Sec. 7.5 / Vortex Lattice Method 363
_ -
1 -
P10+ A !
Yin = Ym [ \/(x,,, - xln) + (}’m - yln) -
. - ~ =
_ 0 1.0+ . Xm _ X2n - } (7.44)
Yan = Ym| V(xm — 2%2,)° + (Ym — Yan)“

Summing the contributions of all the vortices to the downwash at the control point of
the mth panel,

2N
W = D) W (7.45)
n=1

Let us now apply the tangency requirement defined by equations (7.41) and (7.42).
Since we are considering a planar wing in this section, (dz/dx),, = 0 everywhere and
¢ = 0.The component of the free-stream velocity perpendicular to the wing is Uy sin a
at any point on the wing. Thus, the resultant flow will be tangent to the wing if the total
vortex-induced downwash at the control point of the mth panel, which is calculated
using equation (7.45) balances the normal component of the free-stream velocity:

W,, + Usxsina = 0 (7.46)

For small angles of attack,
Wy, = —Uoot (7.47)

In Example 7.2, we will solve for the aerodynamic coefficients for a wing that has
arelatively simple planform and an uncambered section. The vortex lattice method will
be applied using only a single lattice element in the chordwise direction for each span-
wise subdivision of the wing. Applying the boundary condition that there is no flow
through the wing at only one point in the chordwise direction is reasonable for this flat-
plate wing. However, it would not be adequate for a wing with cambered sections or a
wing with deflected flaps.

EXAMPLE 7.2: Use the vortex lattice method (VLM) to calculate
the aerodynamic coefficients for a swept wing

Let us use the relations developed in this section to calculate the lift coeifi-
cient for a swept wing. So that the calculation procedures can be easily fol-
lowed, let us consider a wing that has a relatively simple geometry (i.e., that
illustrated in Fig. 7.31). The wing has an aspect ratio of 5, a taper ratio of
unity (i.e., ¢, = ¢;), and an uncambered section (i.e., it is a flat plate). Since
the taper ratio is unity, the leading edge, the quarter-chord line, the three-
quarter-chord line, and the trailing edge all have the same sweep, 45°. Since

AR = =—S-

and since for a swept, untapered wing

S = bc
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Figure 7.31 Four-panel representation of a swept planar wing,
taper ratio of unity, AR = 5, A = 45°.

itis clear that b = 5¢. Using this relation, it is possible to calculate all of the
necessary coordinates in terms of the parameter b. Therefore, the solution
does not require that we know the physical dimensions of the configuration.

The flow field under consideration is symmetric with respect to the y = 0 plane
(xz plane); that is, there is no yaw. Thus, the lift force acting at a point on the star-
board wing (+y) is equal to that at the corresponding point on the port wing
(—y)- Because of symmetry, we need only to solve for the strengths of the vor-
tices of the starboard wing. Furthermore, we need to apply the tangency condi-
tion [i.e., equation (7.47)] only at the control points of the starboard wing.
However, we must remember to include the contributions of the horseshoe
vortices of the port wing to the velocities induced at these control points (of the
starboard wing). Thus, for this planar symmetric flow, equation (7.45) becomes

N N
Wy = 2 Wi ns + E W, np
n=1 n=1
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where the symbols s and p represent the starboard and port wings,
respectively.

The planform of the starboard wing is divided into four panels, each
panel extending from the leading edge to the trailing edge. By limiting our-
selves to only four spanwise panels, we can calculate the strength of the
horseshoe vortices using only a pocket electronic calculator. Thus, we can
more easily see how the terms are to be evaluated. As before, the bound
portion of each horseshoe vortex coincides with the quarter-chord line of its
panel and the trailing vortices are in the plane of the wing, parallel to the x
axis. The control points are designated by the solid symbols in Fig. 7.31.
Recall that (x,,, y,,, 0) are the coordinates of a given control point and that
(%125 Y1r,0) and (xa,, }5,., 0) are the coordinates of the “ends” of the
bound-vortex filament AB. The coordinates for a 4 X 1 lattice (four span-
wise divisions and one chordwise division) for the starboard (right) wing
are summarized in Table 7.2.

