frac{V_{DSsat}}{I_{Dsat}} = \frac{V_{GS} - V_P}{I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2} = \frac{1}{\frac{I_{DSS}}{V_P^2} (V_{GS} - V_P)} = \frac{1}{\frac{k}{2} (V_{GS} - V_P)}$$
 <2.22>

Obsérvese que si se utiliza la expresión:

 $I_{D} = \frac{2 \cdot I_{DSS} \cdot V_{DS}}{V} \cdot \left(\frac{V_{GS}}{V} - \frac{V_{DS}}{2V} - 1\right)$ CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE
LLAMA O ENVÍA WHATSAPP: 689 45 44 70
ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

y en consecuencia el cociente entre V_{DS} e I_{D} vendría dada por:

$$R_{DSON}(V_{DS} \to 0) = \frac{V_{DS}}{I_D} = \frac{1}{\frac{2 \cdot I_{DSS}}{V_P^2}(V_{GS} - V_P)}}$$
 <2.25>

Como se puede comprobar, este valor es justo la mitad del dado por la ecuación <2.22>. Esto quiere decir que los valores extremos de R_{DSON} son los dados por las ecuaciones <2.22> y <2.25>. En lo que sigue, y mientras no se especifique lo contrario, se utilizará el valor dado por la ecuación <2.22>.

Figura 2.13 Curvas características simplificadas de un transistor JFET canal *n*, sobre las que se indican las diferentes regiones de funcionamiento. (a) Características de entrada, (b) Características de salida.

En la figura 2.13 se muestran las curvas características de entrada y salida, sobre las que se indican las diferentes zonas de funcionamiento, suponiendo las aproximaciones de las corrientes hechas en la tabla 2.3.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Į

		Transistor Canal	l n
Símbolo	Pará	metros	Signo de Corrientes y tensiones
D G S	$V_P < 0, I_{DSS} > 0$		$V_{GS} \leq 0, V_{DS} \geq 0, I_D \geq 0$
Región de funcionamiento	Condiciones		Corriente y circuitos equivalentes en continua. $(I_G = 0, I_S = -I_D)$
CORTE	$V_{GS} \leq V_P$		$\mathbf{G}_{-+} = \mathbf{O}_{\mathbf{I}_{D}} = \mathbf{O}_{\mathbf{I}_{D}}$ $\mathbf{V}_{\mathbf{GS}} = \mathbf{V}_{\mathbf{DS}}$ $- \mathbf{S}_{}$
SATURACIÓN (ACTIVA)	$0 \ge V_{GS} > V_P$	$V_{DS} \ge V_{GS} - V_P$	$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2} = \frac{k}{2} \left(V_{GS} - V_{P} \right)^{2}$ $G \xrightarrow{+} V_{GS} \qquad I_{D} \xrightarrow{+} V_{DS}$ $- \underbrace{S} \xrightarrow{-} $
ÓHMICA	$0 \ge V_{GS} > V_P$	$V_{DS} \leq V_{GS} - V_P$	$I_D = \frac{2 \cdot I_{DSS} \cdot V_{DS}}{V_P} \cdot \left(\frac{V_{GS}}{V_P} - \frac{V_{DS}}{2V_P} - 1\right)$ $I_D = \frac{V_{DS}}{R_{DSON}}, \text{ donde: } R_{DSON} = \frac{1}{\frac{I_{DSS}}{V_P^2}(V_{GS} - V_P)}$
	CLASES LLAMA O	PARTICULAR ENVÍA WHA ⁻	$\begin{array}{c c} G & \xrightarrow{I_{D}} D \\ \hline & V_{GS} & R_{DSON} \\ \hline & V_{DS} \\ \hline \\ $
enayy			

 Tabla 2.3
 Resumen del JFET canal n: regiones de trabajo, parámetros y circuitos equivalentes.

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

2.2.5 Resumen de ecuaciones y características de entrada y salida para JFET´s canal *p*

Para el caso de transistores canal p, la tabla 2.4 resume las condiciones que deben cumplirse para cada región de funcionamiento y las expresiones aproximadas de la corrientes de drenador para cada una de ellas.

De nuevo, y al igual que para el caso del transistor canal \mathbf{n} , en la región óhmica se han supuesto dos posibles aproximaciones. En la segunda de las aproximaciones el valor de la resistencia entre drenador y fuente viene dada, al igual que en el transistor canal \mathbf{n} , por:

$$R_{DSON} = \frac{V_{DSsat}}{I_{Dsat}} = \frac{V_{GS} - V_P}{I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2} = \frac{1}{\frac{I_{DSS}}{V_P^2} (V_{GS} - V_P)} = \frac{1}{\frac{k}{2} (V_{GS} - V_P)}$$
 <2.26>

Sobre los valores extremos de R_{DSON} se pueden hacer las mismas consideraciones que para el caso de transistores canal **p**.

En la figura 2.14 se muestran las curvas características de entrada y salida , sobre las que se indican las diferentes regiones de funcionamiento, suponiendo las aproximaciones de las corrientes hechas en la tabla 2.3.

Manuel Mazo, J. Jesús García Domínguez

Car

Transistor Canal p				
Símbolo	Parámetros:		Signo de Corrientes y tensiones:	
	$V_P > 0,$	$I_{DSS} < 0$	$V_{GS} \ge 0, V_{DS} \le 0, I_D \le 0$	
Región de funcionamiento	Condiciones		Corriente y circuitos equivalentes en continua (I = 0, I = -I)	
CORTE	$V_{GS} \ge V_P$		$I_{D} = 0$ $I_{D} = 0$ $G_{-+} \qquad \underbrace{\leq I_{D} \atop +} D_{+}$ $V_{GS} \qquad V_{DS} \atop - S \qquad -}$	
SATURACIÓN (ACTIVA)	$0 \le V_{GS} < V_P$	$V_{DS} \leq V_{GS} - V_P$	$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2} = \frac{k}{2} \left(V_{GS} - V_{P} \right)^{2}$ $G \underbrace{I_{D}}_{+} D \underbrace{V_{GS}}_{-} \underbrace{I_{D}}_{+} V_{DS}$ $\underbrace{I_{D}}_{-} \underbrace{V_{DS}}_{-} \underbrace{I_{D}}_{-} \underbrace{V_{DS}}_{-} \underbrace{V_{DS}}_{-} \underbrace{I_{D}}_{-} \underbrace{V_{DS}}_{-} V_{DS$	
ÓHMICA	$0 \le V_{GS} < V_P$	$V_{DS} \ge V_{GS} - V_P$	$I_{D} = \frac{2 \cdot I_{DSS} \cdot V_{DS}}{V_{P}} \cdot \left(\frac{V_{GS}}{V_{P}} - \frac{V_{DS}}{2V_{P}} - 1\right)$ $I_{D} = \frac{V_{DS}}{R_{DSON}},$ $donde: R_{DSON} = \frac{1}{\frac{I_{DSS}}{V_{P}^{2}}(V_{GS} - V_{P})}$	
gena99	CLASES I LLAMA O ONLINE F	PARTICULAF ENVÍA WHA RIVATE LES	G + V _{GS} R _{DSON} V _{DS} RES, TUTORÍAS TÉCNICAS ONLIN TSAPP: 689 45 44 70 SONS FOR SCIENCE STUDENTS	

Tabla 2.4 Resumen sobre JFET canal *p*: regiones de trabajo, parámetros y circuitos equivalentes

Manuel Mazo, J. Jesús García Domínguez

Ejemplo 2.2

De un transistor JFET canal **p** se sabe que V_P <4 V, pero se desconoce su valor exacto. Realizando un montaje como el de la figura E.2.1 se observa que con V₁= 0V, la corriente de drenador es I_D = -10 μ A. Para V₁=2.5 V. la corriente de drenador se hace cero.

Obténgase:

1. Valor de I_{DSS} 2. Valor de V_{P}

Figura E.2.1 Circuito del ejemplo 2.2.

1. Como $V_1 = V_{GS} = 0$ y $V_{DS} = -V_2 = -6$ V, entonces se cumple que $V_{DS} < V_{GS} - V_p$ (dado que $V_p < 4$ V), lo que supone que el transistor está en la región de saturación. Por tanto la corriente de drenador será:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = I_{DSS} = -10 \text{mA}$$

2. Dado que $I_D = 0$ para $V_{GS} \ge V_P$, entonces $V_P = 2.5$ V.

Ejemplo 2.3

En la figura E.2.2 se muestra un circuito con un transistor JFET canal *n*, que después de ser simulado con PSPICE permitirá obtener sus curvas características de entrada y salida. Obsérvese en la figura E.2.2 que el generador V1 se corresponde con la tensión V_{GS} y el generador V2 con la tensión V_{DS} .

Manuel Mazo, J. Jesús García Domínguez

www.cartagena99.com no se hace responsable de la información contenida en el presente documento en virtud al Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 2002. Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.

Solución

Curva de entrada

Para obtener esta curva se fijará la tensión V2 a 5V, y se variará la tensión V1 de -3V a 0 (con incrementos de 0.1V). El resultado obtenido se muestra en la figura E.2.3.

Figura E.2.3 Curva de entrada del transistor de la figura E.2.2.

De la figura E.2.3 se obtienen los parámetros $V_P \in I_{DSS'}$ tomando en este caso los siguientes valores: V_P =-2V e I_{DSS} =400µA.

Curva de salida

Para obtener esta curva se variará el generador V1 desde -3V a 0 (con incrementos de 0.5V); y el generador V2 se variará desde 0 a 5V (con incrementos de 0.1V). El resultado obtenido tras la simulación se muestra en la figura E.2.4.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Como ya se ha comentado anteriormente, y como se deduce de la figura E.2.4, hasta que la tensión V_{GS} no supera la tensión V_{P} , la corriente I_{D} es nula.

2.2.6 Método para el análisis de circuitos con JFET ´s

Al igual que ya se hizo en el estudio de BJT ´s, se van a dar las pautas a seguir para analizar circuitos con JFET ´s. Dado que solamente existen tres posibles regiones de funcionamiento, y que la corriente de puerta siempre es cero (para lo cual se debe garantizar que las uniones puerta- canal estén polarizadas en inverso, de no ser así existirá corriente de puerta y todo el estudio que aquí se ha realizado dejaría de ser válido), este estudio es muy sencillo. A partir de las tablas 2.2 y 2.3 es fácil obtener los diagramas de flujo mostrados en la figura 2.16 y que reflejan los pasos a seguir para determinar la región de funcionamiento de los JFET ´s y en consecuencia el punto de funcionamiento.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.15 Pasos a seguir para determinar la región de funcionamiento de transistores JFET. (a) corte, (b) saturación (activa), (c) óhmica.

Ejemplo 2.4

Dados los circuitos de la figura E.2.5, con los datos indicados para cada uno de los transistores, se pide:

- 1. Punto de funcionamiento del transistor de la figura E.2.5.a
- 2. Punto de funcionamiento del transistor de la figura E.2.5.b

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70 ---

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Solución

 $V_{GS} = -I_D \cdot R_S$

 $I_D = I_{DSS} \left(1 - \frac{-I_D \cdot R_S}{V_D} \right)^2$

 $= -5 \cdot 10^{-3} \left(1 + \frac{10^3 \cdot I_D}{2} \right)^2$

1. Suponiendo el transistor en la región de saturación (activa), el circuito equivalente se muestra en la figura E.2.6. Del análisis de este circuito se deduce:

$$\mathbf{G} = \mathbf{V}_{GS} + \mathbf{S} \\ \mathbf{S} \\ \mathbf{K}_{D} \\ \mathbf{I}_{D} = I_{DSS} \left(1 - \frac{V_{CS}}{V_{P}}\right)^{2} \\ \mathbf{K}_{S} \\ \mathbf{K}_{S} \\ \mathbf{I} \\ \mathbf{K} \\ \mathbf{K}_{S} \\$$

 $V_{DD} = -10 V.$

$$I_{DSS} = -5 \text{ mA}, V_P = 2 \text{ V}.$$

Figura E.2.6 Circuito equivalente al de la figura E.2.5.a suponiendo el transistor en saturación

$$= -\frac{5}{4} \cdot 10^{-3} \cdot (4 + 10^{6} \cdot I_{D}^{2} + 4 \cdot 10^{3} \cdot I_{D}) \rightarrow$$

$$\frac{5}{4} \cdot 10^{3} I_{D}^{2} + 6 \cdot I_{D} + 5 \cdot 10^{-3} = 0 \rightarrow \begin{cases} I_{D} = -1.07 mA \\ I_{D} = -3.726 mA \end{cases}$$

El valor de $I_D = -3.726$ mA no es válido ya que daría lugar a una $V_{GS} = -I_D R_S = -3.726$ V, y esta tensión es inferior a V_p .

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

En consecuencia el transistor está en saturación y todos los resultados obtenidos son válidos

2. En este caso se supondrá que el transistor está en la región óhmica (se deja como ejercicio realizar el estudio suponiendo el transistor en la región de saturación y demostrar que esa suposición es falsa), el circuito equivalente se muestra en la figura E.2.7. A partir del circuito de la figura E.2.7 se obtiene:

$$V_{GS} = -I_D \cdot R_S$$

$$I_D = \frac{V_{DD}}{R_D + R_{DSON} + R_S}$$

$$con \ R_{DSON} \frac{1}{\frac{I_{DSS}}{V^2} (V_{GS} - V_P)}$$

Por tanto:

 $I_{D} = \frac{5}{6 \cdot 10^{3} + \frac{5}{4} \cdot 10^{-3} \cdot (-10^{3} \cdot I_{D} + 2)} \rightarrow \frac{5}{4} \cdot I_{D}^{2} - 6 \cdot 10^{3} \cdot I_{D} + 5 = 0 \rightarrow \begin{cases} I_{D} = 0.83mA \\ I_{D} = 4799.9A \end{cases}$

El resultado válido es $I_D = 0.83$ mA (el otro valor de I_D da lugar a una V_{GS} que hace que el transistor esté cortado). Por tanto:

$$V_{GS} = -I_D \cdot R_S = -0.83mA.$$

$$V_{DS} = -I_D \cdot (R_D + R_S) + V_{DD} = 0.02V$$

$$V_{CS} - V_P = 1.17V$$

Dado que $V_{DS} < V_{GS}$ - $V_{P'}$, el transistor está en óhmica. Por tanto los valores de corrientes y tensiones son los obtenidos.

