Métodos Matemáticos de Bioingeniería
Grado en Ingeniería Biomédica
Lecture 20

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos

10 de mayo de 2021
Outline

1. Scalar and Vector Line Integrals
 - Scalar line integral
 - Vector line integral
 - Differential form of the line integral
 - Effect of reparametrization
 - Closed and simples curves

2. Green’s Theorem
 - Definition
 - Examples
1 Scalar and Vector Line Integrals
 - Scalar line integral
 - Vector line integral
 - Differential form of the line integral
 - Effect of reparametrization
 - Closed and simples curves

2 Green’s Theorem
 - Definition
 - Examples
Scalar and Vector Line Integrals

Scalar line integral

Scalar Line Integral as a limit of a Riemann sum

- Let \(\mathbf{x} : [a, b] \to \mathbb{R}^3 \) be a path of class \(C^1 \)
- Let \(f : X \subseteq \mathbb{R}^3 \to \mathbb{R} \) be a continuous function
- Suppose that domain \(X \) contains the image of \(\mathbf{x} \), so that the composite \(f(\mathbf{x}(t)) \) is defined
- As with every other integral, the scalar line integral is a limit of appropriate Riemann sums
- Consider a partition of \([a, b]\)

\[
a = t_0 < t_1 < \cdots < t_k < \cdots < t_n = b
\]
Scalar Line Integral as a limit of a Riemann sum

\[a = t_0 < t_1 < \cdots < t_k < \cdots < t_n = b \]

- Let us think of
 - The image of the path \(\mathbf{x} \) as representing an idealized wire in space
 - \(f(\mathbf{x}(t)) \) as the electrical charge density of the wire

Then, the Riemann sum approximates the total charge of the wire

\[
\text{Total charge} = \lim_{\Delta t_k \to 0} \sum_{k=1}^{n} f(\mathbf{x}(t_k^*)) \Delta s_k
\]
Definition 1.1: Scalar Line Integral

- The **scalar line integral** of f along the C^1 path x is

\[\int_a^b f(x(t)) \| x'(t) \| \, dt \]

- We denote this integral

\[\int_x f \, ds \]

Remarks

- The line integral represents a sum of values of f along x, times “infinitesimal” pieces of **arclength** of x
Remarks

- **Definition 1.1** can be made for arbitrary n, that is, for functions f defined on domains in \mathbb{R}^n for arbitrary n.

Remarks

- We can still define the scalar line integral if:
 - x is not of class C^1, but only "piecewise" C^1
 - $f(x(t))$ is only piecewise continuous
Example 1

- Let $f(x, y, z) = xy + z$ and $\mathbf{x} : [0, 2\pi] \rightarrow \mathbb{R}^3$ be the helix

 $$\mathbf{x}(t) = (\cos t, \sin t, t)$$

- We compute

 $$\int_{\mathbf{x}} f \, ds = \int_{0}^{2\pi} f(\mathbf{x}(t)) \|\mathbf{x}'(t)\| \, dt$$

- First, from the double-angle formula

 $$f(\mathbf{x}(t)) = \cos t \sin t + t = \frac{1}{2} \sin 2t + t$$

 $$\mathbf{x}'(t) = (-\sin t, \cos t, 1)$$

 $$\|\mathbf{x}'(t)\| = \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2}$$
Example 1

\[f(x, y, z) = xy + z \quad \text{and} \quad x(t) = (\cos t, \sin t, t) \]

\[f(x(t)) = \cos t \sin t + t = \frac{1}{2} \sin 2t + t \]

\[x'(t) = (-\sin t, \cos t, 1), \quad \|x'(t)\| = \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2} \]

Thus

\[
\int_{x} f \, ds = \int_{0}^{2\pi} f(x(t))\|x'(t)\| \, dt = \int_{0}^{2\pi} \left(\frac{1}{2} \sin 2t + t \right) \sqrt{2} \, dt \\
= \sqrt{2} \int_{0}^{2\pi} \left(\frac{1}{2} \sin 2t + t \right) \, dt = \sqrt{2} \left[-\frac{1}{4} \cos 2t + \frac{1}{2} t^2 \right]_{0}^{2\pi} \\
= \sqrt{2} \left(\left(-\frac{1}{4} + 2\pi^2 \right) - \left(-\frac{1}{4} + 0 \right) \right) = 2\sqrt{2}\pi^2
\]
Example 2

Let \(f(x, y) = y - x \) and let \(\mathbf{x} : [0, 3] \rightarrow \mathbb{R}^2 \) be the planar path

\[
\mathbf{x}(t) = \begin{cases}
(2t, t) & \text{if } 0 \leq t \leq 1 \\
(t + 1, 5 - 4t) & \text{if } 1 < t \leq 3
\end{cases}
\]

Hence, \(\mathbf{x} \) is piecewise \(C^1 \) path

The two path segments defined for \(t \) in \([0, 1]\) and for \(t \) in \([1, 3]\) are each of class \(C^1 \)
Example 2

Let \(f(x, y) = y - x \) and let \(\mathbf{x} : [0, 3] \to \mathbb{R}^2 \) be the planar path

\[
\mathbf{x}(t) = \begin{cases}
(2t, t) & \text{if } 0 \leq t \leq 1 \\
(t + 1, 5 - 4t) & \text{if } 1 < t \leq 3
\end{cases}
\]

Thus

\[
\int_{\mathbf{x}} f \, ds = \int_{\mathbf{x}_1} f \, ds + \int_{\mathbf{x}_2} f \, ds
\]
Example 2