Using equation (7.44) to calculate the downwash velocity at the CP of
panel 1 (of the starboard wing) induced by the horseshoe vortex of panel 1
of the starboard wing,

Iy 1.0
Wi1s = 5

47 | (0.1625b)(—0.06255) — (0.03755)(0.0625b)
(0.1250)(0.1625b) + (0.12505)(0.0625b)

[ V/(0.1625b)? + (0.0625b)?
(0.12505)(0.0375b) + (0.1250b)(—0.0625b)]

B V/(0.03756) + (~0.0625b )

, 10 [ .\ 0.1625b ]
—00625b[ " \/(0.1625b)? + (0.0625b)% ]

10 [1 0 0.0375b —}
0.0625b| " 1/(0.0375b)% + (—0.0625b)>

Iy .
= ——(—16.3533 — 30.9335 — 24.2319)
47b

TABLE 7

.2 Coordinates of the Bound Vortices and of the Control Points

of the Starboard {Right) Wing

Panel

Xm Ym X1n Yin X2n Yan

BWN -

0.2125b  0.0625b 0.0500b 0.00006 0.1750b 0.1250b
0.3375b  0.1875b 0.1750b 0.1250b 0.3000b 0.2500b
0.4625b  0.3125b 0.3000b 0.2500b 0.4250b 0.3750b
0.5875b  0.4375b 0.4250b 0.3750b 0.5500b 0.5000b
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Note that, as one would expect, each of the vortex elements induces a nega-
tive (downward) component of velocity at the control point. The student
should visualize the flow induced by each segment of the horseshoe vortex
to verify that a negative value for each of the components is intuitively cor-
rect. In addition, the velocity induced by the vortex trailing from A to o is
greatest in magnitude. Adding the components together, we find

r
Wy g5 = Zﬁ(—n.sm)

The downwash velocity at the CP of panel 1 (of the starboard wing)
induced by the horseshoe vortex of panel 1 of the port wing is

I 1.0
Wi1p = 477{((),0375b)(0.0625b) — (0.1625b)(0.1875b)

(—0.12505)(0.0375b) + (0.1250b)(0.1875b)
[ V/(0.0375b)% + (0.1875b)?

(—0.12505)(0.1625b) + (0.1250b)(0.0625b)
- V/(0.1625b)% + (0.0625b)> ]

10 [, 0.0375b
—0.1875b| T /(0.0375b)? + (0.1875b)?_

————1 10+
—0.0625b | V/(0.1625b)% + (0.0625b)>

10 [ 0.1625b T}

I

= —6.0392 — 63793 + 30.933
1op [ —6:039 793 + 30.9335)

I
= = (18.5150)

Similarly, using equation (7.44) to calculate the downwash velocity at
the CP of panel 2 induced by the horseshoe vortex of panel 4 of the star-
board wing, we obtain

r, 1.0
Wt = Y {(—0.0875b)(—0.3125b) — (~0.2125b)(~0.1875b)

(0.1250b)(—0.0875b) + (0.1250b)(—0.1875b)
[ V/(—0.0875b)% + (—0.1875b)>
(0.1250b)(—0.2125b) + (0.1250b)(—0.3125b)]
) V(=0.2125b)* + (—0.3125b)2
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— -—

0 —0.
1 10 0.0875b

+
0.1875b | V/(—0.0875b)* + (—0.1875b)>

+

__Lo [, —0.2125b —}
03125 " \/(-0.2125b)* + (—0.3125b)_

4
= ——[-0.60167 + 3. — 1.4006
47rb[ 7 + 3.07795 — 1.40061]

_ T
= - (1.0757)

Again, the student should visualize the flow induced by each segment to verify that
the signs and the relative magnitudes of the components are individually correct.