Finalmente, indicar que en todo este estudio se ha supuesto que las uniones puerta-drenador y puerta-fuente, están polarizadas en inverso (lo que justifica que la corriente de puerta siempre se puede suponer despreciable). Si esto no fuera así, y se polarizaran estas uniones en directo, el comportamiento del transistor se asemejaría mucho a la de dos diodos con polarización directa, lo que daría lugar a fuertes corrientes entre puerta y los otros dos

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

indicar que las estructuras utilizadas en nuestro estudio no son fáciles de realizar ya que requieren que se difundan impurezas a ambos lados de la oblea del semiconductor (canal), y ello entraña grandes dificultades. En las estructuras prácticas (figura 2.16) la difusión se realiza por un solo lado; esto es, a partir del sustrato se van realizando las diferentes difusiones de forma progresiva.

Figura 2.16 Estructura práctica de los JFETs (a) Canal p, (b) Canal n.

Ejemplo 2.5

Obténgase el punto de trabajo del circuito de la figura E.2.8, mediante su simulación con PSPICE, siendo la tensión V3=10V. El modelo que usa PSPICE para este dispositivo es el que se muestra a continuación.

JbreakN NJF VT0 -2 BETA 100.000000E-06

Manuel Mazo, J. Jesús García Domínguez

Solución

Después de la simulación se obtiene el siguiente resultado:

NAME	J_J4
MODEL	JbreakN
ID	2.92E-04
VGS	-2.92E-01
VDS	8. 25E+00

Como se cumple que $V_{DS} > V_{GS}$ - V_{P} , el transistor está funcionando en zona de saturación.

Ejercicio propuesto. Intente obtener analíticamente el punto de trabajo del circuito simulado en este ejemplo.

2.3 Capacidad MOS

En este punto se va a abordar el estudio de la estructura Metal-Óxido-Semiconductor, también conocida como capacidad MOS. La capacidad MOS es el más simple de los dispositivos MOS y constituye el núcleo fundamental de todos los dispositivos MOS. Este estudio servirá, por tanto, de punto de partida para el estudio de los transistores MOSFET que se abordará a continuación.

2.3.1 Estructura ideal de la capacidad MOS.

En la figura 2.17 se muestra la estructura ideal de la capacidad MOS. Como se puede comprobar, se trata de un dispositivo de dos terminales: terminal de puerta (G, Gate) y terminal de sustrato (B, Bulk), que está formada por una capa delgada (normalmente inferior a 1 μ m) de aislante, SiO₂, intercalada entre una capa metálica (por ejemplo, aluminio o silicio policristalino fuertemente dopado) y un semiconductor (tipo **p** o **n**). El contacto eléctrico del sustrato semiconductor se realiza a través de otra capa metálica.

Dentro de la región de semiconductor, que puede ser de tipo **n** o **p**, se diferencian dos zonas (ver figura 2.17), una a la que denominaremos simplemente semiconductor y otra que denominaremos sustrato. La diferencia entre estas dos zonas se hace en base a la alteración o no de las propiedades iniciales del semiconductor cuando se aplica tensiones externas a la capacidad MOS; así la región de sustrato es aquella que conserva las propiedades iniciales del semiconductor, esto es, el campo eléctrico en ella es nulo.

El objetivo de este estudio es analizar, en condiciones de polarización estáticas (esto es, para valores de V_{GB} dados y después de que se haya alcanzado el régimen estático), las variaciones

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.17 Estructura ideal de la capacidad MOS.

Aproximaciones del modelo ideal:

- 1. Las capas metálicas son de grosor suficiente como para que se les consideren equipotenciales.
- 2. El óxido, SiO₂, es un aislador perfecto.
- 3. No existen centros de carga ni dentro del óxido ni en la interfaz óxidosemiconductor.
- 4. El semiconductor está uniformemente dopado.
- 5. El espesor del semiconductor es suficiente como para considerar que, con independencia de la polarización aplicada en los terminales de la capacidad MOS, existe una zona libre de campo antes de alcanzar el contacto óhmico del sustrato. Esta zona la denominamos como sustrato.
- 6. Se supone que la estructura es unidimensional, siendo todas las variables función de la coordenada x.

2.3.2 Estudio cualitativo de la capacidad MOS

El estudio cualitativo de la capacidad MOS se va a realizar considerando cuatro situaciones de

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

1. Acumulación o Almacenamiento: Esta situación se presenta para $V_G > 0$, supuesto un semiconductor tipo n. En efecto, si $V_G > 0$ (ver figura 2.19) se depositan cargas positivas en la puerta de la capacidad MOS y por tanto debe incrementarse en la misma magnitud los electrones cerca de la interfaz semiconductor-aislante (principio de conservación de la carga). Si este análisis se hace desde el punto de vista de bandas de energía, por una parte: $E_F(metal) - E_F(semiconductor) = -qV_G$, y dado que $V_G > 0$, significa que el nivel de Fermi en el metal disminuye respecto a la del semiconductor, y por otra al ser d $V_G/dx < 0$, entonces el campo eléctrico (E) es positivo y en consecuencia se produce una pendiente positiva en las bandas de energía en el semiconductor. Recuérdese que el campo eléctrico (E) y los niveles de energía de las bandas de conducción (E_c), intrínseca (E_i) y valencia (E_v) están relacionados por:

Figura 2.18 Estructura y polarización de la capacidad MOS para el estudio cualitativo.

Como las concentraciones de electrones y huecos en el semiconductor vienen dados por $n = n_i \cdot e^{(E_F - E_i)/KT}$, $p = n_i \cdot e^{(E_i - E_F)/KT}$, al producirse una pendiente positiva en la variación de E_i con x (recuérdese que E_F se mantiene invariante con x) entonces $n > n_i$ y $p < < n_i$. En la figura 2.19 se muestra estos efectos, tanto desde el punto de vista de cargas como de energías. El calificativo de acumulación o almacenamiento se debe al incremento de carga (electrones en este caso) que se produce en la interfaz semiconductor-aislante.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.19 Diagrama de bandas de energía y bloques de carga para el caso de polarización de la capacidad MOS en el modo de acumulación.

2. Vaciamiento: Esta situación se produce para $V_G < 0$ y de valor pequeño. Desde el punto de vista de cargas, al ser V_G<0, se depositan cargas negativas en la puerta de la capacidad MOS y en consecuencia el incremento de cargas positivas en las proximidades de la interfaz semiconductor-aislante se traduce, al tratarse de un semiconductor tipo n, en una neutralización de electrones. Esto hace que aparezcan donadores ionizados, que en este caso estarán cargados positivamente. Si este análisis se hace desde el punto de vista de bandas de $E_F(metal) - E_F(semiconductor) = -qV_G$, lo que significa que energía, por una parte: el nivel de Fermi en el metal aumenta respecto a la del semiconductor, y por otra al ser $dV_{c}/dx > 0$, entonces el campo eléctrico (E) es negativo y en consecuencia (ver ecuación <2.27>) se produce una pendiente negativa en las bandas de energía en el semiconductor. Como la concentración de electrones y huecos en el semiconductor vienen dados por $n = n_i \cdot e^{(E_F - E_i)/KT}$, $p = n_i \cdot e^{(E_i - E_F)/KT}$, al producirse una pendiente negativa en la variación de E_i con x entonces: $n < n_i$ y $p > n_i$. En la figura 2.20 se muestra estos efectos, tanto desde el punto de vista de cargas como de energías (en la figura 2.20 se indica con el signo "+" los donadores ionizados). El calificativo de vaciamiento se debe a la disminución de carga (electrones en este caso) en la interfaz semiconductor-aislante.

3. Límite Vaciamiento- Inversión: Esta situación se produce para $V_G < 0$ y de valor tal que el incremento de cargas positivas en las proximidades de la interfaz semiconductor-aislante neutralice exactamente todos los electrones. Por tanto se trata de una situación particular de la de Vaciamiento. Si denominamos por N_D la concentración de donadores en el semiconductor, en la situación límite vaciamiento-inversión se debe cumplir:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.20 Diagrama de bandas de energía y bloques de carga para el caso de polarización de la capacidad MOS en el modo de vaciamiento.

De la ecuación <2.28> se puede concluir, que la situación límite de vaciamiento-inversión se caracteriza por:

$$E_i$$
(superficie) – E_i (sustrato) = 2[E_F – E_i (sustrato)] <2.29>

La tensión V_G para la cual se alcanza la situación límite vaciamiento-inversión se le conoce por tensión umbral, y la denominaremos V_{TO} . Esta situación se aprecia en la figura 2.21.

Manuel Mazo, J. Jesús García Domínguez

interfaz semiconductor-aislante neutralizan todos los electrones, es evidente que para $V_G < V_{TO}$ lo que ocurre es que no sólo se neutralizan todos los electrones sino que ademas se produce un exceso de carga positiva (huecos). Esto es, la concentración de portadores minoritarios en la superficie excede la concentración de portadores mayoritarios: $p(superficie) > n(sustrato) = N_D$. Esta es la razón por la que se denomina inversión. En la figura 2.22 se muestra esta situación

Para el caso en que el sustrato sea tipo **p**, se puede hacer un estudio similar al realizado para el tipo **n**. Lógicamente con semiconductor tipo **p** para V_G<0 se producirá la situación de acumulación y las situaciones de vaciamiento, límite vaciamiento-inversión e inversión se producirán para V_G >0, siendo ahora V_{T0}>0.

Figura 2.22 Diagrama de bandas de energía y bloques de carga para el caso de polarización de la capacidad MOS en la zona de inversión.

2.3.3 Ancho de la zona de vaciamiento (W) y tensión umbral (V_{TO})

Una vez visto el funcionamiento cualitativo de la capacidad MOS, a continuación se va abordar la obtención del ancho de la zona de vaciamiento (W) y de la tensión umbral (V_{T0}). Los resultados que aquí se obtengan serán de utilidad en el estudio de los transistores MOSFET que se verá más adelante. Hemos de indicar que si bien se puede realizar un estudio cuantitativo más detallado, éste no está dentro de los objetivos de este libro y por ello nos vamos a centrar en la obtención los dos parámetros W y V_{T0}.

Para abordar este estudio se van a realizar las siguientes suposiciones:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

cargas dentro del semiconductor , b) el campo eléctrico en el semiconductor es constante, o lo que es lo mismo la variación del potencial con la distancia x es una función lineal de ésta.

4. El campo eléctrico en el interior del sustrato semiconductor se supone que es nulo.

El estudio se va a realizar tanto para semiconductor tipo **p** como **n**. En la figura 2.23 se muestra la estructura que se va a utilizar como referencia. Sobre dicha estructura se han indicado los nombres de las diferentes zonas que aparecen en el estudio. Como se puede comprobar dentro del semiconductor se han diferenciado dos zonas: sustrato ($x_1 \le x \le L$) y semiconductor ($0 \le x \le x_1$), entendiéndose, como ya se ha comentado anteriormente, por zona de sustrato aquella en la que el campo eléctrico ya se puede considerar nulo (o lo que es lo mismo, las diferentes bandas de energía, Ei, Ec y Ev son constantes con x). También aparece reflejada la zona que denominaremos "superficie" y que no es otra que el límite entre el aislante (O) y el semiconductor (x=0).

Expresión del potencial en función de los niveles de energía.

En primer lugar se va a obtener la expresión del potencial en un punto genérico x en función de las energías de Fermi (E_F) e intrínseca (E_i). A continuación se obtendrá el valor de W y finalmente el valor de V_T.

Llamando $\phi(x)$ a la tensión en un punto genérico x, para su obtención sólo hay que recordar que:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

$$f(x) = -\frac{1}{q} \int_{E_i(sustrato)}^{E_i(x)} dE_i(x) = \frac{1}{q} [E_i(sustrato) - E_i(x)]$$
 <2.31>

si particularizamos la expresión anterior para x=0 se obtiene el potencial en la superficie, ϕ_s :

$$f_s = V(x = 0) = \frac{1}{q} [E_i(\text{sustrato}) - E_i(\text{superficie})]$$
 <2.32>

Si se define como potencial de Fermi, ϕ_{F} :

$$f_F = \frac{1}{q} [E_i(\text{sustrato}) - E_F]$$
 <2.33>

entonces, teniendo en cuenta la relación <2.29>, se puede concluir que en el punto de transición vaciamiento-inversión se cumple:

$$f_s = 2 \cdot f_F \tag{2.34}$$

Dado que en la zona de sustrato se cumple:

Semiconductor tipo *n*:
$$E_i(sustrato) > E_F$$

Semiconductor tipo *p*: $E_i(sustrato) < E_F$
 $< 2.35 >$

es evidente que:

 $f_F < 0 \rightarrow$ semiconductor tipo *n* $f_F > 0 \rightarrow$ semiconductor tipo *p*

Por otra parte, teniendo en cuenta que:

semiconductor tipo *p*:
$$p(\text{sustrato}) = n_i \cdot e^{(E_i(\text{sustrato}-E_F)/KT)} \approx N_A$$

semiconductor tipo *n*: $n(\text{sustrato}) = n_i \cdot e^{(E_F - E_i(\text{sustrato})/KT)} \approx N_D$ <2.36>

Se puede obtener:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez
Si en el punto de transición vaciamiento-inversión se cumple la ecuación <2.34> y sabiendo el signo de ϕ_F para semiconductores tipo **n** y **p** (ecuación<2.35>) se puede concluir:

$$\begin{split} & \text{Semiconductor tipo } p: \begin{cases} f_s < 0 \rightarrow \text{ acumulación} \\ 0 < f_s < 2 \cdot f_F \rightarrow \text{ vaciamiento} \\ f_s > 2 \cdot f_F \rightarrow \text{ inversión} \end{cases} \\ & \text{Semiconductor tipo } n: \begin{cases} f_s > 0 \rightarrow \text{ acumulación} \\ 0 > f_s > 2 \cdot f_F \rightarrow \text{ vaciamiento} \\ f_s < 2 \cdot f_F \rightarrow \text{ vaciamiento} \\ f_s < 2 \cdot f_F \rightarrow \text{ inversión} \end{cases} \end{split}$$

Obtención del valor del ancho de la zona de vaciamiento: W

Para obtener el ancho de la zona de vaciamiento se va a suponer que ésta tiene forma cuadrada, esto es, la zona de vaciamiento se inicia en x=0 y finaliza de forma abrupta en un punto x=W, dentro del semiconductor.

