Fundamental Concepts of Statistics

Exercise session 3

1. Find expressions for the approximate mean and variance of \(Y = g(X) \) with \(g(x) = \log x \)

2. If \(X \) is uniformly distributed on \([10, 20]\) find the approximate and exact mean and variance of \(1/X \) and compare them.

3. Find the approximate mean and variance of \(Y = \sqrt{X} \) when \(X \) is a random variable following a Poisson distribution with mean \(\lambda \).

4. If \(X \) is distributed as \(N(75, 100) \), find \(P(X < 60) \) and \(P(70 < X < 100) \).

5. If \(X \) is distributed as \(N(\mu, \sigma^2) \), find \(b \) such that \(P(-b < \frac{X-\mu}{\sigma} < b) = 0.90 \).

6. If \(X \) is distributed as \(N(\mu, \sigma^2) \) so that \(P(X < 89) = 0.90 \) and \(P(X < 94) = 0.95 \), find \(\mu \) and \(\sigma^2 \).

7. If \(X \) is distributed as \(N(5, 10) \), find \(P(0.04 < (X - 5)^2 < 38.4) \).

8. If \(X \) is distributed as \(N(1, 4) \), find \(P(1 < X^2 < 9) \).

9. If \(X \) is distributed as \(N(\mu, \sigma^2) \), show that \(E[|X - \mu|] = \sigma \sqrt{2/\pi} \).