

Tecnología Electrónica

Capítulo 7: Circuitos de Potencia.

Análisis Térmico.

Versión: 2017/04/04

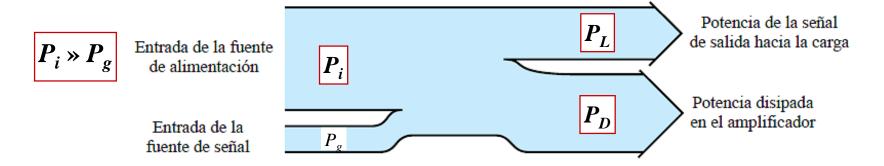
- 1. Introducción
 - 1.1 Circuitos y sistemas de potencia
- 2. Consideraciones térmicas
 - Régimen estático.
 Límites de funcionamiento en potencia.
 - 2.2. Disipación de calor. Curva de degradación.
 - 2.3. Radiadores
 - 2.4. Zonas de operación segura.
 - 2.5. Régimen dinámico. Cte. de tiempo térmica.

1. Introducción

- Gestión eficiente de los recursos energéticos
 - Una de las áreas más importantes en los Sistemas Electrónicos
- Campos de acción
 - Desde la generación hasta la aplicación
 - Criterios de eficiencia: disminuir las pérdidas en todo el proceso

1.1 Amplificación de potencia

- Primer contacto con los sistemas de potencia
 - Caso concreto: amplificación de señal
 - Requisito principal de diseño: potencia requerida en la carga
 - Condicionado por la aplicación final
 - Algunos ejemplos sobre amplificadores de audio:
 - Teléfono móvil: (10-100) mW
 - TV doméstica: (1-10) W
 - Equipo musical: (10-100) W
 - Actuaciones públicas: (1-10) kW
 - Otros requisitos: soluciones en etapas previas o con otras técnicas
 - Linealidad, respuesta en frecuencia, ganancia, etc. → Realimentación
- □ Elementos centrales de estudio en este tema:
 - Configuraciones típicas en amplificadores de potencia
 - Estimación de las potencias útiles y disipadas
 - Protección de los dispositivos activos



1.2. Rendimiento

Flujo de energía

- Fuentes de energía primaria (f. de al.): baterías, red eléctrica...
 - El generador de señal en sí no aporta una energía significativa
- El circuito de potencia convierte esta energía en potencia de señal sobre la carga
 - Pero sólo una parte llega a la carga, el resto se pierde en forma de calor

Definición de rendimiento η:

$$\eta = \frac{\text{Potencia útil en la carga}}{\text{Potencia entrada al circuito}} = \frac{P_L}{P_i + P_g} \bigg|_{P_i? P_g} \approx \frac{P_L}{P_i}$$

1.2. Rendimiento

- Es un factor de mérito en los circuitos de potencia
 - Interesan configuraciones o circuitos con rendimientos altos
- $lue{}$ Dato de diseño: Potencia necesaria en la carga, P_L
 - El rendimiento de una configuración determina:
 - Las **pérdidas** previstas, normalmente en forma de **calor**
 - La energía de entrada necesaria, aportada por la f. de alimentación
- □ En el estudio aplicaremos la idea de *balance de potencias*:

$$P_{entrada} = P_{salida} \Leftrightarrow P_i = P_L + P_D$$

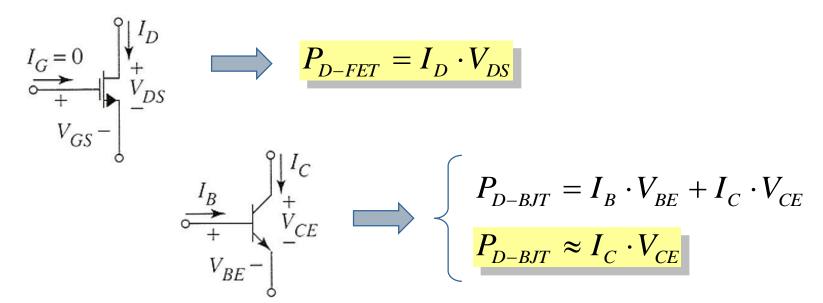
$$P_D = P_i - P_L = \left(\frac{1}{\eta} - 1\right)P_L$$

1.2. Rendimiento

- Las pérdidas son un problema importante...
- □ Ejemplo 1:
 - El transmisor de radio de una emisora comercial tiene un rendimiento del **80%**. Determine qué potencia tiene que disipar éste si la potencia de salida en antena es de **500kW**. ¿Qué hacer con el calor generado?