En estas condiciones, la densidad de carga, p, en la zona de vaciamiento vendrá dada por:

$$r = \begin{cases} q(p-n+N_D-N_A) \cong -qN_A & (0 \le x \le W) \to \text{ semiconductor tipo } p \\ q(p-n+N_D-N_A) \cong qN_D & (0 \le x \le W) \to \text{ semiconductor tipo } n \end{cases} <2.39>$$

con ello la ecuación de Poisson se reduce a:

$$\frac{dE}{dx} = \frac{\mathbf{r}}{\mathbf{e}_{sem}} \cong \begin{cases} -\frac{qN_A}{\mathbf{e}_{sem}} & (0 \le x \le W) \to \text{semiconductor } p \\ \frac{qN_D}{\mathbf{e}_{sem}} & (0 \le x \le W) \to \text{semiconductor } n \end{cases}$$

donde ε_{sem} es la constante dieléctrica del semiconductor.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

o bien, integrando de nuevo < 2.41 > :

$$f(x) = \begin{cases} \frac{qN_A}{2\mathbf{e}_{sem}} (W - x)^2 & (0 \le x \le W) \to \text{ semiconductor } p \\ -\frac{qN_D}{2\mathbf{e}_{sem}} (W - x)^2 & (0 \le x \le W) \to \text{ semiconductor } n \end{cases}$$

A partir de esta última ecuación se puede obtener el valor de W en función de ϕ_s . En efecto sabiendo que para x=0, $\phi(x=0) = \phi_s$, de la ecuación <2.42> se obtiene:

$$W = \begin{cases} \sqrt{\frac{2\mathbf{e}_{sem}}{qN_A}} \mathbf{f}_s & \to \text{ semiconductor } p \\ \sqrt{-\frac{2\mathbf{e}_{sem}}{qN_D}} \mathbf{f}_s & \to \text{ semiconductor } n \end{cases} < 2.43 >$$

y el valor de W para el punto de transición vaciamiento-inversión, W_{T0} , se obtiene sustituyendo en la ecuación $<2.43>\varphi_S = 2\varphi_F$.

$$W_{T0} = \begin{cases} \sqrt{\frac{2e_{sem}}{qN_A}(2f_F)} \rightarrow \text{ semiconductor } p \\ \sqrt{-\frac{2e_{sem}}{qN_D}(2f_F)} \rightarrow \text{ semiconductor } n \end{cases} < 2.44 > 0 \end{cases}$$

Obtención del valor de la tensión umbral: $V_{\tau o}$

Para obtener el valor de V_{TO} partimos del esquema mostrado en la figura 2.24, de donde se obtiene:

$$V_G = f_{ox} + f_S + f_{SUS} + 2 \cdot f_M$$
 <2.45>

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

$$f_s = \frac{1}{q} [E_i(\text{sustrato}) - E_i(\text{superficie})]$$
 <2.47>

Figura 2.24 Estructura de la capacidad MOS utilizada para el cálculo de V_{T}

por tanto, de la ecuación <2.46> sólo hay que obtener el valor de ϕ_{ox} . La obtención de ϕ_{ox} es sencilla, ya que partimos de que en el aislante el campo eléctrico es constante (E_{OX} = cte)y por tanto:

$$f_{OX} = \int_{-x_0}^{0} E_{OX} dx = x_0 E_{OX}$$
 <2.48>

donde x_0 es el espesor del óxido (ver figura 2.24). Queda por tanto obtener el valor de E_{OX} . Para ello sólo hay que relacionar E_{OX} con ϕ_s . Recordando que la condición de contorno en la interfaz de dos medios diferentes establece que:

$$\vec{n} \cdot [\vec{D}_1 - \vec{D}_2] = r \qquad (2.49)$$

donde D_1 y D_2 representan las inducciones eléctricas en los medios 1 y 2 respectivamente, n es el vector unitario normal a la superficie de separación, dirigido del medio 2 al 1 y ρ es la densidad superficial de carga en la superficie de separación.

En nuestro caso los medios 1 y 2 se corresponden con el óxido y el semiconductor y teniendo

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

donde ϵ_{OX} y ϵ_{SEM} representan las constantes dieléctricas del óxido y semiconductor, respectivamente y E_{SEM} el campo eléctrico en el semiconductor, en la interfaz óxido-semiconductor.

Por tanto, sustituyendo el valor de E_{OX} dado por la ecuación <2.50> en la ecuación <2.48> se obtiene:

$$f_{OX} = x_0 E_{OX} = \frac{e_{OX}}{e_{SEM}} \cdot x_0 \cdot E_{SEM}$$
 <2.51>

El valor de E_{SEM} se puede obtener de la ecuación <2.41> sustituyendo en x=0. En consecuencia se obtiene:

$$f_{OX} = \begin{cases} x_0 \cdot W \cdot \frac{qN_A}{e_{OX}} \to \text{ semiconductor } p \\ -x_0 \cdot W \cdot \frac{qN_D}{e_{OX}} \to \text{ semiconductor } n \end{cases}$$
 <2.52>

Sustituyendo el valor de W dado por la ecuación <2.43> en la expresión de ϕ_{ox} , la ecuación <2.46> se puede escribir:

$$V_{G} = \begin{cases} f_{S} + x_{0} \cdot \frac{\boldsymbol{e}_{sem}}{\boldsymbol{e}_{OX}} \left[\frac{2qN_{A}}{\boldsymbol{e}_{sem}} (f_{S}) \right]^{1/2} \rightarrow \text{ semiconductor } p \\ f_{S} - x_{0} \cdot \frac{\boldsymbol{e}_{sem}}{\boldsymbol{e}_{OX}} \left[\frac{2qN_{D}}{\boldsymbol{e}_{sem}} (-f_{S}) \right]^{1/2} \rightarrow \text{ semiconductor } n \end{cases}$$

$$<2.53>$$

En consecuencia, el valor de la tensión umbral V_{TO} coincide con V_G dada por esta última ecuación cuando $\phi_S = 2\phi_F$, esto es, la tensión en la interfaz óxido-semiconductor es igual a $2\phi_F$. Por tanto:

$$V_{T0} = \begin{cases} 2f_F + x_0 \cdot \frac{e_{sem}}{e_{OX}} \left[\frac{2qN_A}{e_{sem}} (2f_F) \right]^{1/2} \rightarrow \text{ semiconductor } p \\ < 2.54 > \end{cases}$$

$$e_{sem} \left[2qN_D - 2C \right]^{1/2} \qquad (2.54 > 1)^{1/2} \qquad (2.54 > 1)^{$$

Manuel Mazo, J. Jesús García Domínguez

$$g = x_0 \cdot \frac{\mathbf{e}_{sem}}{\mathbf{e}_{OX}} \left[\frac{2qN_{A,D}}{\mathbf{e}_{sem}} \right]^{1/2}$$
 <2.55>

las expresiones <2.54> se pueden escribir:

$$V_{T0} = \begin{cases} 2f_F + g \left[2f_F\right]^{1/2} \to \text{ semiconductor } p \\ 2f_F - g \left[-2f_F\right]^{1/2} \to \text{ semiconductor } n \end{cases}$$

γ se le conoce por *coeficiente del efecto del sustrato*, y como se puede comprobar es una constante de fabricación de la capacidad MOS.

Valor de la tensión umbral cuando el sustrato, B, está a un potencial distinto de cero.

Dado que en algunas aplicaciones el sustrato esta a un potencial distinto de cero (V_B) tal como se indica en la figura 2.25, vamos a obtener el valor de la tensión que hay que aplicar **entre puerta y masa** para alcanzar la transición vaciamiento-inversión. Este nuevo valor de la tensión umbral de puerta lo llamaremos V_T .

En este caso se cumple:

$$V_G = V_{GB} + V_B = f_{OX} + f_S + V_B$$
 <2.57>

y la ecuación <2.42>, queda ahora como:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70 ---ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS

CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Particularizando la ecuación <2.58> para x=0, se obtiene el valor de W en función de $\phi(x=0)$:

$$W = \begin{cases} \sqrt{\frac{2e_{sem}}{qN_A}} [f(x=0) - V_B] \rightarrow \text{semiconductor } p \\ \sqrt{-\frac{2e_{sem}}{qN_D}} [f(x=0) - V_B]} \rightarrow \text{semiconductor } n \end{cases}$$
 <2.59>

por tanto el valor de V_G vendrá dado por:

$$V_{G} = \begin{cases} \overbrace{f_{S} + V_{B}}^{f(x=0)} + x_{0} \cdot \frac{e_{sem}}{e_{OX}} \left[\frac{2qN_{A}}{e_{sem}} [f(x=0) - V_{B}] \right]^{1/2} \rightarrow \text{ semiconductor } p \\ \overbrace{f_{S} + V_{B}}^{f(x=0)} - x_{0} \cdot \frac{e_{sem}}{e_{OX}} \left[\frac{2qN_{D}}{e_{sem}} [-f(x=0) + V_{B}] \right]^{1/2} \rightarrow \text{ semiconductor } n \end{cases}$$

$$<2.60>$$

Dado que la transición vaciamiento- inversión ocurre cuando ϕ (x=0) = $2\phi_{F}$, sustituyendo este valor en la ecuación anterior se obtiene el valor de la nueva V_T. Bien entendido, que esta nueva tensión umbral es la tensión que hay que aplicar entre puerta y masa para alcanzar la transición vaciamiento-inversión:

$$V_{T} = \begin{cases} 2f_{F} + x_{0} \cdot \frac{\boldsymbol{e}_{sem}}{\boldsymbol{e}_{OX}} \left[\frac{2qN_{A}}{\boldsymbol{e}_{sem}} (2f_{F} - V_{B}) \right]^{1/2} \rightarrow \text{ semiconductor } p \\ 2f_{F} - x_{0} \cdot \frac{\boldsymbol{e}_{sem}}{\boldsymbol{e}_{OX}} \left[\frac{2qN_{D}}{\boldsymbol{e}_{sem}} (-2f_{F} + V_{B}) \right]^{1/2} \rightarrow \text{ semiconductor } n \end{cases}$$

$$<2.61>$$

o bien, en función de γ :

Manuel Mazo, J. Jesús García Domínguez

Como se pondrá de manifiesto en el estudio de transistores MOSFET, la tensión V_B toma los siguientes signos: semiconductor \boldsymbol{p} : V_B < 0, semiconductor \boldsymbol{n} : V_B > 0.

Ejemplo 2.6

Una capacidad MOS de semiconductor tipo p se polariza con el sustrato a masa y una tensión V_G en el terminal de puerta. En estas condiciones se observa que en la zona de semiconductor más próxima a SiO₂ comienzan a aparecer electrones. Indíquese:

- 1. Zona de funcionamiento de la capacidad.
- 2. Relación que se cumple entre el nivel de energía de Fermi y los niveles intrínsecos en
- la "superficie" y el "sustrato".
- 3. Signo de la tensión V_{G}

Solución

1. Dado que el semiconductor es p, si en la zona del semiconductor más próxima al aislante comienzan a aparecer electrones, esto indica que se está entrando en la zona de inversión. Por tanto la zona de funcionamiento es la transición vaciamiento-inversión.

2. Al estar en la transición vaciamiento -inversión se cumple la ecuación <2.29>:

 E_i (superficie) – E_i (sustrato) = 2[E_F – E_i (sustrato)]

3. La polaridad de V_G debe hacer que en el Metal se depositen huecos ,y en consecuencia en la interfaz Óxido-semiconductor se induzcan electrones. Por tanto V_G debe ser positiva.

Ejemplo 2.7

De una capacidad MOS se conocen todos sus parámetros que intervienen en el valor de la tensión umbral y que ϕ_F (potencial de Fermi) >0. Polarizada esta capacidad con unas tensiones $V_B = 2V y V_G = -3Ven$ sustrato y puerta , respectivamente, se cumple: $\phi_S > 2V_F$. En estas condiciones se pide:

1. Tipo de semiconductor.

2. Zona de funcionamiento de la capacidad.

3. ¿En qué caso será mayor la tensión umbral (tensión entre puerta y masa): a) con $V_B=2$., b) con $V_B=0V$?

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

2.4 Transistores MOSFET de acumulación

Los transistores MOSFET son en la actualidad los dispositivos más utilizados en la fabricación de circuitos integrados de todo tipo. Como ejemplo se pueden citar: microprocesadores, microcontroladores, procesadores digitales de señal (DSPs), dispositivos lógicos programables (FPGAs), memorias, etc.

En la figura 2.26 se muestran los símbolos de los transistores MOSFET de acumulación. Se trata de un dispositivo de cuatro terminales: Puerta (G), Fuente (S), Drenador (D) y sustrato (B, Bulk). Como se puede observar en uno de los símbolos aparecen estos cuatro terminales, mientras que en el otro solamente aparecen tres. La razón de que sólo aparezcan tres es porque en muchos casos los terminales de fuente (S) y sustrato (B) están unidos.

Manuel Mazo, J. Jesús García Domínguez

$$i_D + i_G + i_S = 0$$

 $v_{DS} - v_{GS} + v_{GD} = 0$
<2.60>

si bien en este tipo de transistores la corriente de puerta en continua (o incluso, como se verá mas adelante, en alterna pero en bajas frecuencias) es nula ($I_G = 0$), con independencia de la tensiones continua entre terminales (dentro, lógicamente de los valores de tensión permitidos).

Como se puede ver no se ha hecho referencia a la tensión del terminal B (sustrato). Por el momento, sólo indicar que este terminal suele estar unido al de fuente (S), más adelante se analizará el caso en que esto no sea así.