Let \(f(x, y) = y - x \) and let \(x : [0, 3] \rightarrow \mathbb{R}^2 \) be the planar path

\[
x(t) = \begin{cases}
(2t, t) & \text{if } 0 \leq t \leq 1 \\
(t + 1, 5 - 4t) & \text{if } 1 < t \leq 3
\end{cases}
\]

Thus

\[
\int_x f \ ds = \int_{x_1} f \ ds + \int_{x_2} f \ ds
\]

where

- \(x_1(t) = (2t, t) \) for \(0 \leq t \leq 1 \)
- \(x_2(t) = (t + 1, 5 - 4t) \) for \(1 < t \leq 3 \)

It is easy to see that

\[
\|x_1'(t)\| = \sqrt{5} \quad \text{and} \quad \|x_2'(t)\| = \sqrt{17}
\]
Example 2

Let \(f(x, y) = y - x \) and let \(x : [0, 3] \to \mathbb{R}^2 \) be the planar path

\[
x(t) = \begin{cases}
(2t, t) & \text{if } 0 \leq t \leq 1 \\
(t + 1, 5 - 4t) & \text{if } 1 < t \leq 3
\end{cases}
\]

\|x_1'(t)\| = \sqrt{5} \text{ and } \|x_2'(t)\| = \sqrt{17}

Thus

\[
\int_{x_1} f \, ds = \int_0^1 f(x_1(t)) \|x_1'(t)\| \, dt = \int_0^1 (t - 2t) \cdot \sqrt{5} \, dt = -\frac{\sqrt{5}}{2} t^2 \bigg|_0^1 = -\frac{\sqrt{5}}{2}
\]

\[
\int_{x_2} f \, ds = \int_1^3 f(x_2(t)) \|x_2'(t)\| \, dt = \int_1^3 ((5 - 4t) - (t + 1)) \cdot \sqrt{17} \, dt
\]

\[
= \sqrt{17} \left(4t - \frac{5}{2} t^2 \right) \bigg|_1^3 = -12\sqrt{17}
\]
Geometric Interpretation of Scalar Line Integrals

- Let \(f(x, y) = 2 + x^2 y \) and let \(x : [0, \pi] \rightarrow \mathbb{R}^2 \) be the planar path

\[
x(t) = (\cos t, \sin t), \quad 0 \leq t \leq \pi
\]

- Then

\[
f(x(t)) = f(x(t), y(t)) = 2 + \cos^2 t \sin t
\]

- The line integral of \(f \) along \(x \) is the area of the “fence” whose
 - Path is governed by \(x \)
 - Height is governed by \(f \)
Outline

1. Scalar and Vector Line Integrals
 - Scalar line integral
 - Vector line integral
 - Differential form of the line integral
 - Effect of reparametrization
 - Closed and simples curves

2. Green’s Theorem
 - Definition
 - Examples
Definition 1.2

- Let \(x : [a, b] \rightarrow \mathbb{R}^n \) be a path of class \(C^1 \)
- Let \(F : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a vector field
- Suppose that \(X \) contains the image of \(x \) and assume that \(F \) varies continuously along \(x \)
- The vector line integral of \(F \) along \(x : [a, b] \rightarrow \mathbb{R}^n \), is

\[
\int_x F \cdot ds = \int_a^b F(x(t)) \cdot x'(t) dt
\]

Remarks

- As with scalar line integrals, we may define the vector line integrals when \(x \) is a piecewise \(C^1 \) path
- We just need to break up the integral in a suitable manner
Example 3

- Let \mathbf{F} be the radial vector field on \mathbb{R}^3 given by
 \[\mathbf{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \]
- Let $\mathbf{x} : [0, 1] \rightarrow \mathbb{R}^3$ be the path
 \[\mathbf{x}(t) = (t, 3t^2, 2t^3) \]
- Then
 \[\mathbf{x}'(t) = (1, 6t, 6t^2) \]

\[
\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt \]
\[
= \int_{0}^{1} \left(t \mathbf{i} + 3t^2 \mathbf{j} + 2t^3 \mathbf{k} \right) \cdot \left(\mathbf{i} + 6t \mathbf{j} + 6t^2 \mathbf{k} \right) dt \\
= \int_{0}^{1} (t + 18t^3 + 12t^5) dt = \left(\frac{1}{2} t^2 + \frac{9}{2} t^4 + 2t^6 \right) \bigg|_{0}^{1} = 7
\]
Physical Interpretation of Vector Line Integrals

- Consider \(\mathbf{F} \) to be a force field in space.
- Then, the vector line integral could represent the work done by \(\mathbf{F} \) on a particle as the particle moves along the path \(\mathbf{x} \).

\[
\text{Total Work} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) \, dt = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}
\]

Simplified example

- Suppose \(\mathbf{F} \) is a constant vector field and \(\mathbf{x} \) is a straight-line.
Physical Interpretation of Vector Line Integrals

- Consider \mathbf{F} to be a force field in space.
- Then, the vector line integral could represent the work done by \mathbf{F} on a particle as the particle moves along the path \mathbf{x}.

\[
\text{Total Work} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}
\]

Simplified example

- Suppose \mathbf{F} is a constant vector field and \mathbf{x} is a straight-line.
- Then, the work done by \mathbf{F} in moving a particle from one point A along \mathbf{x} to another point B is given by

\[
\text{Work} = \mathbf{F} \cdot \Delta \mathbf{s} = \mathbf{F} \cdot (B - A)
\]
Differential Geometry Interpretation