□ Ejemplo 2:

- Para un reproductor de música portátil se dispone de una batería cuya energía máxima almacenable es de **2Wh**. Para el amplificador, se estudian dos chips, A y B, con los siguientes rendimientos: η_A =70% y η_B =90%. En las pruebas, se entrega a los auriculares una potencia media de **100mW**.
 - 1-¿Qué tiempo máximo aguantará la batería?
 - 2-¿Cuantas horas más durará la batería del modelo B respecto al modelo A?

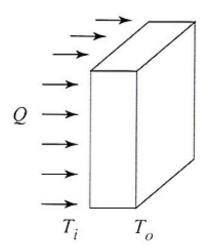


2. Consideraciones térmicas. Introducción.

- □ La potencia disipada en los elementos activos (P_D) se transforma en calor y su temperatura crece.
 - El dispositivo puede *destruirse* si la temperatura es excesiva
 - Por otro lado, la **vida útil** del dispositivo disminuye de forma aprox. exponencial con la temperatura: $mayor T \rightarrow menor t_{vida}$
- Determinación de P_D
 - Introducción al problema: estudio en continua de disp. activos

2. Consideraciones térmicas. Introducción.

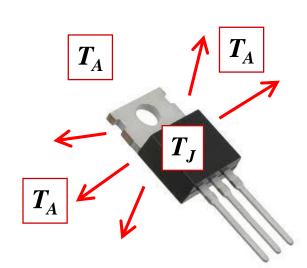
- Procesos de transferencia del calor en dispositivos electrónicos
 - *Radiación*. Emisión electromagnética que no necesita de un medio material para propagarse (infrarrojos).
 - *Convección*. Transmisión del calor entre un sólido y el fluido que lo rodea (por ejemplo: el aire; líquido refrigerante; etc.)
 - Convección natural: flujo sin intervención externa.
 - Convección forzada: se aumenta el flujo → ventiladores o bombas.
 - **Conducción**. Entre sólidos, el flujo de calor va de los materiales más calientes a los más fríos.
- En los sistemas electrónicos estos efectos se combinan en diferentes grados. En función de la precisión deseada se tienen:
 - **Estudios detallados**: modelos complicados → diseño CAD
 - **Estudios simplificados** → análisis manual aproximado
 - Estudio estático: condiciones estables, con pocas variaciones
 - Estudio dinámico: ciertas variaciones en el tiempo (t).



2.1. Transferencia de calor: modelo estático

- \square Estudio inicial: condiciones estáticas $[\neq f(t)]$
 - Conducción: La transferencia de calor entre dos elementos a diferentes temperaturas es proporcional a la diferencia de temperaturas:

$$Q = \frac{1}{k} (T_i - T_0) \frac{\text{Julios}}{\text{s} \cdot \text{m}^2}$$

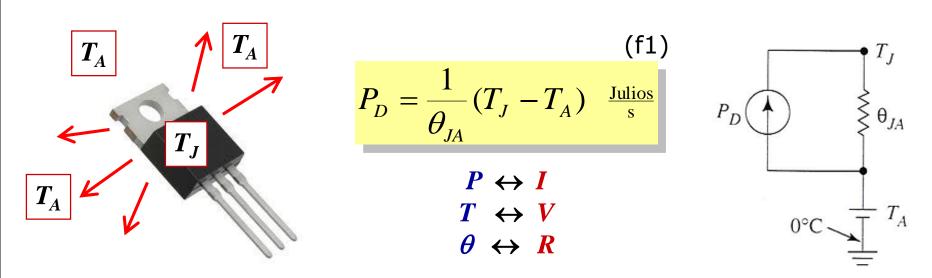

Aplicado a los transistores en régimen continuo, se tiene:

$$P_D = \frac{1}{\theta_{JA}} (T_J - T_A) \frac{\text{Julios}}{\text{s}}$$

J = unión (junction)

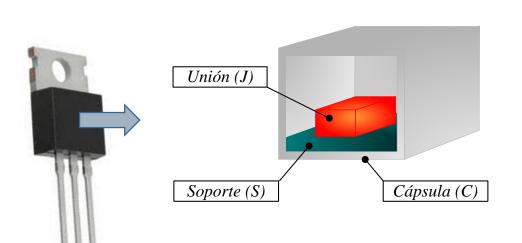
A = ambiente

 θ_{JA} = resistencia térmica, de J a A dada en °C/W (ó en K/W)



2.1. Transferencia de calor: circuito térmico

- Es útil establecer una analogía con un "circuito térmico"
 - La forma de la ecuación es similar a la Ley de Ohm (*térmica*)


- La analogía eléctrica (f1) facilita el análisis
 - Estudiando los elementos que forman el circuito térmico podemos estimar los valores de temperatura en los diversos puntos de interés.