En la figura 2.27 se muestran las secciones trasversales de las configuraciones básicas de los transistores MOSFETs de acumulación. Como se puede observar estos transistores se construyen a partir de una capacidad MOS a la que se le incorporan dos zonas ("islas") adyacentes a la región del semiconductor (sustrato) de la capacidad MOS. Para el caso de transistores canal n (figura 2.27.a)las zonas adyacentes son de tipo n^+ y el sustrato es de tipo p, mientras que en transistores canal p (figura 2.27.b), las zonas adyacentes son de tipo p^+ y el sustrato es de tipo n. Más adelante se justificará el por qué a la zona entre las dos "islas" se le denomina canal y también por qué para sustrato p el canal es n y viceversa.

Una de las zonas adyacentes (islas) constituye el terminal de drenador (D) y la otra el de fuente (S). La corriente, como se pondrá de manifiesto, fluye entre estos dos terminales y está controlada por el terminal de puerta (G, Gate). Al igual que ocurre en los JFET el terminal de drenador será aquel que "drene" portadores mayoritarios. Siendo los portadores mayoritarios los electrones para el transistor canal \boldsymbol{n} y los huecos para el canal \boldsymbol{p} .

El terminal de puerta (G), al igual que en la capacidad MOS, está formado por un plano metálico (polisilicio, generalmente) y está separado del semiconductor (sustrato) por una fina capa de aislante (SiO₂) (ver figura 2.28).

Manuel Mazo, J. Jesús García Domínguez

existen uniones *pn*. Estas uniones deben estar siempre polarizadas en inverso para obtener el comportamiento deseado de los transistores MOSFET (sólo en casos excepcionales se polarizan estas uniones en directo). Este aspecto es muy importante que se tenga presente en la utilización de los transistores MOSFETs. Obsérvese que en la estructura MOSFET existe un transistor bipolar, *npn* para el canal *n*, y *pnp* para el caso de canal *p*; en el funcionamiento como transistor MOSFET hay que garantizar que las dos uniones del transistor BJT estén siempre en inverso. Estos transistores BJT "parásitos" que aparecen en la estructura MOSFET se reflejan en la figura 2.27 con línea discontinua.

Indicar también que todas las tensiones se referirán al terminal de fuente (S). Por tanto, hablaremos de V_{BS} , V_{DS} y V_{GS} para referirnos a las tensiones continuas entre sustrato-fuente, drenador-fuente y puerta-fuente, respectivamente. En principio, y con el único fin de simplificar el estudio se supone que el terminal de fuente está a potencial cero ($V_s=0$), pero dado que el resto de las tensiones están referidas a fuente todas las conclusiones y relaciones entre corrientes y tensiones de terminales del transistor serán válidas aún cuando V_s 0.

En principio, también se va a suponer que $V_{BS} = 0$ (lo cual representa una situación muy frecuente ya que los terminales de fuente y sustrato suelen estar cortocircuitados). Más adelante se hará referencia al caso en que el potencial entre sustrato y fuente (V_{BS}) sea distinto de cero (V_{BS} 0).

2.4.1 Funcionamiento cualitativo

Para ver el funcionamiento cualitativo de los transistores MOSFET de acumulación se va a utilizar un transistor canal *n*. En la figura 2.28 se muestra la estructura básica y las tensiones de los diferentes terminales. Obsérvese que en este caso al tratarse de un transistor canal n los portadores mayoritarios son los electrones, por tanto considerando que V_{DS} es positiva la corriente (huecos) fluye en el sentido indicado en la figura 2.28, o lo que es lo mismo, por el terminal D salen ("drena") electrones. También se puede ver que en este caso el diodo que se forma entre fuente (S) y sustrato (B) está cortocircuitado, por lo que no existe posibilidad de que se polarice en directa, en cuanto a la unión drenador (D)-sustrato (B) estará polarizada en inverso, siempre y cuando $V_{DS} \ge 0$.

Antes de analizar la variación de la corriente de drenador (I_D) con las tensiones V_{DS} y V_{GS} se van a mostrar las diferentes situaciones que se pueden presentar en la interfaz oxido semiconductor *p* (sustrato) dependiendo de la polaridad y valor de la tensión de puerta V_{GS} , tal como se puso de manifiesto en el estudio de la capacidad MOS. Para el caso de la figura 2.28, donde el sustrato es **p** se pueden presentar las siguientes situaciones significativas:

 $V_{GS} < 0$: en este caso en la interfaz óxido-semiconductor se producirá un fenómeno de

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

pero sin llegar a neutralizar todas los huecos de la zona p, por tanto las dos zonas n^+ siguen estando separadas por una zona p.

- 2. $V_{GS} = V_{T}$, esta situación coincide con la transición vaciamiento-inversión.
- 3. $V_{GS} > V_T$, esta situación coincide con la de inversión (recuérdese el estudio de la capacidad MOS), por lo tanto en la interfaz óxido-semiconductor (semiconductor del sustrato) se acumulan electrones (se produce la inversión) lo que hace que las dos zonas n^+ queden unidas por otra zona también n(figura 2.28.c). En estas condiciones puede existir corriente entre D y S cuyo valor depende del valor de V_{GS} y de V_{DS} . La zona de inversión que se produce entre las dos zonas n^+ se denomina canal. Como se puede observar, al hacer funcionar a la capacidad MOS en la zona de inversión puede existir corriente entre D y S gracias a esa zona de inversión, es como si se abriera un canal entre las dos zonas (islas) n^+ . Obsérvese que cuando se forma canal éste es de tipo n, por ello el transistor se denomina canal n.

 Figura 2.28
 Estructura básica v condiciones de polarización para realizar el estudio

 CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE

 LLAMA O ENVÍA WHATSAPP: 689 45 44 70

 ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS

 CALL OR WHATSAPP: 689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

En primer lugar se va a suponer que $V_{GS} \le V_T$: En este caso, entre las dos zonas (islas) existirá un exceso de huecos (caso de acumulación) o un déficit de huecos (sin llegar a existir electrones) antes de alcanzar la transición vaciamiento-inversión ($V_{GS} = V_T$). Todo ello hace que entre D y S exista una resistencia muy grande (circuito abierto entre D y S) y por tanto con independencia del valor que tome V_{DS} la corriente de drenador es cero. Este modo de funcionamiento se le denomina de CORTE. En la figura 2.29 se muestra esta zona. En la figura 2.29.a se muestra la variación de I_D con V_{GS} y la figura 2.29.b refleja la variación de I_D con V_{DS} para diferentes valores de V_{GS} .

Supóngase ahora que $V_{GS} = V_{GS1} > V_T y$ que V_{DS} se va incrementando a partir de cero: Al ser $V_{GS1} > V_T$ se produce una zona de inversión entre D y S, esto es, se crea un canal n entre las dos zonas n^+ , lo que hace que entre D y S exista una resistencia de valor pequeña (en función del ancho de la zona de inversión- canal-) permitiendo que pueda existir corriente entre D y S. El canal se comporta como una resistencia por la que puede circular corriente.

Figura 2.29 Curvas características de (a) entrada y (b) salida de un transistor MOSFET canal n.

Si $V_{DS}=0$, lógicamente la corriente I_D será también cero. En la figura 2.30.a se muestra el perfil de las zonas de vaciamiento e inversión para $V_{DS}=0$ y $V_{GS}>V_T$. Al ser la tensión $V_{DS}=0$ las zonas de vaciamiento que se producen en los entornos de las dos zonas n^+ ("islas" correspondientes al drenador y fuente) son iguales.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

de éste: por una parte al ser V_{DS} >0 esta tensión contrarresta el efecto de la tensión también positiva de puerta, lo que supone una reducción de la zona de inversión, que será más acusado en los puntos donde el potencial del canal sea más elevado (zona próxima al terminal de drenador). Dicho de otra forma, en la capacidad MOS la zona de inversión es mayor o menor en función de que la diferencia de potencial entre los extremos de la capacidad puerta y sustrato- sea mayor o menor. Por otra parte, las zonas de vaciamiento que se generan entorno a las uniones pn (drenador-sustrato y fuente-sustrato) contribuyen a reducir la zona de inversión, siendo de nuevo más acusado este efecto en las proximidades de drenador ya que al ser V_{DS} >0 la unión drenador-sustrato es la que está más inversamente polarizada. En la figura 2.30.b se muestra el perfil de la zona de inversión para esta situación.

Por tanto a medida que se vaya incrementando V_{DS} se va reduciendo la zona del canal (sobre todo en las proximidades de drenador), lo que hace que para valores de V_{DS} alejadas de cero, para un mismo incremento de V_{DS} se obtienen incrementos de I_D más pequeños. En esta situación entre drenador y fuente el transistor se comporta como una resistencia (cuyo valor depende de V_{DS}) y por ello se le denomina como región ÓHMICA. La figura 2.29.b muestra la variación de I_D con V_{DS} para este caso.

La situación límite se produce cuando se alcanza el estrangulamiento del canal. El valor de V_{DS} para el cual se alcanza esta situación de estrangulamiento se denomina V_{Dsat}. Esta situación se muestra en la figura 2.30.c. Una vez que se estrangula el canal, si se sigue incrementando V_{DS}, lo que sucede se puede explicar de forma similar a como se hizo para el caso de transistores JFET: si el canal se estrangula la resistencia entre D y S tiende a infinito y ello supone, ver ecuación <2.6>, que $\Delta I_D = 0$, lo que supone que $I_D = I_{Dsat} = Cte$. El estrangulamiento del canal se produce para unos valores de V_{GS} y V_{DS} tales que:

$$V_{DS} = V_{GS} - V_T \tag{2.61}$$

Por tanto, para $V_{DS} \ge V_{GS}$ - V_T el canal estará estrangulado y la corriente de drenador permanece constante con V_{DS} . Esta región de funcionamiento se le denomina de SATURACIÓN O ACTIVA.

Lógicamente si para $V_{DS} \ge V_{GS}$ - V_T el transistor está en la región activa, para valores $V_{DS} \le V_{GS}$ - V_T el canal no alcanza la situación de estrangulamiento y por tanto se corresponde con la región óhmica. Evidentemente los puntos límites entre óhmica y activa responden a la ecuación $V_{DS} = V_{GS}$ - V_T .

Si en lugar de V_{GS1} se aplica una V_{GS2} > V_{GS1} lo que ocurre es que para V_{DS} = 0, el ancho del canal (zona de inversión) es mayor. Por tanto si se aumenta V_{DS} se necesitarán valores de V_{DS}

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Ejemplos de diferentes fases del funcionamiento de un transistor

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

 V_{DS} , es evidente que debe ser también negativa, ya que ahora los portadores mayoritarios son huecos y si $V_{DS} < 0$ la corriente (que coincide con la dirección de movimiento de los huecos) fluye de drenador a fuente. Lógicamente si la corriente de drenador se define entrante, su valor será negativo. En cuanto a la condición que debe cumplirse para ubicar el transistor en el límite entre óhmica y saturación (activa) coincide con la del transitor canal \boldsymbol{n} , esto es: $V_{DS} = V_{GS} - V_{T}$. Por tanto, y teniendo en cuenta que $V_{DS} < 0$, la condición para que el transistor esté en óhmica es $V_{DS} \ge V_{GS} - V_{T}$ y en saturación $V_{DS} \le V_{GS} - V_{T}$. En la figura 2.31 se muestran las curvas características para transistores canal \boldsymbol{p} .

Figura 2.31 Curvas características de (a) entrada y (b) salida de un transistor MOSFET canal *p*

2.4.2 Funcionamiento cuantitativo de los MOSFET

Para obtener la expresión de la corriente de drenador en función de las tensiones aplicadas entre los diferentes terminales se pueden seguir básicamente dos caminos: "teoría de la ley cuadrática" y "teoría de la carga de volumen". En nuestro caso se va a utilizar la ley cuadrática por dos razones fundamentalmente: por una parte es más sencilla y por otra guarda gran similitud con el estudio realizado en el caso de los JFETs.

Antes de obtener la relación entre I_D y V_{DS} es necesario recordar el concepto de movilidad de portadores bien sean huecos o electrones. Como ya se comentó en el libro *Dispositivos Electrónicos I*, en aquellas zonas del semiconductor donde el campo eléctrico se puede considerar nulo (sustrato) (en nuestro caso las regiones alejadas de la interfaz semiconductor-

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

a través de la zona de semiconductor que se ha denominado como canal. Esto es, en la capa de inversión superficial que se crea en la proximidades de la interfaz puerta (Metal)- óxido. Y esta zona se caracteriza por la existencia de un campo eléctrico inducido por la tensión de puerta. Si se tiene en cuenta que en un transistor canal *n* para crear zona de inversión hay que aplicar en puerta tensiones positivas y superiores a V_{τ} y en un canal p la tensión de puerta debe ser negativa e inferior a V_{τ} , el sentido del campo eléctrico es, en un transistor canal **n** de puerta a óxido y en un canal **p** al revés. Por tanto, como en los transistores canal **n** cuando se produce la zona de inversión por el canal se mueven electrones y el canal *p* se mueven huecos, en ambos casos el campo eléctrico produce una componente de aceleración sobre estos portadores en la dirección de óxido a puerta. Esto hace que los portadores de la capa de inversión estén sometidos (además de las colisiones con las impurezas ionizadas y con la red) a colisiones con la superficie de semiconductor (ver figura 2.32.b) lo que dificulta su movimiento. Esta dificultad añadida en su movimiento es la causa de que su movilidad disminuya (disminución que es superior en aquellas zonas de la capa de inversión más próximas a la superficie del semiconductor- interfaz óxido-semiconductor-). En consecuencia, para poder obtener la relación de I_D con V_D es necesario conocer la movilidad media (también conocida como movilidad efectiva) de los portadores en la capa de inversión.

Figura 2.32 a) Estructura práctica de los MOSFETs canal *n*; b) Colisiones de los portadores.