Evaluating all of the various components (or influence coefficients),
we find that at control point 1

1

wy = 7 [(~TLSI8TL; + 1129331, + LO75TT; + 03775T),
+ (+18.5150T; + 2.0504T, + 0.5887T5 + 0.2659T),]
AtCP2,
1

wy = 5 —[(+202174T; ~ TL5187T; + 11293305 + 1.0757Ty),

+ (+3.6144T; + 1.17421, + 0.4903T'; + 0.2503T%),,]
AtCP3, '

1 .
ws = 7=-[(+3.8792I'; + 20.2174T, — 71518713 + 11.2933T ),

+ (+1.5480T; + 0.7227T, + 0377613 + 0.2179T) ]
At CP 4,

1
wy = 7 —[(+1.6334T + 3.8792T; + 20.2174T; - TL5187T,),

+ (+0.8609T; + 0.4834T, + 0.2895T5 + 0.18361',),]

Since it is a planar wing with no dihedral, the no-flow condition of equation
(7.47) requires that

. w) = Wy = w3 = Wy = ~Una
Thus
—53.0037T; + 13.34371, + 1.6644T"3 + 0.6434I'y = —4mwbU
+23.8318I"; — 70.3445T", + 11.7836I'; + 1.3260T; = —47wbU
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+54272T°; + 209401, — 71.14111; + 11.5112F; = —47bU 0
+2.4943T"; + 4.36260", + 20.50691'; — 71.3351I'y = —4wbU o
Solving for I';, I’;,I';, and I'y, we find that

T, = +0.0273(4mbU ) (7.482)
I, = +0.0287(4mbUsoc) (7.48b)
T3 = +0.0286(4mbUcoct) (7.48¢)
Iy = +0.0250(47bUcoct) (7.48d)

Having determined the strength of each of the vortices by satisfying
the boundary conditions that the flow is tangent to the surface at each of the
control points, the lift of the wing may be calculated. For wings that have no
dihedral over any portion of the wing, all the lift is generated by the free-
stream velocity crossing the spanwise vortex filament, since there are no side-
wash or backwash velocities. Furthermore, since the panels extend from the
leading edge to the trailing edge, the lift acting on the nth panel is

1, = peUsel, (7.49)

which is also the lift per unit span. Since the flow is symmetric, the total lift
for the wing is

0.5
L=2 f PoclUooI'(y) dy (7.50a)
0

or, in terms of the finite-element panels,
4
L = 2pUs >, ThAy, (7.50b)
n=1

Since Ay, = 0.1250b for each panel,

L = 2poUocdmbU o0ax(0.0273 + 0.0287 + 0.0286 + 0.0250)0.1250b
= peol/Zb?ma(0.1096)

To calculate the lift coefficient, recall that S = bc and b = Sc for this
wing. Therefore,

L
CL=—2==1
L P 1.0967ra
Furthermore,
dc,
Cra= —d_aL = 3.443 per radian = 0.0601 per degree

Comparing this value Cy,_, with that for an unswept wing (such as the results pre-
sented in Fig. 7.14), it is apparent that an effect of sweepback is the reduction
in the lift-curve slope.
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o Data from Weber and Brebner (1958)

— Inviscid solution using VLM for 4 X 1 lattice
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Figure 7.32 Comparison of the theoretical and the experimental
lift coefficients for the swept wing of Fig. 7.31 in a subsonic stream.

The theoretical lift curve generated using the VLM is compared in Fig.
7.32 with experimental results reported by Weber and Brebner (1958). The
experimentally determined values of the lift coefficient are for a wing of con-
stant chord and of constant section, which was swept 45° and which had an
aspect ratio of 5. The theoretical lift coefficients are in good agreement with
the experimental values.

Since the lift per unit span is given by equation (7.49), the section lift coefficient for the
T nth panel is

! or
Cintn) = T3 =

= (7.51)
2 pooU gocav Ucocav

e

When the panels extend from the leading edge to the trailing edge, such as is the case
for the 4 X 1 lattice shown in Fig. 7.31, the value of I given in equation (7.48) is used