- Suppose \(x : [a, b] \to \mathbb{R}^n \) is a \(C^1 \) path with \(x'(t) \neq 0 \) for \(a \leq t \leq b \).
- Recall that we define the **unit tangent vector** \(T \) to \(x \) by normalizing the velocity:
 \[
 T = \frac{x'(t)}{\|x'(t)\|}
 \]
- Then
 \[
 \int_x F \cdot ds = \int_a^b F(x(t)) \cdot x'(t) dt \\
 = \int_a^b (F(x(t)) \cdot T(t)) \|x'(t)\| dt = \int_x (F \cdot T) ds
 \]
Suppose \(\mathbf{x} : [a, b] \rightarrow \mathbb{R}^n \) is a \(C^1 \) path with \(x'(t) \neq 0 \) for \(a \leq t \leq b \). Then

\[
\int_{x} \mathbf{F} \cdot d\mathbf{s} = \int_{x} (\mathbf{F} \cdot \mathbf{T}) \, ds
\]

Since the dot product \(\mathbf{F} \cdot \mathbf{T} \) is a scalar quantity, we have written the original vector line integral as a scalar line integral.

It represents the (scalar) line integral of the tangential component of \(\mathbf{F} \) along the path.
Differential Geometry Interpretation

- Suppose \(\mathbf{x} : [a, b] \to \mathbb{R}^n \) is a \(C^1 \) path with \(\mathbf{x}'(t) \neq 0 \) for \(a \leq t \leq b \)

- Then

\[
\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} (\mathbf{F} \cdot \mathbf{T}) \, ds
\]
Example 4

- The circle \(x^2 + y^2 = 9 \) may be parametrized by

\[
\begin{align*}
 x &= 3 \cos t \\
 y &= 3 \sin t
\end{align*}
\]

, \(0 \leq t \leq 2\pi \)

- Hence, a unit tangent vector is

\[
T = \frac{-3 \sin t \mathbf{i} + 3 \cos t \mathbf{j}}{\sqrt{9 \sin^2 t + 9 \cos^2 t}} = -\sin t \mathbf{i} + \cos t \mathbf{j} = \frac{-y \mathbf{i} + x \mathbf{j}}{3}
\]

- Now consider the radial vector field \(\mathbf{F} = x \mathbf{i} + y \mathbf{j} \) on \(\mathbb{R}^2 \)

- At every point along the circle we have

\[
\mathbf{F} \cdot T = (x \mathbf{i} + y \mathbf{j}) \cdot \left(\frac{-y \mathbf{i} + x \mathbf{j}}{3} \right) = 0
\]
Example 4

\[
\begin{align*}
\begin{cases}
x = 3 \cos t \\
y = 3 \sin t
\end{cases}, & 0 \leq t \leq 2\pi, \quad \mathbf{T} = -\frac{y}{3} \mathbf{i} + \frac{x}{3} \mathbf{j} \quad \text{and} \quad \mathbf{F} = x \mathbf{i} + y \mathbf{j} \Rightarrow \mathbf{F} \cdot \mathbf{T} = 0
\end{align*}
\]

Thus, \(\mathbf{F} \) is always perpendicular to the curve, and

\[
\int_{x} \mathbf{F} \cdot d\mathbf{s} = \int_{x} (\mathbf{F} \cdot \mathbf{T}) \, ds = \int_{x} 0 \, ds = 0
\]

Considering \(\mathbf{F} \) as a force, no work is done.
Outline

1. Scalar and Vector Line Integrals
 - Scalar line integral
 - Vector line integral
 - Differential form of the line integral
 - Effect of reparametrization
 - Closed and simples curves

2. Green’s Theorem
 - Definition
 - Examples
Scalar and Vector Line Integrals

Green’s Theorem

Differential form of the line integral

Differential Form of the Line Integral

- Suppose that $\mathbf{x}(t) = (x(t), y(t), z(t)), a \leq t \leq b$, is a C^1 path
- Consider a continuous vector field \mathbf{F} written as

$$\mathbf{F}(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$$

- Then, from Definition 1.2 of the vector line integral, we have

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} (M(x, y, z)i + N(x, y, z)j + P(x, y, z)k) \cdot (x'(t)i + y'(t)j + z'(t)k) \, dt$$

$$= \int_{a}^{b} (M(x, y, z)x'(t) + N(x, y, z)y'(t) + P(x, y, z)z'(t)) \, dt$$

Recall that $dx = x'(t)dt, dy = y'(t)dt, dz = z'(t)dt$

$$= \int_{x} M(x, y, z)dx + N(x, y, z)dy + P(x, y, z)dz$$
Differential Form of the Line Integral

- Suppose that \(\mathbf{x}(t) = (x(t), y(t), z(t)), a \leq t \leq b \), is a \(C^1 \) path
- Consider a continuous vector field \(\mathbf{F} \) written as
 \[
 \mathbf{F}(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}
 \]
- Then, from Definition 1.2 of the vector line integral, we have
 \[
 \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} M(x, y, z)dx + N(x, y, z)dy + P(x, y, z)dz
 \]
- A notational alternative is
 \[
 \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} M \, dx + N \, dy + P \, dz
 \]

The differential form of the line integral
Suppose that \(\mathbf{x}(t) = (x(t), y(t), z(t)), a \leq t \leq b \), is a \(C^1 \) path.