Esta movilidad se designará por las letras \mathbf{m}_n y \mathbf{m}_p , caso de que los portadores sean electronos y huecos. Para obtener una expresión matemática de la movilidad efectiva se va a suponer un M-OSFET canal \mathbf{n} cuya estructura se muestra en la figura 2.32. A partir de esta figura, la movilidad media en un punto del canal de coordenadas (x,y) se puede expresar por:

$$\overline{\mathbf{m}}_{n}(x,y) = \frac{\int_{0}^{x_{c}(y)} \mathbf{m}_{n}(x,y)n(x,y)dx}{\int_{0}^{x_{c}(y)} n(x,y)dx}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

<2.62>

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

 $\mathbf{m}_{n}(x, y)$ depende tanto de la tensión de drenador-fuente (V_{DS}) como de V_{GS}:

Dependencia de $\underline{m}_n(x, y)$ **con** V_{DS} : Si se supone que la tensión V_{DS} es pequeña, tanto $x_c(y)$ como n(x,y) se pueden suponer constantes a lo largo del canal (desde fuente a drenador). En lo que sigue se va a suponer que la dependencia de $\overline{\underline{m}_n(x, y)}$ con "y" es suficientemente pequeña como para suponerla despreciable (desde un punto de vista práctico esta aproximación es perfectamente válida), por tanto $\overline{\underline{m}_n(x, y)}$ la vamos a suponer constante para toda coordenada "y" con independencia del valor de la tensión de drenador (V_{DS}).

Dependencia de m_n(x, y) con V_{GS}: Es evidente que cuanto más positiva sea V_{GS}, caso de transistores canal *n*, más portadores habrá en la zona de inversión (huecos en el caso de transistores canal *n*) próxima a la interfaz óxido-semiconductor (ver estudio de la capacidad MOS) y mayor será el campo eléctrico. Ambos efectos hacen que aumente la interacción de los portadores con la superficie (zona de semiconductor en contacto con el óxido), lo que hace que se reduzca la movilidad de los portadores. Esta dependencia no puede considerarse despreciable.

Obtención de la relación entre la la corriente de drenador (I_D) y las tensiones V_{DS} y V_{GS} . Características de entrada y salida.

Para obtener las relaciones de I_D con V_{DS} y V_{GS} se va a suponer que el transistor está funcionando en la región óhmica, esto es, que $V_{GS} > V_T$ y que $V_{DS} \ge V_{GS} - V_T$.

Para deducir $I_D = f(V_{DS,} V_{GS})$ se va a utilizar, como ya se ha indicado, la ley cuadrática. Los pasos a seguir se muestran a continuación. Por una parte se sabe que la densidad de corriente, supuesto que los portadores son electrones, viene dada por:

$$J_n = \overbrace{q\mathbf{m}_n nE}^{\text{arrastre}} + \overbrace{qD_n \nabla n}^{\text{difusion}}$$
 <2.63>

En nuestro caso se va a suponer que la corriente fluye exclusivamente en la dirección "y" y que la componente de difusión es despreciable. Por tanto en el canal conductor, y teniendo en

cuenta que tanto la movilidad, $\mathbf{m}_n(x, y)$, como la concentración de portadores (electrones en este caso), \mathbf{n} , son función del punto del canal (x,y), la ecuación<2.63> se puede escribir:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

calculando el flujo total de corriente que pasa por cualquier sección transversal dentro del canal. Esto es:

$$I_D = -\iint J_{ny} dx dz = -Z \int_0^{x_C(y)} J_{ny} dx$$

= $qZ \frac{dV}{dy} \int_0^{x_C(y)} m_n(x, y) n(x, y) dx$ <2.65>

En la ecuación anterior se ha incluido un signo menos porque I_D se define positiva en la dirección "-y". Sustituyendo en la ecuación <2.65> la integral por su valor obtenido de la ecuación <2.62>, resulta:

$$I_{D} = q \overline{Z} \overline{m}_{n}(x, y) \frac{dV}{dy} \int_{0}^{x_{c}(y)} n(x, y) dx = -\overline{Z} \overline{m}_{n}(x, y) \frac{dV}{dy} \left[-q \int_{0}^{x_{c}(y)} n(x, y) dx \right]$$

$$= -\overline{Z} \overline{m}_{n}(x, y) \frac{dV}{dy} Q_{n}(y)$$

$$(2.66)$$

En esta última ecuación, se puede observar que el paréntesis del segundo miembro representa la carga por unidad de superficie (carga/cm²) para un valor de "y" dado (recuérdese que n(x,y) viene dada, generalmente en carga/cm³) y se ha denominado por $Q_n(y)$ en <2.66>.

Como la corriente I_D es independiente de "y", se puede escribir:

$$\int_{0}^{L} I_{D} dy = I_{D} L = -Z \int_{0}^{V_{DS}} \overline{m}_{n}(x, y) Q_{n}(y) dV \qquad <2.67>$$

o lo que es lo mismo, teniendo en cuenta que $\overline{m}_n(x, y)$ es independiente de la posición:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70 ---ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

$$c_o = \frac{\boldsymbol{e}_{\text{oxido}}}{\boldsymbol{x}_o} (\mathbf{F} / \mathbf{cm}^2)$$
 <2.69>

y teniendo en cuenta que el **canal existe para** $V_{GS} > V_{T}$, entonces se puede concluir (ver figura 2.33):

$$Q_n(y) = c_o \left[V(y) - (V_{GS} - V_T) \right]$$
 <2.70>

Figura 2.33 Modelo capacitivo, para establecer la relación entre la carga en el canal y las tensiones en los terminales del MOSFET.

Sustituyendo el valor de $Q_n(y)$ dado por la ecuación<2.70> en <2.68>, y realizando la integral se obtiene:

$$I_{D} = -\frac{Z\overline{\mathbf{m}}_{n}}{L} \int_{0}^{V_{DS}} \frac{\mathbf{e}_{\text{óxido}}}{\mathbf{x}_{0}} \Big[V(y) - (V_{GS} - V_{T}) \Big] dV$$

$$= \frac{Z\overline{\mathbf{m}}_{n} \mathbf{e}_{\text{óxido}}}{L\mathbf{x}_{0}} \Big[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \Big]$$

$$(2.71)$$

Ésta es, por tanto, la expresión de la corriente de drenador antes de que se alcance el estrangulamiento del canal, o sea para: $V_{GS} > V_T y$ 0 $< V_{DS} < V_{DSat}$.

Una vez alcanzado el estrangulamiento del canal, la corriente permanece constante con V_{DS} y su valor viene dada por <2.72> que resulta de sustituir en <2.71> el valor de V_{DS} por V_{GS} -

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

$$\frac{k}{2} = \frac{Zm_n e_{\text{oxido}}}{2Lx_0} (A/V^2)$$
 <2.73>

Las expresiones de las corrientes (región óhmica de funcionamiento del transistor) y después (región de saturación), vienen dadas por:

$$I_{D} = k \left[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right] \rightarrow \text{ región óhmica}$$

$$I_{D} = \frac{k}{2} \left[V_{GS} - V_{T} \right]^{2} \rightarrow \text{ región de saturación (activa)}$$

$$(2.74)$$

Finalmente indicar que algunos autores definen el valor de k/2 dado por la ecuación <2.73> como k. En este caso, en las expresiones <2.74> aparece 2k en lugar de k en la expresión correspondiente a la región óhmica y k en la de saturación.

Para el caso de transistores canal **p** el estudio sería similar y las expresiones de la corriente para las regiones de saturación y óhmica coinciden con las <2.74>. Con la única salvedad de que en el caso de transistores canal **p** se tiene: V_{DS} <0, V_T <0, y para que exista canal se debe cumplir que V_{GS} < V_T . Por otra parte, como las corrientes se definen también entrantes, la corriente de drenador será negativa. Para reflejar esto en las ecuaciones de I_D se define k como un valor negativo para el caso de transistores canal **p**.

Efecto de la polarización de sustrato: $V_{BS} \neq 0$.

En el estudio que se ha realizado anteriormente se ha supuesto que la tensión en el terminal de sustrato (B) con respecto al terminal que se ha tomado como referencia (fuente, S) era cero $(V_{BS}=0)$ y en consecuencia el valor de V_T viene dado por las ecuaciones <2.54> o bien por <2.59> haciendo $V_B=0$ (téngase en cuenta que en el caso de la capacidad MOS las tensiones de puerta, G, y sustrato, B, estaban referidas a masa y el caso del transistor MOSFET se han referido al terminal de fuente, S).

Si la diferencia de potencial entre sustrato y el terminal de referencia (S) es distinto de cero (V_{BS} 0) hay que realizar algunas consideraciones:

1. Para evitar que las uniones *pn* sustrato-fuente y sustrato-drenador queden

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70 ---ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS

CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

para $V_{BS} = 0$

En este caso, la corriente de drenador vendrá dada por las ecuaciones <2.74>, sin más que sustituir en ellas V_{τ} por su nuevo valor dado por <2.63>.

2.4.3 Aproximaciones de las expresiones de las corrientes de los transistores MOSFET de acumulación y regiones de funcionamiento.

En la práctica, al igual que se hizo para los transistores JFETs, para los MOSFET de acumulación se suelen utilizar expresiones aproximadas de las ecuaciones <2.74>, sobre todo para el caso de funcionamiento en óhmica.

Como ya se ha comentado, los transistores MOSFET pueden funcionar básicamente de tres formas diferentes (regioness de funcionamiento):

1. *Región de corte*: Es aquella en la que $I_D = 0$.

2. *Región de Saturación (Activa):* Es aquella en la que el canal está estrangulado, esto es, $I_D = I_{Dsat}$. Esta zona de funcionamiento es equivalente a la región activa en los transistores bipolares y por ello nos referiremos a ella también como región activa.

3. *Región óhmica:* Es aquella en la que funciona el transistor antes de alcanzar el estrangulamiento del canal.

Para el caso de transistores MOSFET de acumulación canal *n*, en la tabla 2.5 se resumen las condiciones que deben cumplirse para cada región de funcionamiento, las expresiones aproximadas de la corrientes de drenador para cada una de las regiones y los correspondientes circuitos equivalentes. En la figura 2.34 se muestran las curvas de entrada y salida para este tipo de dispositivo. El resumen de los transistores MOSFET de acumulación canal *p* se muestra en la tabla 2.6, y sus curvas de entrada y salida se observan en la figura 2.35.

Al igual que en los JFET, en óhmica se han supuesto dos posibles aproximaciones. La segunda de ellas es el resultado de suponer que mientras el canal no se estrangula la relación entre la corriente de drenador y la tensión V_{DS} es una constante, lógicamente diferente para cada V_{GS} . Esta constante se denomina R_{DSON} y su valor se puede obtener fácilmente observando las curvas de salida de la figura 2.34 (donde se ha supuesto que en óhmica la relación entre I_D y V_{DS} es lineal). R_{DSON} se puede obtener como el cociente entre el valor de V_{DS} para el cual se produce el estrangulamiento del canal: $V_{DS} = V_{CS}-V_T$, y la corriente de saturación para la V_{CS} dada. Esto

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.34 Curvas características de (a) entrada y (b) salida de un transistor MOSFET canal n.

 Figure 2.35
 Curvas características de (a) entrada y (b) salida de un transistor MOSFET canal p.

 Image: Class Particulares, Tutorías Técnicas Online

 Image: Class Particulares, Tutorías Online

Manuel Mazo, J. Jesús García Domínguez

		oquitalontosi				
		Transistor Can	al n			
Símbolo:	Parámetros: $V_T > 0, k > 0$			Signo de Corrientes y tensiones:		
				$V_{DS} \ge 0, I_D \ge 0$		
Región de funcionamiento	Condiciones		Corr	iente y circuitos equivalentes en continua. $(I_G = 0, I_S = -I_D)$		
CORTE	$V_{GS} \leq V_T$			$ \begin{array}{c} = 0 \\ G \underline{\qquad} \\ + \\ V_{GS} \\ \underline{\qquad} \\ - \\ S \\ \underline{\qquad} \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ - \\ \underline{\qquad} \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \underline{\qquad} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
SATURACIÓN (ACTIVA)	$V_{GS} > V_T$	$V_{DS} \ge V_{GS} - V_T$	I _D =	$=\frac{k}{2}\left(V_{GS}-V_{T}\right)^{2}$		
			G	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
бнміса	$V_{GS} > V_T$	$V_{DS} \leq V_{GS} - V_T$	<i>I</i> _D =	$= k \cdot \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$		
			<i>I</i> _D =	$=rac{V_{DS}}{R_{DSON}},$		
			dor	nde: $R_{DSON} = \frac{1}{\frac{k}{2}(V_{GS} - V_T)}$		
genagg	CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLIN LLAMA O ENVÍA WHATSAPP: 689 45 44 70					
	ONLINE	ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS				

 Tabla 2.5
 Resumen sobre MOSFET canal n: regiones de trabajo, parámetros y circuitos equivalentes.

Manuel Mazo, J. Jesús García Domínguez m no se hace responsable de la información contenida en el presente documento en virtud al

CALL OR WHATSAPP:689 45 44 70

		equivalentes	,
		Transistor Cana	al p
Símbolo:	Parámetros: $V_T < 0, \mathbf{k} < 0$		Signo de Corrientes y tensiones: $V_{DS} \le 0, I_D \le 0$
Región de funcionamiento	Condiciones		Corriente y circuitos equivalentes en continua $(I_G = 0, I_S = -I_D)$
CORTE	$V_{GS} \ge V_T$		$I_{D} = 0$ $G \xrightarrow{+} \qquad \underbrace{ < I_{D} }_{+} \qquad D$ $V_{GS} \qquad V_{DS}$ $- \underbrace{S \qquad -} $
SATURACIÓN (ACTIVA)	$V_{GS} < V_T$	$V_{DS} \leq V_{GS} - V_T$	$I_{D} = \frac{k}{2} \left(V_{GS} - V_{T} \right)^{2}$ $G \xrightarrow{+} V_{GS} I_{D} \xrightarrow{+} V_{DS}$ $- S \xrightarrow{-} S$
ÓHMICA	$V_{GS} < V_T$	$V_{DS} \ge V_{GS} - V_T$	$I_{D} = k \cdot \left((V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right)$ $I_{D} = \frac{V_{DS}}{R_{DSON}},$ $donde: R_{DSON} = \frac{1}{1}$
tagenaQ		SES PARTICU MA O ENVÍA V 	ULARES, TUTORÍAS TÉCNICAS ONLII WHATSAPP: 689 45 44 70

 Tabla 2.6
 Resumen sobre MOSFET canal p: regiones de trabajo, parámetros y circuitos equivalentes

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

2.4.4 Método para el análisis de circuitos con MOSFETs de acumulación.

En la figura 2.36 se muestran los cronogramas de los pasos a seguir para determinar la región de funcionamiento de los MOSFET de acumulación. y en consecuencia el punto de funcionamiento. A partir de las tablas 2.4 y 2.5 es fácil obtener los cronogramas mostrados.