2.1.1. Circuitos térmicos en dispositivos

- □ El circuito térmico identifica cada elemento del proceso de transferencia del calor en los dispositivos electrónicos
 - La **resistencia térmica** puede modelar efectos combinados de transferencia de calor → el fabricante proporciona este valor.
 - Conocidos los detalles constructivos del dispositivo, podemos evaluar las condiciones de trabajo del semiconductor conociendo las características térmicas de cada elemento.
- □ De donde se genera el calor (unión) al ambiente, se tiene:

Sentido de la transferencia del calor $T_{J} \quad \theta_{JS} \quad T_{S} \quad \theta_{SC} \quad T_{C} \quad \theta_{CA} \quad T_{A}$ $\bullet \quad \bigvee \quad \bullet \quad \bigvee \quad \bullet$ Unión Soporte Cápsula Ambiente

$$R_{th} = \theta_{JA} = \theta_{JS} + \theta_{SC} + \theta_{CA}$$

2.1.1. Circuitos térmicos en dispositivos

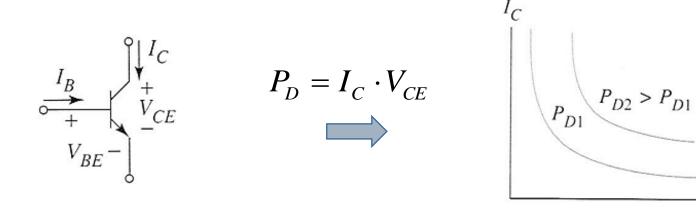
- Usando la analogía de los circuitos térmicos obtendremos resultados fiables con un esfuerzo de cálculo reducido.
- Ejercicio: un cierto componente conectado en un circuito, está disipando una potencia de 5W.

Se sabe que
$$\theta_{JS}$$
 = 5°C/W, θ_{SC} = 1°C/W y θ_{CA} = 3°C/W

- a) Halle la temperatura en la cápsula, en el soporte y en la unión del componente, si la temperatura ambiente es de 25°C.
- b) Supóngase ahora que, con las mismas resistencias térmicas y a la misma temperatura ambiente, se mide en la cápsula una temperatura de 55°C:
 - ¿Qué potencia estará disipando el componente?
 - ¿A qué temperatura estará ahora la unión?

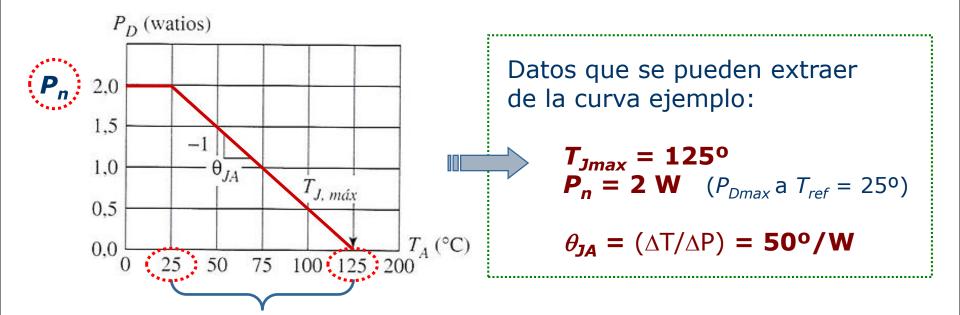
Soluciones. (a) TJ=70°C; TS=45°C; TC=40°C. (b) PD=10W; TJ=115°C

2.1.2. Límites de funcionamiento prácticos


- En sistemas de potencia, se somete a los dispositivos a condiciones límite
 - Tensiones y corrientes altas, potencias altas → temperaturas altas
 - Es necesario prevenir la rotura de los mismos
- Límites del dispositivo en potencia
 - Potencias y temperaturas están ligadas
 - La rotura por temperatura (quema) marca un máximo: T_{Jmax}
 - Este límite varía entre 125° y 200°
 - La potencia disipada o disipable por el dispositivo dependerá también de la temperatura ambiente: T_A
 - Esta es la que rodea al dispositivo en sí: el cristal semiconductor
 - Encapsulados, cajas, ventilaciones, etc. afectan mucho a este valor.
- El fabricante indica unos límites de funcionamiento
 - Hay que saber identificarlos y respetarlos adecuadamente