Consider a continuous vector field \(\mathbf{F} \) written as

\[
\mathbf{F}(x, y, z) = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}
\]

Then, from Definition 1.2 of the vector line integral, we have

\[
\int \mathbf{F} \cdot d\mathbf{s} = \int M(x, y, z)\,dx + N(x, y, z)\,dy + P(x, y, z)\,dz
\]

A alternative notation is

\[
\int \mathbf{F} \cdot d\mathbf{s} = \int M\,dx + N\,dy + P\,dz
\]

\(M\,dx + N\,dy + P\,dz \) is itself called a differential form.

\(M\,dx + N\,dy + P\,dz \) should be evaluated using the parametric equations for \(x, y, \) and \(z \).
Example 5

- Let \(\mathbf{x} \) be the path \(\mathbf{x}(t) = (t, t^2, t^3) \) for \(0 \leq t \leq 1 \)
- We compute
 \[
 \int_{\mathbf{x}} (y + z) \, dx + (x + z) \, dy + (x + y) \, dz
 \]
- Along the path, we have
 \[
 x = t \Rightarrow dx = dt, y = t^2 \Rightarrow dy = 2t \, dt, z = t^3 \Rightarrow dz = 3t^2 \, dt
 \]
- Therefore
 \[
 \int_{\mathbf{x}} (y + z) \, dx + (x + z) \, dy + (x + y) \, dz
 = \int_0^1 (t^2 + t^3) \, dt + (t + t^3)2t \, dt + (t + t^2)3t^2 \, dt
 = \int_0^1 (5t^4 + 4t^3 + 3t^2) \, dt = (t^5 + t^4 + t^3)\Big|_0^1 = 3
 \]
Outline

1. Scalar and Vector Line Integrals
 - Scalar line integral
 - Vector line integral
 - Differential form of the line integral
 - Effect of reparametrization
 - Closed and simples curves

2. Green’s Theorem
 - Definition
 - Examples
The Effect of Reparametrization

- The unit tangent vector to a path depends on the geometry of the underlying curve

 It doesn’t depend on the particular parametrization

- We might expect the line integral likewise to depend only on the image curve

- For example, consider the following two paths in the plane

 \[
 \begin{align*}
 x &: [0, 2\pi] \to \mathbb{R}^2, \quad x(t) = (\cos t, \sin t) \\
 y &: [0, \pi] \to \mathbb{R}^2, \quad y(t) = (\cos 2t, \sin 2t)
 \end{align*}
 \]

- Both \(x \) and \(y \) trace out a circle once in a counterclockwise sense

- If we let \(u(t) = 2t \), then we see that \(y(t) = x(u(t)) \)
Definition 1.3

- Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a piecewise C^1 path
- Consider another C^1 path $\mathbf{y} : [c, d] \to \mathbb{R}^n$
- We say that \mathbf{y} is a reparametrization of \mathbf{x} if there is a one-one and onto function $u : [c, d] \to [a, b]$ of class C^1
 - With inverse $u^{-1} : [a, b] \to [c, d]$ that is also of class C^1
 - Such that $\mathbf{y}(t) = \mathbf{x}(u(t))$, that is, $\mathbf{y} = \mathbf{x} \circ u$

Remark

- Thus, any reparametrization of a path must have the same underlying image curve as the original path
Example 6

- Consider the path

\[\mathbf{x}(t) = (1 + 2t, 2 - t, 3 + 5t), \quad 0 \leq t \leq 1 \]

- It traces the line segment from the point (1, 2, 3) to the point (3, 1, 8)

1. So does the path

\[\mathbf{y}(t) = (1 + 2t^2, 2 - t^2, 3 + 5t^2), \quad 0 \leq t \leq 1 \]

- We have that \(\mathbf{y} \) is a reparametrization of \(\mathbf{x} \) via the change of variable

\[u(t) = t^2 \]
Example 6

- Consider the path

\[x(t) = (1 + 2t, 2 - t, 3 + 5t), \quad 0 \leq t \leq 1 \]

- It traces the line segment from the point \((1, 2, 3)\) to the point \((3, 1, 8)\)

2. We consider now the path \(z : [-1, 1] \rightarrow \mathbb{R}^3\)

\[z(t) = (1 + 2t^2, 2 - t^2, 3 + 5t^2), \quad -1 \leq t \leq 1 \]

- It is not a reparametrization of \(x\)
- We also have \(z(t) = x(u(t))\), where \(u(t) = t^2\)
- But in this case \(u\) maps \([-1, 1]\) onto \([0, 1]\) in a way that is not one-one
Example 6

- Consider the path

\[x(t) = (1 + 2t, 2 - t, 3 + 5t), \quad 0 \leq t \leq 1 \]

- It traces the line segment from the point \((1, 2, 3)\) to the point \((3, 1, 8)\)

3. We finally consider the path \(w : [0, 1] \rightarrow \mathbb{R}^3 \)

\[w(t) = (3 - 2t, 1 + t, 8 - 5t), \quad 0 \leq t \leq 1 \]

- It is a reparametrization of \(x \)
- We have \(w(t) = x(1 - t) \)
- So the function \(u : [0, 1] \rightarrow [0, 1] \) given by \(u(t) = 1 - t \) provides the change of variable for the reparametrization.

Geometrically, \(w \) traces the line segment between \((1, 2, 3)\) and \((3, 1, 8)\) in the opposite direction to \(x \)
Let \(y : [c, d] \to \mathbb{R}^n \) be a reparametrization of \(x : [a, b] \to \mathbb{R}^n \) via the change of variable \(u : [c, d] \to [a, b] \).