Figura 2.36 Pasos a seguir para determinar la zona de funcionamiento de MOSFETs de acumulación. (a) Región de corte, (b) región de saturación (activa), (c) región óhmica.

Ejemplo 2.8

Calcúlese el punto de funcionamiento del transistor de la figura E.2.9a.

Solución

k

Suponiendo que el transistor está funcionando en zona de saturación (activa), el circuito equivalente se muestra en la figura E.2.9b, donde I_D viene dada por:

$$I_D = \frac{\kappa}{2} (V_{GS} - V_T)^2$$
CLAS
LLAN
ONLI
CALL

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura E.2.9 (a) Circuito del ejemplo 2.8. (b) Circuito equivalente suponiendo que el transistor está en zona activa.

$$V_{G} = \frac{V_{DD}R_{2}}{R_{1} + R_{2}} = \frac{20 \cdot 0.4}{0.6 + 0.4} = 8V.$$

$$V_{GS} = V_{G} - V_{S} = V_{G} - I_{D}R_{4} =$$

$$V_{G} - R_{4}\frac{k}{2}(V_{GS} - V_{T})^{2} = 8 - 2 \cdot 10^{3} \cdot 10^{-3}(V_{GS} - 2)^{2}$$

esta última ecuación se puede escribir:

$$V_{GS}^2 - 3.5V_{GS} = 0$$

Cuyas raíces son V_{GS} =0V y V_{GS} = 3.5V. La única solución válida es V_{GS} = 3.5 V., ya que V_{GS} = 0V hace que el transistor esté cortado.

Por tanto el valor de I_D es:

$$I_D = \frac{\kappa}{2} (V_{GS} - V_T)^2 = 10^{-3} (3.5 - 2)^2 = 2.25 mA.$$

 $y V_{DS}$ es:

$$V_{DS} = -I_D R_3 + V_{DD} - I_D R_4 = 20 - 2.25 \cdot 7 = 4.25V$$

Ahora solo falta verificar que se cumple la condición de funcionamiento en saturación:

Manuel Mazo, J. Jesús García Domínguez

Ejemplo 2.9

Dado el circuito de la figura E.2.10a, obtener el punto de funcionamiento de ambos transistores y el valor de $V_{\rm o}$.

Figura E.2.10 (a) Circuito del ejercicio 2.9. (b) Circuito equivalente suponiendo que ambos transistores están en zona activa. Solución

Suponiendo que ambos transistores están en zona activa, el circuito equivalente es el mostrado en la figura E.2.10b. Obsérvese que en el transistor T1 se cumple : $V_{DS1} = V_{GS1}$, por tanto como $V_{T1} > 0$, se cumple que $V_{DS1} > V_{GS1} - V_{T1}$ y ello supone que este transistor siempre estará en zona de saturación.

Del análisis del circuito de la figura 2.42.b se obtiene:

$$V_{GS1} = V_{DD} - V_0$$
$$V_{GS2} = V_i$$
$$V_{DS1} = V_{GS1}$$
$$V_{DS2} = V_0$$
$$I_{D1} = I_{D2} = I_D$$

Por tanto, igualando las aproximaciones de las corrientes de drenador de ambos transistores y sustituyendo los valores de V_{GS1} y V_{GS2} , se obtiene:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70 ---ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS

CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

$$2(10 - V_{DS2} - 2)^2 = 8(2 - 1)^2 \rightarrow \begin{cases} V_{DS2} = 6V \\ V_{DS2} = 10V. \end{cases}$$

De las dos soluciones de V_{DS2} la única válida es $V_{DS2}=6V$, ya que $V_{GS1}=V_{DD}-V_{DS2}$ y si se toma $V_{DS2} = 10$ V, el transistor T1 estaría cortado. Por tanto se tiene:

$$V_{DS2} = V_0 = 6V.$$

$$V_{DS1} = V_{DD} - V_{DS2} = 10 - 6 = 4V.$$

$$V_{GS1} = V_{DS1} = 4V.$$

$$V_{GS2} = V_i = 2V.$$

Ahora sólo falta demostrar que se cumplen las condiciones de funcionamiento en saturación de los transistores:

$$\begin{split} V_{DS1} &\geq V_{GS1} - V_{T1} \to 4V \geq 4 - 2 = 2V. \\ V_{DS2} &\geq V_{GS2} - V_{T2} \to 2V \geq 2 - 1 = 1V. \end{split}$$

dado que para ambos transistores se cumplen, todos los resultados obtenidos son validos.

Ejemplo 2.10

En el circuito de la figura E.2.11a, sabiendo que el transistor tiene los siguientes parámetros: $V_T(V_B=0V) = -1.8V$, $V_T(V_B=3V) = -2V$, $k = -4mA/V^2$, obténgase el punto de funcionamiento del transistor.

Manuel Mazo, J. Jesús García Domínguez

En primer lugar hay que darse cuenta que el sustrato está a un potencial de 3 V. $(V_B=3V.)$, por tanto el valor de la tensión umbral a utilizar es $V_T(V_B=3V) = -2V.$

Si se supone que el transistor está en óhmica y se hace la aproximación de considerar que en esta región el transistor se comporta, entre drenador y fuente, como una resistencia de valor R_{DSon} , el circuito equivalente es el que se muestra en la figura E.2.11b. Analizando el circuito de la figura E.2.11b se obtiene:

$$V_{GS} = \frac{V_{DD}R_2}{R_1 + R_2} = -10V. \rightarrow R_{DSon} = \frac{1}{\frac{k}{2}(V_{GS} - V_T)} = \frac{1}{-2(-10+2)} = \frac{1}{16}k\Omega$$
$$I_D = \frac{V_{DD}}{R_3 + R_{DSon}} = \frac{-20}{1 + 1/16} = -18.82mA.$$
$$V_{DS} = I_D R_{DSON} = -18.82 \cdot \frac{1}{16} = -1.17V.$$

Como se puede comprobar se cumple que $V_{DS} \ge V_{GS}$ - V_T (ya que -1.17V>-10+2=-8V). Por tanto la suposición de que el transistor está en la región óhmica es correcta y en consecuencia todos los resultados obtenidos son válidos.

Ejemplo 2.11

En la figura E.2.12 se muestra un circuito con un transistor MOSFET de acumulación canal n, que después de ser simulado con PSPICE permitirá obtener sus curvas características de entrada y salida. Obsérvese que el generador V4 se corresponde con la tensión V_{GS} y el generador V3 con la tensión V_{DS} .

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Figura E.2.13 Curva de entrada del transistor del ejemplo 2.11.

Como se puede apreciar en la figura E.2.13, la tensión $V_T = 0V$.

Curva de salida

Para obtener la curva de salida, se realizará la simulación con los siguientes valores de los generadores: V3 variable de 0 a 10V, con incrementos de 0.1V; y V4 variable de 0 a 5V, con incrementos de 1V. Los resultados obtenidos se muestran en la figura E.2.15.

Ejemplo 2.12

Obténgase el punto de trabajo del circuito de la figura E.2.15, mediante su simulación

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

siendo VTO = V_T ; y K = K_P .

2.12.

Solución

El resultado que se obtiene es el siguiente:

NAME	M_M5
MODEL	MbreakN
ID	4.00E-05
VGS	2.00E+00
VDS	9.96E+00
VBS	0.00E+00

Como se cumple que $V_{DS} > V_{GS} - V_T$, el transistor está funcionando en zona activa.

Ejercicio propuesto. Calcule analíticamente el punto de trabajo del circuito de la figura E.2.15, y contraste los resultados con los obtenidos en la simulación.

Ejemplo 2.13

Obténgase el punto de trabajo del circuito de la figura E.2.16, mediante su simulación con PSPICE, siendo la tensión V1=-10V. El modelo que usa PSPICE para este dispositivo es el que se muestra a continuación:

MbreakP PMOS LEVEL 1 VTO 0 KP 20.000000E-06

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura E.2.16 Circuito de simulación del ejemplo 2.13.

Solución

El resultado que se obtiene es el siguiente:

NAME	M_M3
MODEL	MbreakP
ID	-2.10E-04
VGS	-4.58E+00
VDS	-8.53E+00
VBS	0.00E+00

Como se cumple que $V_{DS} < V_{GS} - V_T$, el transistor está funcionando en zona activa.

Ejercicio propuesto. Calcule analíticamente el punto de trabajo del circuito de la figura E.2.16, y contraste los resultados con los obtenidos en la simulación.

2.5 MOSFET de deplexión

En este punto se va a realizar el estudio de los transistores MOSFET de deplexión. El estudio, dada la gran similitud de funcionamiento con los MOSFET de acumulación, se limitará a la descripción de estos transistores y su funcionamiento desde el punto de vista cualitativo y las diferentes regiones de funcionamiento.

Empezaremos por mostrar en la figura 2.37 los símbolos más ampliamente utilizados para representar a estos transistores.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.37 Símbolos y definición de corrientes y tensiones para transistores MOSFET de deplexión (a) y (b) Canal *n*, (c) y (d) Canal *p*.

Al igual que en los transistores MOSFET de acumulación, la corriente de puerta en continua siempre es cero $(I_G=0)$.

En la figura 2.38 se muestran las secciones trasversales de las configuraciones básicas de los transistores MOSFETs de deplexión. La diferencia entre estos transistores y los MOSFET de acumulación, es que en los MOSFET de deplexión en el proceso de fabricación se depositan, bajo la puerta de óxido, impurezas del mismo tipo que el de las "islas" del drenador y fuente. Esto es, en un transistor MOSFET de deplexión canal n (figura 2.38.a) entre las islas de drenador y fuente (que son tipo n^+) se crea, durante el proceso de fabricación, un canal de impurezas de tipo n. Para el caso de un MOSFET de deplexión canal p, el canal que se crea durante el proceso de fabricación es de impurezas de tipo p (ver figura 2.38.b). Esto hace que

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

"normalmente OFF" ya que se debe garantizar que la condición de conducción sea expresamente forzada (el transistor debe permanecer cortado en ausencia de tensión en puerta). Ésta es la razón fundamental por la que en aquellas aplicaciones donde se manejen grandes corrientes (electrónica de potencia, por ejemplo), interesa, para evitar posibles daños, que los dispositivos permanezcan cortados en ausencia de tensión de puerta, y por ello no se suelen utilizar ni transistores MOSFET de deplexión ni JFET (recuérdese que estos últimos también conducen para V_{GS} =0).

Figura 2.38 Sección transversal de las estructuras MOSFETs de deplexión básicas. (a) MOSFET canal n, (b) MOSFET canal p.

Al igual que en los MOSFET de acumulación, una de las islas constituye el terminal de drenador (D) y la otra el de fuente (S). La corriente, como se pondrá de manifiesto, fluye entre estos dos terminales y está controlada por el terminal de puerta (G, Gate). El terminal de drenador será aquel que "drene" portadores mayoritarios. Siendo los portadores mayoritarios los electrones para el transistor canal n y los huecos para el canal p.

Obsérvese (figura 2.38) que aquí también existen uniones *pn* entre drenador (D) y el sustrato (B) al igual que entre fuente (S) y sustrato (B). Para garantizar el correcto funcionamiento del transistor MOSFET se debe garantizar que estas uniones estén polarizadas en inverso.

De nuevo, al igual que en el caso de transistores MOSFET de acumulación, todas las tensiones se referirán al terminal de fuente (S): V_{BS} , V_{DS} y V_{GS} En principio, también se va a suponer que $V_{BS} = 0$ (situación muy frecuente).

2.5.1 Estudio cualitativo

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.39 Estructuras y tensiones para el estudio cualitativo de MOSFETs de deplexión (a) canal n, (b) canal p

Transistor canal n (figura 2.39.a)

Si nos referimos al transistor canal *n* (figura 2.39.a) se observa, por una parte, que la tensión entre drenador y fuente tiene que ser positiva (V_{DS} >0) y por otra que con V_{GS} =0 al existir canal la resistencia entre drenador y fuente será pequeña y, por tanto, existirá corriente entre drenador y fuente; esta corriente, definida entrante en el drenador es positiva (I_D >0). Si la tensión V_{GS} es positiva (V_{GS} >0) esto hace que se incremente aún más la conductividad del canal ya que esta tensión positiva induce cargas negativas en la zona de canal (se extraen electrones de los pozos). Para tensiones de puerta negativas (V_{GS} <0) lo que ocurre es que en la zona de canal se inducen cargas positivas (los electrones del canal se empiezan a quedar en los pozos); esto es, se provoca la deplexión en la concentración de electrones en el canal, lo que supone un incremento de la resistencia del canal. Existe una tensión umbral de V_{GS} , que será negativa, para la cual deja de existir canal (se inducen en la zona de canal suficientes cargas positivas, o lo que es lo mismo todos los electrones del canal se quedan en los pozos) y por tanto deja de existir corriente entre drenador y fuente. Esta tensión umbral la llamaremos V_T . La corriente de drenador en función de V_{GS} se muestra en la figura 2.40.a.

Para ver la dependencia de I_D con V_{DS} , supongamos una tensión $V_{GS1} > V_T$ (esto es, existe canal). En estas condiciones para V_{DS} pequeñas el canal presentará una resistencia también muy pequeña y la variación de I_D con V_{DS} es casi lineal (el valor de la resistencia del canal permanece constante), a medida que se va incrementando V_{DS} se va produciendo el estrangulamiento del canal, que será más pronunciado por las zonas más próximas a drenador (téngase en cuenta que el estrangulamiento del canal se ve favorecido por tensiones entre puerta y canal negativas, por tanto al ser $V_{DS} > 0$ esto favorece el estrangulamiento en las proximidades de dr<u>enador). Existe un valor de V_{DS} a la que llamaremos V_{Det} para la cual se</u>

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Transistor canal p (figura 2.39.b).