2.2. Hipérbolas de disipación de potencia

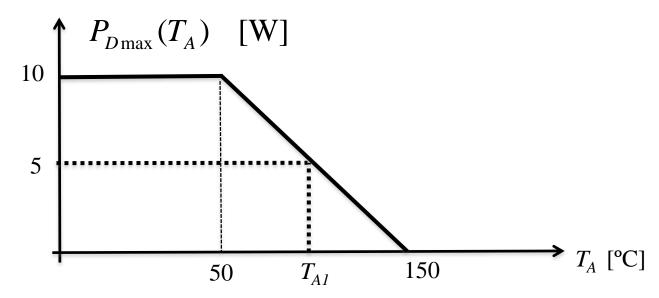
Reflejan sobre las curvas de salida el límite de P_D


- El punto de trabajo del transistor debe estar bajo la hipérbola correspondiente a P_{Dmax}
- El valor de P_{Dmax} se obtiene de la llamada curva de degradación, con los datos de los límites proporcionados por el fabricante:
 - Temperatura máxima de la unión: T_{Jmax}
 - Potencia disipable máxima, respecto a una T de referencia: P_{tot} a este valor se le conoce además como Potencia Nominal, P_n
 - Resistencia térmica del dispositivo: θ_{JA} o θ_{JC} (C = case, cápsula)

2.2. Curva de degradación

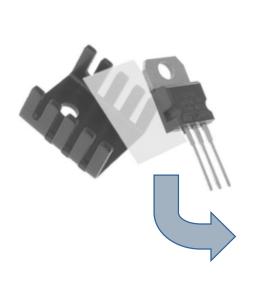
- $lue{}$ Refleja la disminución de la $m{P_D}$ conforme aumenta $m{T_A}$
 - En todo caso, se limita P_D a su valor a una T_{ref} dada.
 - Otros nombres: "curva de desvataje" o "derating curve"

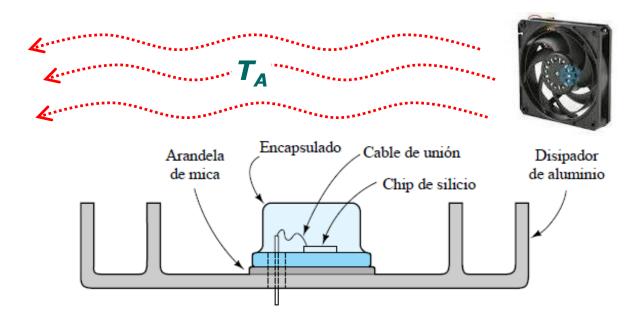
$$P_D = \frac{1}{\theta_{JA}} (T_J - T_A)$$


La zona de caída de P_D se corresponde con la Ley de Ohm térmica entre las temperaturas: T_{ref} y T_{Jmax}

2.2. Curva de degradación. Ejercicio

- En la figura se ha representado la curva de desvataje de un componente dado.
 - a) Obténgase la P_n , la T_{Jmax} y la R_{th} .
 - b) ¿A qué temperatura se puede disipar el 50% de la P_n como máximo?
 - c) En todas las condiciones de trabajo en que la temperatura ambiente es de 60° C se quiere disipar el 100% de P_n . Analícese qué posibilidades hay para conseguirlo.

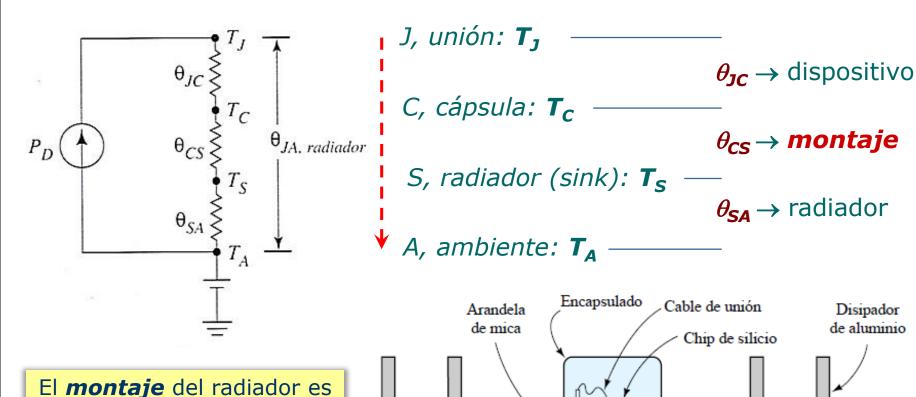

2.3. Disipación del calor: radiadores



■ Límite de funcionamiento: T_{Jmax}

 $P_{D\max} = \frac{1}{\theta_{JA}} (T_{J\max} - T_A)$

- □ iPodemos aumentar **P**_{Dmax}!
 - Disminuyendo $T_A \leftarrow recuérdese$ que es la inmediata al dispositivo
 - Líquidos de refrigeración, convección forzada (ventiladores), etc...
 - Aumentando la capacidad de transferir calor al ambiente
 - Encapsulados apropiados (p.e. metálicos) + Radiadores