Then, since \(u \) is one-one, onto, and continuous, we must have either

1. \(u(c) = a \) and \(u(d) = b \), or
2. \(u(c) = b \) and \(u(d) = a \)

In case 1, we say that \(y \) (or \(u \)) is orientation-preserving.

\(y \) traces out the same image curve in the same direction that \(x \) does.

In case 2, we say that \(y \) (or \(u \)) is orientation-reversing.

\(y \) traces out the same image curve in the opposite direction that \(x \) does.
Example 7

- Let \(x : [a, b] \rightarrow \mathbb{R}^n \) be any \(C^1 \) path
- Then, we may define the opposite path \(x_{opp} : [a, b] \rightarrow \mathbb{R}^n \) by
 \[x_{opp}(t) = x(a + b - t) \]

That is, \(x_{opp}(t) = x(u(t)) \), where \(u : [a, b] \rightarrow [a, b] \) is given by
 \[u(t) = a + b - t \]

Clearly, then, \(x_{opp}(t) \) is an orientation-reversing reparametrization of \(x \).
Reparametrization and Velocity

In addition to reversing orientation, a reparametrization of a path can change the speed.

- This follows readily from the chain rule:
 \[
 \text{Speed of } y = \| y'(t) \| = \| u'(t) \| \| x'(t) \| = \| u'(t) \| \cdot (\text{Speed of } x)
 \]

- Since \(u \) is one-one, it follows that either:
 - \(u'(t) \geq 0 \) for all \(t \in [a, b] \) or
 - \(u'(t) \leq 0 \) for all \(t \in [a, b] \)

- The first case occurs when \(y \) is orientation-preserving
- The second case occurs when \(y \) is orientation-reversing.
Theorem 1.4

- Let \(x : [a, b] \to \mathbb{R}^n \) be a piecewise \(C^1 \) path
- Let \(f : X \subseteq \mathbb{R}^n \to \mathbb{R} \) be a continuous function whose domain \(X \) contains the image of \(x \)
- If \(y : [c, d] \to \mathbb{R}^n \) is any reparametrization of \(x \), then

\[
\int_y f \, ds = \int_x f \, ds
\]

Remark

- Theorems 1.4 tell us that scalar line integrals are independent of the way we might choose to reparametrize a path
Theorem 1.5

- Let \(x : [a, b] \rightarrow \mathbb{R}^n \) be a piecewise \(C^1 \) path.
- Let \(F : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a continuous vector field whose domain \(X \) contains the image of \(x \).
- If \(y : [c, d] \rightarrow \mathbb{R}^n \) is any reparametrization of \(x \), then
 1. If \(y \) is orientation-preserving, then
 \[
 \int_y F \cdot ds = \int_x F \cdot ds
 \]
 2. If \(y \) is orientation-reversing, then
 \[
 \int_y F \cdot ds = -\int_x F \cdot ds
 \]
Theorem 1.5

- Let \(x : [a, b] \rightarrow \mathbb{R}^n \) be a piecewise \(C^1 \) path.
- Let \(F : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a continuous vector field whose domain \(X \) contains the image of \(x \).
- If \(y : [c, d] \rightarrow \mathbb{R}^n \) is any reparametrization of \(x \), then

\[
\int_y F \cdot ds = \int_x F \cdot ds \quad \text{or} \quad \int_y F \cdot ds = -\int_x F \cdot ds
\]

Remark

- Theorems 1.5 tell us that vector line integrals are independent of reparametrization up to a sign.
- This sign depends only on whether the reparametrization preserves or reverses orientation.
Example 8

- Let \(\mathbf{F} = xi + yj \), and consider the following three paths between \((0, 0)\) and \((1, 1)\)

\[
\begin{align*}
x(t) &= (t, t), & 0 \leq t \leq 1 \\
y(t) &= (2t, 2t), & 0 \leq t \leq \frac{1}{2} \\
z(t) &= (1 - t, 1 - t), & 0 \leq t \leq 1
\end{align*}
\]

- The three paths are all reparametrizations of one another
- \(x, y, \) and \(z \) all trace the line segment between \((0, 0)\) and \((1, 1)\)
 - \(x \) and \(y \) from \((0, 0)\) to \((1, 1)\), and
 - \(z \) from \((1, 1)\) to \((0, 0)\)

- We can compare the values of the line integrals of \(\mathbf{F} \) along these paths
- The results of these calculations must agree with what Theorem 1.5 predicts
Example 8

Let \(\mathbf{F} = x\mathbf{i} + y\mathbf{j} \), and consider the following three paths between \((0, 0)\) and \((1, 1)\)

\[
\begin{align*}
\mathbf{x}(t) &= (t, t), & 0 \leq t \leq 1 \\
\mathbf{y}(t) &= (2t, 2t), & 0 \leq t \leq \frac{1}{2} \\
\mathbf{z}(t) &= (1 - t, 1 - t), & 0 \leq t \leq 1
\end{align*}
\]

\[
\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{1} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t)\,dt = \int_{0}^{1} (t\mathbf{i} + t\mathbf{j}) \cdot (\mathbf{i} + \mathbf{j})\,dt
\]

\[
= \int_{0}^{1} 2t \,dt = t^2\bigg|_{0}^{1} = 1
\]
Example 8

Let \(\mathbf{F} = xi + yj \), and consider the following three paths between \((0, 0)\) and \((1, 1)\)