Para el caso de transistores canal **p** se puede hacer un razonamiento similar al del canal **n**. La única diferencia es que en el caso de transistores canal *p* los portadores del canal son huecos y por la tensión de puerta para controlar el ancho del canal debe ser positiva. Esto es para $V_{GS} > V_T$ (donde V_T es un valor positivo) el canal estará estrangulado y la corriente entre drenador y fuente será nula. También se puede comprobar que en este caso la tensión V_{DS} es negativa (obsérvese que con $V_{DS} < 0$ la corriente circula de S a D, por tanto por D salen - "drena" - huecos, que son los portadores mayoritarios en este tipo de canal), al igual que la I_D , si se define entrante.

En la figura 2.41 se muestran las curvas de entrada y salida para el caso de transistores MOSFET de deplexión canal **p**.

En lo que se refiere a las ecuaciones que relacionan la corriente de drenador con las tensiones en los terminales, en las tablas 2.7 y 2.8 se resumen dichas ecuaciones así como los modos de funcionamiento. Como se puede comprobar, las ecuaciones $I_D = f(V_{DS}, V_{GS})$ son idénticas a las de los transistores MOSFET de acumulación. En las figuras 2.42 y 2.43 se muestran las

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.41 Curvas características de (a) entrada y (b) salida de un transistor MOSFET de deplexión canal *p*.

Manuel Mazo, J. Jesús García Domínguez

Figura 2.43 Curvas características de (a) entrada y (b) salida de un transistor MOSFET de deplexión canal p con resistencia constante en la región óhmica para cada V_{GS}.

En lo que se refiere a los pasos a seguir para determinar la zona de funcionamiento, los flujogramas coinciden con los de los transistores MOSFET de acumulación (ver figura 2.36).

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Car

Transistor Canal n				
Símbolo:	Parámetros: $V_{\tau} < 0, k > 0$			Signo de Corrientes y tensiones:
				$V_{DS} \ge 0, I_D \ge 0$
Región de funcionamiento	Cone	diciones	Corr	rientes y circuitos en continua. $(I_G = 0, I_S = -I_D)$
CORTE	$V_{GS} \leq V_T$		<i>I</i> _D =	$\begin{array}{c} 0 \\ G \underline{\qquad} & \underbrace{ I_{D}}_{+} & D \\ V_{GS} & V_{DS} \\ \underline{- S -} \end{array}$
SATURACIÓN (ACTIVA)	$V_{GS} > V_T$	$V_{DS} \ge V_{GS} - V_T$	<i>I</i> _D =	$=\frac{k}{2}\left(V_{GS}-V_{T}\right)^{2}$
			G_	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	V XV	V ZV V	I _D	$= k \cdot \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$
$\acute{O}HMICA \qquad \qquad V_{GS} > V_T \qquad V_{DS} \leq V_T$	$V_{DS} \leq V_{GS} - V_T$	I _D =	$=rac{V_{DS}}{R_{DSON}},$	
			do	nde: $R_{DSON} = \frac{1}{\frac{k}{2}(V_{GS} - V_T)}$
gena00	CLASES	PARTICULAI DENVÍA WHA	RES, ATSAI	TUTORÍAS TÉCNICAS ONLINE PP: 689 45 44 70
5-111/1		PRIVATE LES	SSON 2:689	IS FOR SCIENCE STUDENTS 45 44 70

Tabla 2.7 Resumen sobre MOSFET de deplexión canal *n*: regiones de trabajo, parámetros,

Manuel Mazo, J. Jesús García Domínguez

Transistor Canal p					
Símbolo:	I	Parámetros:		Signo de Corrientes y tensiones:	
	V_{T}	> 0, k < 0		$V_{DS} \leq 0, I_D \leq 0$	
Región de funcionamiento	Cone	Condiciones Corriente		riente y circuitos equivalentes $(I_G = 0, I_S = -I_D)$	
CORTE	$V_{GS} \ge V_T$		<i>I</i> _D =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
SATURACIÓN (ACTIVA)	$V_{GS} < V_T$	$V_{DS} \le V_{GS} - V_T$	<i>I</i> _D =	$=\frac{k}{2}\left(V_{GS}-V_{T}\right)^{2}$	
			G_	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	V	$V \ge V - V$	I_D =	$= k \cdot \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$	
ÓHMICA	$V_{GS} < V_T$	$\mathbf{v}_{DS} \leq \mathbf{v}_{GS} - \mathbf{v}_{T}$	I_D	$=\frac{V_{DS}}{R_{DSON}},$	
			do	nde: $R_{DSON} = \frac{1}{\frac{k}{2}(V_{GS} - V_T)}$	
			G.	<u> </u>	
rtagenaC		SES PARTICI MA O ENVÍA V 	ULAR WHA ⁻	ES, TUTORÍAS TÉCNIC ISAPP: 689 45 44 70	AS ONLINE
0)		INE PRIVATE	ELES	SONS FOR SCIENCE S 689 45 44 70	TUDENTS

 Tabla 2.8
 Resumen sobre MOSFET de deplexión canal p: regiones de trabajo, ecuaciones, ...

Manuel Mazo, J. Jesús García Domínguez

Ejemplo 2.14

Obtener el punto de polarización del circuito de la figura E.2.17a.

Solución

Suponiendo que el transistor esta en zona activa el circuito equivalente es el mostrado en la figura E.2.17b. A partir de la figura E.2.17b se obtiene:

Figura E.2.17 (a) Circuito del ejemplo 2.14. (b) Circuito equivalente suponiendo que el transistor está en zona activa.

$$V_{GS} = 0V.$$
 Como $V_T = -2V < V_{GS} \rightarrow$ Transitor conduce
 $I_D = \frac{k}{2}(V_{GS} - V_T)^2 = 10^{-3} \cdot (2)^2 = 4mA.$
 $V_{DS} = -I_D R_3 + V_{DD} = -4 + 10 = 6V.$

Ahora solamente hay que comprobar si se cumple la condición de saturación (activa); $V_{DS} \ge V_{GS} - V_T$. En efecto, dado que $V_{DS} = 6V$ y $V_{GS} - V_T = 0$ - (-2)=2V, se cumple la condición de saturación, y por tanto el transistor está en saturación.

Ejemplo 2.15

Dado el circuito de la figura E.2.18, con los datos de los transistores indicados, obténgase el valor de V_{0} <u>e indíquese la zona de funcionamiento, para:</u>

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura E.2.18 Circuito del ejercicio 2.15.

Solución

En primer lugar decir que el terminal de fuente de T₁ es el que está unido a V_{DD} y el de T₂ el que esta unido a masa, por tanto los drenadores de ambos transistores son los que están unidos. En consecuencia V_{GS1} = V_i -V_{DD} y V_{GS2} =V_i Además se sabe que V_{T1}=2V, V_{T2}= -2 V, k₁=- 4mA/V² y k₂= 4mA/V²

a) En este caso Vi=7V, por tanto: $V_{GS1} = V_i - V_{DD} = 2 V y V_{GS2} = V_i = 7V$, lo que hace que T_1 está **cortado** y T_2 conduzca. Esto supone que $V_0 = 0 V$. dado que $V_0 = V_{DS2} = 0 V$. y al cumplirse que $V_{DS2} < V_{GS2} - V_{T2}$ el transistor está en zona **óhmica** ($I_D = 0$, $V_{DS} = 0$).

b) Para Vi =-5 V. se tiene: $V_{GS1} = V_i - V_{DD} = -10 V. y V_{GS2} = V_i = -5V.$ Por tanto T_2 está **cortado** y T_1 conduce. Suponiendo que T1 está en zona óhmica, se tiene: $I_{D1} = -V_{DD}/(R_{DSON} + R_L)$, con $R_{DSON} = 2/k_1(V_{GS1} - V_{T1}) = 1/24 k\Omega$ Por tanto: $I_{D1} = -5/(1 + 1/24) = -4.8 mA.$ Esto supone que: $V_{DS1} = I_{D1}R_{DSON} = -0.2V.$ Dado que $V_{DS1} > V_{GS1} - V_{T1}$, entonces T1 está en zona óhmica y $V_0 = -I_{D1}R_L = 4.8V.$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura E.2.19 Circuito del ejemplo 2.16.

Solución

Curva de entrada

Para obtener esta curva se ha fijado el generador V2 a -5V; y se ha variado el generador V1 de 4.5V a -4.5V, con incrementos de 0.1V. Los resultados se muestran en la figura E.2.20.

Figura E.2.20 Curva de entrada del transistor del ejemplo 2.16.

Obsérvese que se ha representado la curva $-I_D$, para que los resultados sean similares a los mostrados en la figura 2.43. Como se puede observar en la gráfica, $V_T = 4V$.

Curva de salida

En este caso, los dos generadores son variables: V1, de 0 a 4V, con incrementos de 1V; y V2 de 0 a -5V, con incrementos de -1V. Los resultados obtenidos se muestran en la figura E.2.21.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura E.2.21 Curva de salida del transistor del ejemplo 2.16.

Al igual que en el caso anterior, se han cambiado los signos de los ejes para que el aspecto de la curva sea similar al de la figura 2.43.

2.6 Transistores MESFET

Los transistores MESFET responden a la estructura mostrada en la figura 2.44.b, y su símbolo se muestra en la figura 2.44.a. Como se puede ver su desarrollo se hace sobre la base del Arseniuro de Galio (GaAs), aprovechando la alta movilidad del electrón en este tipo de material. Con ello se consigue que los MESFET tengan velocidades de respuesta muy elevadas, lo que hace que estos dispositivos sean utilizados en circuitos analógicos de alta frecuencia (microondas) y en sistemas digitales de alta velocidad. El inconveniente más importante de los MESFET es que la densidad de integración es baja comparada con los MOSFET. Sobre la estructura MESFET (figura 2.44.b) decir que la zona de drenador y fuente están formadas por dos islas tipo n fuertemente dopadas (\mathbf{n}^+), el canal tipo n se forma en el proceso de fabricación del dispositivo, con la implantación de iones en un sustrato de GaAs intrínseco. Obsérvese que la puerta de aleación metálica y el canal forman una unión rectificadora Schottky.

Si se compara la estructura MESFET de la figura 2.44 con la del MOSFET de deplexión canal n (figura 2.38a) se puede comprobar que existe un gran parecido, si bien en el caso del MOSFET de deplexión entre el terminal de puerta y el canal existe un aislante (SiO₂). Sin embargo se puede ver que se trata de un transistor de puerta de unión (al igual que los JFETs). Indicar también, que normalmente el terminal de sustrato esta unido al de fuente (de ahí que en el símbolo sólo aparecen tros terminales).

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

condiciones no existirá corriente de drenador, con independencia del valor de V_{DS} (obsérvese que V_{DS} es positiva, ya que los portadores mayoritarios son electrones). El

Figura 2.44 Transistor MESFET , (a) Símbolo, (b) sección transversal de la estructura de un MESFET de GaAs moderno.

valor de la tensión V_{GS} umbral para la que la zona de vaciamiento se expande por todo el canal, con independencia de V_{DS} , se representa por V_T (V_T es negativa).

4. $O \ge V_{GS} > V_T$: para valores de V_{GS} superiores a V_T pero inferiores a cero (en realidad la tensión V_{GS} puede llegar a tener un valor algo positivo, siempre que se garantice que la unión rectificadora no quede polarizada en directo) la zona de vaciamiento no llega a expandirse por todo el canal y por tanto si $V_{DS} > 0$ existirá corriente por el canal. La variación de la corriente por el canal en función de V_{GS} y V_{DS} es muy similar a la de los MOSFET de deplexión. El razonamiento para llegar a deducir cualitativamente la variación de I_D con V_{DS} (para una V_{GS} dada), antes (región óhmica) y después (región de saturación) de alcanzar el estrangulamiento del canal es similar al que se ha realizado para otros tipos de transistores unipolares.

Es importante tener presente que para garantizar que $I_G = 0$ la unión rectificadora puerta-canal debe estar polarizada en inverso, esto es $V_{GS} \le 0$ (suponiendo que la unión conduce para tensiones superiores a OV.)

En la figura 2.45 se muestran las curvas características de entrada y salida de los transistores MESFET. Como se puede observar son similares a las de los MOSFET de deplexión canal *n*.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.45 Curvas características de (a) entrada y (b) salida de un transistor MESFET

2.7 Efectos de segundo orden en transistores unipolares.

Al igual que se hizo en los transistores bipolares, en este apartado se van a presentar los efectos de segundo orden más importantes de los transistores FET. Dentro de estos efectos cabe destacar:

Modulación de la longitud del canal y Efecto Early. Tensión de ruptura. Efecto de la temperatura

2.7.1 Modulación de la longitud del canal y Efecto Early

Un efecto similar, en concepto y efecto global, a la modulación de base de los BJTs, ocurre en los transistores unipolares. Si bien en estos últimos el efecto se debe a la modulación de la longitud del canal. Para comprender este efecto supongamos un transistor MOSFET de acumulación canal *n* (conclusiones similares se obtienen para los otros tipos de transistores unipolares). Una vez que se alcanza el estrangulamiento del canal (figura 2.46.a) si se sigue incrementando la tensión V_{DS} la zona de vaciamiento, que se genera entorno al terminal drenador (zona con mayor polarización inversa), invade la zona del canal, tal como se muestra en la figura 2.46.b, y esto hace que la longitud efectiva del canal (L_E) sea inferior al valor

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.46 Ejemplos ilustrativos de la variación de la longitud del canal en función de la tensión V_{DS} .

Esta dependencia se puede modelar de forma sencilla, ya que el efecto Early también se aplica a los transistores unipolares. En la figura 2.47 se muestra el efecto de la modulación de longitud de canal, donde V_A es la tensión Early (para los JFET la tensión Early se suele denotar por 1/ λ). A partir de la figura 2.47 puede escribir:

$$\frac{I_D}{V_{GS} - V_T + V_A} = \frac{I_D}{V_{DS} + V_A} \to I_D = I_D \cdot \frac{V_{DS} + V_A}{V_{GS} - V_T + V_A} \approx I_D \cdot \frac{V_{DS} + V_A}{V_A} <2.76>$$

por tanto:

$$I'_{D} = \frac{k}{2} (V_{GS} - V_{T})^{2} (1 + \frac{V_{DS}}{V_{A}})$$
 <2.77>

esta última expresión se puede poner:

$$I_{D} = \frac{k}{2} (V_{GS} - V_{T})^{2} (1 + \frac{V_{DS}}{V_{A}}) = \frac{k}{2} (V_{GS} - V_{T})^{2} + \frac{V_{DS}}{\frac{V_{A}}{k(V_{GS} - V_{T})^{2}}} = \frac{k}{2} (V_{GS} - V_{T})^{2} + \frac{V_{DS}}{r_{0}} < 2.78 > 0$$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura 2.47 Curvas características de salida de transistores unipolares considerando el efecto de la modulación de longitud de canal (efecto Early).