\[
\begin{align*}
 \mathbf{x}(t) &= (t, t), & 0 \leq t \leq 1 \\
 \mathbf{y}(t) &= (2t, 2t), & 0 \leq t \leq \frac{1}{2} \\
 \mathbf{z}(t) &= (1 - t, 1 - t), & 0 \leq t \leq 1
\end{align*}
\]

\[
\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{\frac{1}{2}} \mathbf{F}(\mathbf{y}(t)) \cdot \mathbf{y}'(t) dt = \int_{0}^{\frac{1}{2}} (2t\mathbf{i} + 2t\mathbf{j}) \cdot (2\mathbf{i} + 2\mathbf{j}) dt \\
= \int_{0}^{\frac{1}{2}} 8t \ dt = 4t^2 \bigg|_{0}^{\frac{1}{2}} = 1
\]
Example 8

Let \(\mathbf{F} = x\mathbf{i} + y\mathbf{j} \), and consider the following three paths between \((0, 0)\) and \((1, 1)\)

\[
\begin{align*}
\mathbf{x}(t) &= (t, t), & 0 \leq t \leq 1 \\
\mathbf{y}(t) &= (2t, 2t), & 0 \leq t \leq \frac{1}{2} \\
\mathbf{z}(t) &= (1 - t, 1 - t), & 0 \leq t \leq 1
\end{align*}
\]

\[
\int_{\mathbf{z}} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{1} \mathbf{F}(\mathbf{z}(t)) \cdot \mathbf{z}'(t) dt
\]

\[
= \int_{0}^{1} ((1 - t)i + (1 - t)j) \cdot (-i - j) dt
\]

\[
= \int_{0}^{1} 2(t - 1) dt = (t - 1)^2\bigg|_{0}^{1} = -1
\]
Outline

1. Scalar and Vector Line Integrals
 - Scalar line integral
 - Vector line integral
 - Differential form of the line integral
 - Effect of reparametrization
 - Closed and simples curves

2. Green’s Theorem
 - Definition
 - Examples
Theorems 1.4 and 1.5 enable us to define line integrals over curves rather than over parametrized paths.

To be more explicit, we say that a piecewise C^1 path $\mathbf{x} : [a, b] \to \mathbb{R}^n$ is closed if $\mathbf{x}(a) = \mathbf{x}(b)$.

We say that the path \mathbf{x} is simple if it has no self-intersections.

That is, if \mathbf{x} is one-one on $[a, b]$, except possibly that $\mathbf{x}(a)$ may equal $\mathbf{x}(b)$.

Then, by a curve C, we now mean the image of a path $\mathbf{x} : [a, b] \to \mathbb{R}^n$.

This path is one-one except possibly at finitely many points of $[a, b]$.

The (nearly) one-one path \mathbf{x} will be called a parametrization of C.
Closed and Simple Curves

- Not simple, not closed
- Simple, not closed
- Not simple, closed
- Simple, closed
Example 9

Consider the ellipse

\[\frac{x^2}{25} + \frac{y^2}{9} = 1 \]

It is a simple, closed curve that may be parametrized by either

\[
x(t) = (5 \cos t, 3 \sin t), \quad x : [0, 2\pi] \to \mathbb{R}^2
\]

or

\[
y(t) = (5 \cos 2(\pi - t), 3 \sin 2(\pi - t)), \quad y : [0, \pi] \to \mathbb{R}^2
\]
Example 9

- Consider the ellipse

\[\frac{x^2}{25} + \frac{y^2}{9} = 1 \]

- Consider now the path

\[z(t) = (5 \cos t, 3 \sin t), \quad z : [0, 6\pi] \rightarrow \mathbb{R}^2 \]

- It is not a parametrization, since it traces the ellipse three times as \(t \) increases from 0 to \(6\pi \). \(z \) is not one-one.
Example 10

- Let C be the upper semicircle of radius 2, centered at $(0, 0)$ and oriented counterclockwise from $(2, 0)$ to $(-2, 0)$.
- We calculate
 \[\int_C (x^2 - y^2 + 1) \, ds \]
- We can choose any parametrization for C, for instance,
 \[
 \begin{align*}
 \mathbf{x}(t) & = (2 \cos t, 2 \sin t), \quad 0 \leq t \leq \pi \\
 \text{or} \\
 \mathbf{y}(t) & = (-2 \cos 2t, -2 \sin 2t), \quad -\frac{\pi}{2} \leq t \leq 0
 \end{align*}
 \]
- Note that $\mathbf{y}(t) = \mathbf{x}(2t + \pi)$.
Example 10

Let C be the upper semicircle of radius 2, centered at $(0, 0)$ and oriented counterclockwise from $(2, 0)$ to $(-2, 0)$.

We calculate

$$\int_C (x^2 - y^2 + 1) \, ds$$

$$x(t) = (2 \cos t, 2 \sin t), \quad 0 \leq t \leq \pi$$

Then

$$\int_C (x^2 - y^2 + 1) \, ds = \int_x (x^2 - y^2 + 1) \, ds$$

$$= \int_0^\pi (4 \cos^2 t - 4 \sin^2 t + 1) \sqrt{4 \sin^2 t + 4 \cos^2 t} \, dt$$

By the double-angle formula $\cos(2t) = \cos^2 t - \sin^2 t$

$$= \int_0^\pi (4 \cos 2t + 1) 2 \, dt = 2 (\sin 2t + t)|_0^\pi = 2\pi$$
Example 10

- Let C be the upper semicircle of radius 2, centered at $(0, 0)$ and oriented counterclockwise from $(2, 0)$ to $(-2, 0)$
- We calculate
 \[
 \int_C (x^2 - y^2 + 1) \, ds
 \]
- $y(t) = (-2 \cos 2t, -2 \sin 2t), \quad -\frac{\pi}{2} \leq t \leq 0$
- Then
 \[
 \int_C (x^2 - y^2 + 1) \, ds = \int_y (x^2 - y^2 + 1) \, ds
 \]
 \[
 = \int_{-\pi/2}^{0} (4 \cos^2 2t - 4 \sin^2 2t + 1) \sqrt{16 \sin^2 2t + 16 \cos^2 2t} \, dt
 \]
 By the double-angle formula
 \[
 = \int_{-\pi/2}^{0} (4 \cos 4t + 1) \, 4 \, dt = 4 (\sin 4t + t)|_{-\pi/2}^{0} = 2\pi
 \]
Example 11

Consider the force

\[\mathbf{F} = x\mathbf{i} - y\mathbf{j} + (x + y + z)\mathbf{k} \]

We calculate the work done by the force \(\mathbf{F} \) on a particle that moves

- Along the parabola \(y = 3x^2 \), \(z = 0 \)
- From the origin to the point \((2, 12, 0) \)
Example 11

Consider the force

\[\mathbf{F} = x \mathbf{i} - y \mathbf{j} + (x + y + z) \mathbf{k} \]

Along \(y = 3x^2, \ z = 0 \), from \((0, 0, 0)\) to \((2, 12, 0)\)

We parametrize the parabola by

\[x = t, \ y = 3t^2, \ z = 0 \] for \(0 \leq t \leq 2 \)

Then, by Definition 1.2

\[
\text{Work} = \int_C \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_0^2 \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) \, dt
\]

\[
= \int_0^2 \left(t, -3t^2, t + 3t^2 \right) \cdot (1, 6t, 0) \, dt = \int_0^2 (t - 18t^3) \, dt
\]

\[
= \left(\frac{1}{2} t^2 - \frac{9}{2} t^4 \right) \bigg|_0^2 = 2 - 72 = -70
\]
Example 11

Consider the force

\[\mathbf{F} = x \mathbf{i} - y \mathbf{j} + (x + y + z) \mathbf{k} \]

Along \(y = 3x^2, \ z = 0 \), from \((0, 0, 0)\) to \((2, 12, 0)\)

We parametrize the parabola by

\[x = t, \ y = 3t^2, \ z = 0 \text{ for } 0 \leq t \leq 2 \]

Then, by Definition 1.2

\[
\text{Work} = \int_C \mathbf{F} \cdot d\mathbf{s} = \int_x \mathbf{F} \cdot d\mathbf{s} = \int_0^2 \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) \, dt = -70
\]

The meaning of the negative sign is that by moving along the curve in the indicated direction, work is done against the force.
Example 11

- Consider the force
 \[\mathbf{F} = x \mathbf{i} - y \mathbf{j} + (x + y + z) \mathbf{k} \]
 Along \(y = 3x^2, \, z = 0 \), from \((0, 0, 0)\) to \((2, 12, 0)\)

- We parametrize the parabola by \(x = t, \, y = 3t^2, \, z = 0 \) for \(0 \leq t \leq 2 \)

- Then, by Definition 1.2
 \[
 \text{Work} = \int_C \mathbf{F} \cdot d\mathbf{s} = \int_x \mathbf{F} \cdot d\mathbf{s} = \int_0^2 \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) \, dt = -70
 \]

- If we orient the curve the opposite way, then the work done in moving from \((2, 12, 0)\) to \((0, 0, 0)\) would be 70
Outline

1. Scalar and Vector Line Integrals
 - Scalar line integral
 - Vector line integral
 - Differential form of the line integral
 - Effect of reparametrization
 - Closed and simples curves

2. Green’s Theorem
 - Definition
 - Examples
Theorem 2.1: Green’s Theorem

- Let D be a closed, bounded region in \mathbb{R}^2
- Assume its boundary $C = \partial D$ consists of finitely many simple, closed, piecewise C^1 curves
- Orient the curves of C so that D is on the left as one traverses C

If $\mathbf{F}(x, y) = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ is a vector field of class C^1 throughout D, then

$$\oint_C M\,dx + N\,dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \,dxdy$$
Theorem 2.1: Green’s Theorem

If \(\mathbf{F}(x, y) = M(x, y)\mathbf{i} + N(x, y)\mathbf{j} \) is a vector field of class \(C^1 \) throughout \(D \), then

\[
\int_C M\,dx + N\,dy = \int \int_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \,dxdy
\]

The symbol \(\oint_C \) indicates that the line integral is taken over one or more closed curves.

Green’s Theorem relates the vector line integral around a closed curve \(C \) in \(\mathbb{R}^2 \) to an appropriate double integral over the plane region \(D \) bounded by \(C \).
Outline

1. Scalar and Vector Line Integrals
 - Scalar line integral
 - Vector line integral
 - Differential form of the line integral
 - Effect of reparametrization
 - Closed and simples curves

2. Green’s Theorem
 - Definition
 - Examples
Example 1

Let \(\mathbf{F} = xy \mathbf{i} + y^2 \mathbf{j} \) and let \(D \) be the first quadrant region bounded by the line \(y = x \) and the parabola \(y = x^2 \).