Si se considera el efecto Early en el circuito equivalente en la región de saturación hay que incluir una resistencia r_0 en paralelo con el generador de corriente, tal como se pone de manifiesto en la ecuación <2.78>. Obsérvese que en los transistores canal $n V_{DS}$, k y V_A son positivas, mientras que en los canal p éstos son negativos. En la figura 2.48 se muestra el circuito equivalente en la zona de saturación considerando el efecto Early. Las expresiones y circuito equivalente (figura 2.48) son válidas para todos los transistores unipolares.

Figura 2.48 Circuito equivalente en la región de saturación (activa) de transistores unipolares considerando el efecto Early.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

En las figuras 2.49.a y b se muestran las curvas características de salida, en las que se refleja la tensión de ruptura, para el caso de transistores unipolares de puerta de unión (figura 2.49.a) y de puerta aislada (figura 2.49.b).

Como se puede observar en los transistores de puerta de unión (figura 2.49.a) la tensión de ruptura es función de la tensión V_{GS} ; cuanto mayor sea la magnitud de V_{GS} más pequeña es la magnitud de la tensión V_{DS} para alcanzar la ruptura. La justificación de esta dependencia, es porque la ruptura se produce cuando la tensión entre puerta y canal excede un valor crítico. Esto es, la unión puerta-canal al estar polarizada en inverso existe un limite en el valor de esta tensión antes de que se produzca el fenómeno de avalancha y esta tensión inversa depende tanto de V_{GS} como de V_{DS} .

Figura 2.49 Curvas características de salida en las que se refleja la ruptura (a) JFETs, (b) MOSFETs.

Para los transistores de puerta aislada (figura2.49.b) el fenómeno de la avalancha se debe a la polarización en inverso del transistor bipolar que se forma entre drenador-sustrato-fuente. Lógicamente en este caso la tensión de puerta no tiene efecto alguno sobre la polarización en inverso de las uniones de dicho transistor bipolar y por ello la tensión de ruptura es independiente de V_{GS} .

2.7.3 Efecto de la temperatura

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Esta es la causa fundamental de que los parámetros k e I_{DSS} también disminuyen, y en consecuencia el valor de la corriente de drenador. En la figura 2.50.a se muestra la variación de las características de salida con la temperatura.

En lo que se refiere a las tensiones umbrales ($V_T y V_P$) su variación con la temperatura se puede aproximar por:

$$V_{T,P}(T) = V_{T,P}(T_R) \pm C(T - T_R) \begin{cases} - \text{ para canales } n \\ + \text{ para canales } p \end{cases}$$

donde C es aproximadamente 2mV/°C .

Figura 2.50 Variación de las características de los transistores unipolares con la temperatura. (a) características de entrada, (b) características de salida para el caso de MOSFETs y JFETs canal n.

Ejemplo 2.17

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Figura E.2.22 Curva de entrada a diferentes temperaturas.

2.8. Ejercicios

Problema 2.1

En el circuito de la figura P.2.1, calcule: a) Valores de R_L para que el JFET esté en saturación. b) La caída de tensión sobre la resistencia R_{I} , si ésta toma un valor de 0,5 K Ω .

Datos: $|I_{DSS}| = 20 \text{ mA}; |V_P| = 4V$

Solución

a) $R_L \ge 0.4K$ b) $V_{RL}=2.3V$

Vee

10V

Problema 2.2

En el circuito de la figura P.2.2, calcule los valores de V_{bb} para que T1esté saturado.

Datos:

Transistor BIPOLAR: $|V_{BEV}| = 1V$; $|V_{CESAT}| = 0V$; $\beta = 100$ Transistor UNIPOLAR: $|I_{DSS}| = 20 \text{ mA}; |V_P| = 4V$

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS

CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

a) Tipo de JFET para que el transistor bipolar no esté cortado,
y el JFET funcione en las zonas permitidas.
b) Punto de trabajo de ambos transistores: Van la Java

b) Punto de trabajo de ambos transistores: $V_{\text{CE}},~I_{\text{C}},~I_{\text{B}},~V_{\text{DS}},~I_{\text{D}},~V_{\text{GS}}.$

Datos:

Solución

a) Canal P b) Transistor bipolar en activa. JFET: I_D = -20mA; V_{GS} =0; V_{DS} = -5.4V BIPOLAR: I_B =20 mA; I_C =400mA; V_{CE} = 6V.

Problema 2.4

Al circuito de la figura P.2.4 se le aplica una señal V_{gg} como la indicada en la figura P.2.5. En la figura P.2.6 se muestra la característica de salida del JFET. Se pide:

a) Represente gráficamente la señal V_{salida} en función del tiempo, e indique el punto de funcionamiento del FET sobre la figura P.2.6, para los distintos intervalos de tiempo.

b) Para el caso de t \leq t_o, si la resistencia se conecta entre el terminal 2 y masa, y la batería V_o entre el terminal 1 y masa(terminal negativo a masa), ¿ cuál es el nuevo valor de la tensión en bornas de la resistencia R ?

Datos: $R=1/3 \text{ K}\Omega$; $V_o = 12V$; $Rg = 2,5M\Omega$.

Manuel Mazo, J. Jesús García Domínguez

Solución

a) $t \le t_o$ Saturación $V_{SALIDA} = 1V$. $t_o < t \le t_1$ Óhmica $V_{SALIDA} = 9.6V$. $t_1 < t \le t_2$ Saturación $V_{SALIDA} = 9V$. $t > t_2$ Corte $V_{SALIDA} = 0V$. b) Idéntico al caso anterior.

Problema 2.5

El circuito mostrado en la figura P.2.7 representa una fuente de corriente constante $I_{D'}$ por lo que el transistor Q_1 debe estar saturado. Suponiendo que el comportamiento de los transistores en zona óhmica se puede considerar como una resistencia entre drenador y surtidor. Se pide:

a) Demuestre que estando Q₁ saturado, Q₂ no puede estar en saturación.

b) Si el transistor Q_2 se encuentra en zona óhmica, dibuje su circuito equivalente indicando valores y calcúlese el valor de I_p .

Datos:

 $\begin{array}{l} V_{dd} = 50V \\ |I_{DSS}| = 2 \text{ mA}; \quad |V_{P}| = 2V \end{array}$

Solución

a) Para resolver este apartado se debe demostrar que $I_{D1} \in I_{D2}$ (corrientes de drenador por cada transistor) son distintas, siendo físicamente la misma corriente I_{D} . b) $I_{D}=0.763$ mA.

Problema 2.6

Se dispone del circuito de la figura P.2.8 y de las curvas características del transistor (figura P.2.9). A la vista de estos datos, calcule los valores

 $de V_{P'}, I_{DSS}, I_{D}, V_{DS} y V_{GS}.$

Indique la zona de funcionamiento del transistor.

Manuel Mazo, J. Jesús García Domínguez

Figura P.2.7

Solución

Functionamiento en zona de saturación. I_D= 16.6mA; V_{GS}= -0.5V; V_{DS}= 7.5V; V_P= -6V; I_{DSS}= 20 mA.

Problema 2.7

Sabiendo que el transistor de la figura P.2.10 está polarizado en la zona de saturación, calcule el margen de valores de R_s que garantiza una corriente de drenador comprendida entre 6 y 8 mA.

Datos:

Vdd= 12V; R1=100K Ω ; R2= 20K Ω FET: I_{DSS} = 8 mA; |V_P| = 2V

Solución

 $250\Omega \leq R_{s} \leq 378\Omega$

Problema 2.8

De la característica de transferencia $I_D = f(V_{GS})$ de un transistor FET obtenida en el laboratorio, se obtiene que $I_{DSS} = -5$ mA y $V_P = 5$ V. Calcule I_D cuando el transistor está polarizado con $V_{GS} = 1$ V y $V_{DS} = -2$ V.

Manuel Mazo, J. Jesús García Domínguez

b) Calcule los valores de K₁ y K₂ para que el transistor trabaje siempre en zona de saturación, llegando hasta el límite de las zonas de óhmica y corte.

Datos: $|V_P| = 2 V$; $|I_{DSS}| = 2 mA$ Vdd=6 V; Rg=100 K Ω ; Rd= 1 K Ω ; Rs= 1 K Ω

Solución

a) Para trabajar en saturación, -2V \leq V_{GS} \leq 0 b) K₁=0; K₂=2

Problema 2.10

En el circuito de la figura P.2.12, calcule la tensión de salida (Vs) en las siguientes situaciones.

a) Ve = 0Vb) Ve = 5V

Datos:

 $|V_T| = 2V; |K| = 2mA/V^2$

Solución

Ve(V)	Vs(V)	
0	4.8	
5	0	

Problema 2.11

En el circuito de la figura P.2.13, en el que $V_{DS1} = 10V$, calcule:

a) Estado de T1 y valor de Rd1.

b) Valores de Rd2 para que T2 esté en saturación.

c) Suponiendo que Rd2=Rd1, calcule el nuevo valor de Rd3 para que T3 esté en zona óhmica.

d) Demuestre que si Rd1 = Rd2 = Rd3 = Rd(cualquier valor) todos

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Vcc=20V

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Vdd

Solución

a) T1 saturado, Rd1= 4K b) Rd2 \leq 6K c) Rd3 \geq 6K

Problema 2.12

En los circuitos de las figuras P.2.14, P.2.15 y P.2.16, calcule el valor de la tensión de salida cuando las diferentes entradas valgan 0 y 5V (todas las combinaciones posibles).

Datos:

 $Vdd = 5V; |V_{T}| = 3V; |K_{DEPLEXION}| < < |K_{ACUMULACION}|$

Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 2002.

Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.

Fig	ura	Ρ.	2.	1	6

V1(V)	V2(V)	Vs(V)
0	0	≈Vdd
0	5	≈0
5	0	≈0
5	5	≈0

Problema 2.13

El circuito de la figura P.2.17 representa una etapa de control de un transistor MOS construida con un transistor JFET. Se pide:

a) Identifique el tipo de JFET, e indique cuales son los terminales de ambos transistores. ¿ A qué potencial (masa o Vo) se debe conectar el sustrato del transistor 2 ?

b) Sabiendo que R1 y R2 son iguales y de valor 100 K Ω , determine el valor de R3 para que la tensión existente en sus extremos sea de 8V. En estas condiciones, calcule el punto de trabajo de ambos transistores.

c) Si en un momento determinado se cortocircuita R2 (suponiendo R3 el valor calculado en el apartado anterior) ¿ Cuál es el nuevo punto de trabajo de T1 ? ¿ Conducirá en este caso el transistor T2 ?

Datos:

JFET: $|V_P| = 4V$; $|I_{DSS}| = 100 \text{ mA}$ MOS: $|V_T| = 5V$; $|K| = 40 \text{ mA/V}^2$

Solución

a) Canal N; el sustrato se debe llevar a Vo. b) $R_3=320\Omega$; FET: $V_{GS}=-2V$, $V_{DS}=4V$, $I_D=25mA$; PMOS: cortado c) FET: $V_{GS}=-2.81V$, $V_{DS}=9.19V$, $I_D=8.8mA$; PMOS: conduce

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Figura P.2.17

Manuel Mazo, J. Jesús García Domínguez

a) Valor de V_T y K del transistor unipolar.

b) Punto de polarización de ambos transistores cuando V1 = 8V.

Datos:

T2: $|V_{BE}| = 0.6V$; $|V_{CEsat}| = 0.2$ V; $\alpha_F = 0.88$

Solución

a) $V_T = 4V$; K=5mA/V² b) BIPOLAR: saturado, I_B= 31.3mA, I_C=200mA; NMOS: I_D=31.3 mA, V_{DS}=3.13V, V_{GS}=8V.

Problema 2.15

En la figura P.2.20 se muestra el circuito base de una puerta lógica constituida con transistores unipolares. Obtenga el valor de Vo(t) si las señales de entrada (Va y Vb) son las mostradas en la figura P.2.21. Suponga un funcionamiento ideal de los transistores en las distintas zonas de trabajo.

Datos:

FET: $|V_P| = 5.5V$; $|I_{DSS}| = 5.5 \text{ mA}$; $|BV_{DSS}| = 23V$ MOS: $|V_T| = 3V$; $|BV_{DS}| = 32 \text{ V}$; $I_D = 16 \text{ mA para } V_{GS} = 7V \text{ y } V_{DS} = 10V$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Vss = 5V

Figura P.2.21

Solución

Va(V)	Vb(V)	Vo(V)
-5	-5	0
0	-5	-3.33
0	0	-4
-5	0	-3.33

Problema 2.16

En el circuito de la figura P.2.22 se pide:

1. Suponiendo V_A (tensión de Early) = , calcule el punto de funcionamiento del transistor. **2.** Con $V_A = 100$ V, calcule el valor de $\mathbf{r_0}$ y el nuevo punto de funcionamiento del transistor.

Datos:

 $\begin{array}{ll} \mathsf{K} &= 0.5 \mbox{ mA/V}^2 \\ \mathsf{V}_{\scriptscriptstyle T} &= 2 \mbox{ V}. \end{array}$

Vcc = 20 V.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez

Suponiendo que la movilidad de los portadores en los transistores unipolares disminuye con la temperatura según la relación empírica μ (T) = μ (T₀) (T₀/T)^{1.5}, con T y T₀ en grados Kelvin, y que la tensión umbral disminuye aproximadamente 2mV/°C, obtenga los valores de K y V_T a T = -20°C, suponiendo que los valores a T₀ = 25°C son 0.2 mA/V² y V_T = 0.7 V.

Solución

 $K = 0.512 \text{ mA/V}^2$; $V_T = 0.79 \text{V}$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Manuel Mazo, J. Jesús García Domínguez