\(\partial D \) is oriented counterclockwise, the orientation stipulated by the statement of Green’s Theorem.

We can calculate

\[
\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \int_{\partial D} xy \, dx + y^2 \, dy
\]
Example 1

Let \(\mathbf{F} = xy \mathbf{i} + y^2 \mathbf{j} \) and let \(D \) be the first quadrant region bounded by the line \(y = x \) and the parabola \(y = x^2 \).

We need to parametrize the two \(C^1 \) pieces of \(\partial D \) separately.

\[C_1 : \begin{cases} x = t \\ y = t^2 \end{cases} , \quad 0 \leq t \leq 1 \quad \text{and} \quad C_2 : \begin{cases} x = 1 - t \\ y = 1 - t \end{cases} , \quad 0 \leq t \leq 1 \]

Note the orientations of \(C_1 \) and \(C_2 \).
Example 1

\(\mathbf{F} = xy \mathbf{i} + y^2 \mathbf{j} \), \(D \) be the first quadrant bounded by \(y = x \) and \(y = x^2 \)

\(C_1 : \begin{cases} x = t \\ y = t^2 \end{cases} \), \(0 \leq t \leq 1 \) and \(C_2 : \begin{cases} x = 1 - t \\ y = 1 - t \end{cases} \), \(0 \leq t \leq 1 \)

Then

\[
\oint_{\partial D} xy \, dx + y^2 \, dy = \oint_{C_1} xy \, dx + y^2 \, dy + \oint_{C_2} xy \, dx + y^2 \, dy
\]

\[
= \int_0^1 (t \cdot t^2 + t^4 \cdot 2t) \, dt + \int_0^1 ((1 - t)^2 + (1 - t)^2) \, (-dt)
\]

\[
= \int_0^1 (t^3 + 2t^5) \, dt + \int_0^1 2(1 - t)^2 \, (-dt)
\]

\[
= \left(\frac{1}{4} t^4 + \frac{2}{6} t^6 \right) \bigg|_0^1 + \left(\frac{2}{3} (1 - t)^3 \right) \bigg|_0^1 = \frac{1}{4} + \frac{2}{6} - \frac{2}{3} = -\frac{1}{12}
\]
Example 1

\[\mathbf{F} = xy \mathbf{i} + y^2 \mathbf{j}, \quad D \text{ be the first quadrant bounded by } y = x \text{ and } y = x^2 \]

\[C_1 : \begin{cases}
 x = t \\
 y = t^2
\end{cases}, \quad 0 \leq t \leq 1 \quad \text{and} \quad C_2 : \begin{cases}
 x = 1 - t \\
 y = 1 - t
\end{cases}, \quad 0 \leq t \leq 1 \]

On the other hand

\[
\int \int_D \left(\frac{\partial}{\partial x} (y^2) - \frac{\partial}{\partial y} (xy) \right) \, dx \, dy = \int_0^1 \int_{x^2}^x -x \, dy \, dx
\]

\[
= \int_0^1 -x (x - x^2) \, dx = \int_0^1 (x^3 - x^2) \, dx = \left(\frac{1}{4}x^4 - \frac{1}{3}x^3 \right) \bigg|_0^1
\]

\[
= \frac{1}{4} - \frac{1}{3} = -\frac{1}{12}
\]

The line integral and the double integral agree.
Example 2

- Let C be the circle of radius a, oriented counterclockwise.
- Then, C is the boundary of the disk D of radius a.

We calculate the line integral

$$\oint_C -y \, dx + x \, dy$$

- Although we can parametrize C and thus evaluate the line integral, it is easier to employ Green’s Theorem instead.
Example 2

- Let C be the circle of radius a, oriented counterclockwise.
- Then, C is the boundary of the disk D of radius a.

We calculate line integral

\[\oint_C -y\, dx + x\, dy = \iint_D \left(\frac{\partial}{\partial x}(x) - \frac{\partial}{\partial y}(-y) \right)\, dx\, dy \]

\[= \iint_D 2\, dx\, dy = 2(\text{Area of } D) = 2\pi a^2 \]
Generalization of Example 2

- Suppose D is any region to which Green’s Theorem can be applied.
- Then, orienting ∂D appropriately, we have

$$\frac{1}{2} \oint_{\partial D} - y \, dx + x \, dy = \frac{1}{2} \int \int_{D} 2 \, dx \, dy = \text{Area of } D$$

- Thus, we can calculate the area of a region (two-dimensional) by using line integrals (one-dimensional)
Example 3

We compute the area inside the ellipse

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]

The ellipse itself may be parametrized counterclockwise by

\[
\begin{cases}
 x = a \cos t \\
 y = b \sin t
\end{cases}, \quad 0 \leq t \leq 2\pi
\]
Example 3

- We compute the area inside the ellipse
 \[
 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad \begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, \quad 0 \leq t \leq 2\pi
 \]

- Then
 \[
 \text{Area of ellipse} = \frac{1}{2} \oint_{\partial D} -y \, dx + x \, dy
 \]
 \[
 = \frac{1}{2} \int_0^{2\pi} -b \sin t (-a \sin t \, dt) + a \cos t (b \cos t \, dt)
 \]
 \[
 = \frac{1}{2} \int_0^{2\pi} (ab \sin^2 t + ab \cos^2 t) \, dt = \frac{1}{2} \int_0^{2\pi} ab \, dt = \pi ab
 \]