2.3. Circuito térmico con radiadores

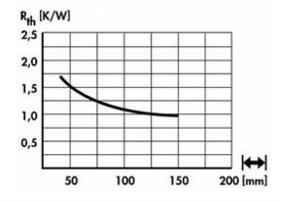
El circuito térmico ha de tener en cuenta todos los elementos por donde se realiza la transferencia de calor:

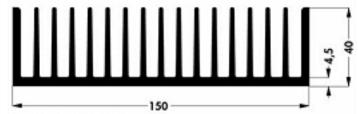
vital para tener un θ_{CS} bajo: aislante + grasa + tornillos

Disipador

de aluminio

2.3. Radiadores y disipadores

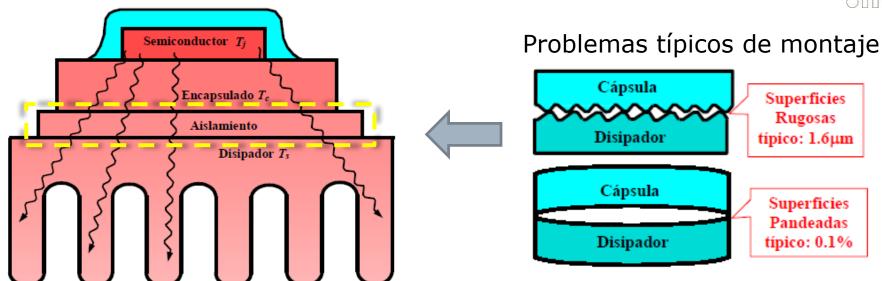


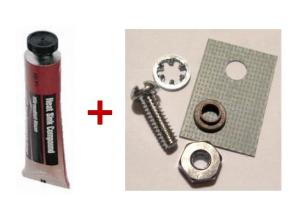

- Elementos diseñados para favorecer la evacuación de calor en los dispositivos electrónicos
 - Metálicos. En su caso, pintados en color radiante apropiado (negro)
 - Perfilados y mecanizados en función del tipo de componente
 - Disponibles para convección natural, forzada, por líquidos o por aire.

 $\theta_{SA} = 18^{\circ}\text{C/W}$

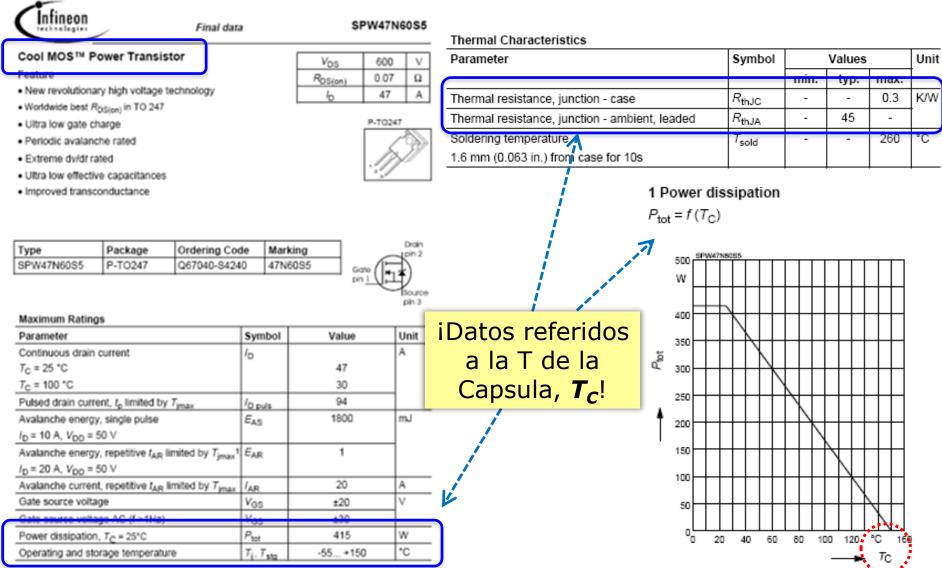
Cápsulas TO-3 $\theta_{SA} = 2,2^{\circ}C/W$

Perfil, "al corte".





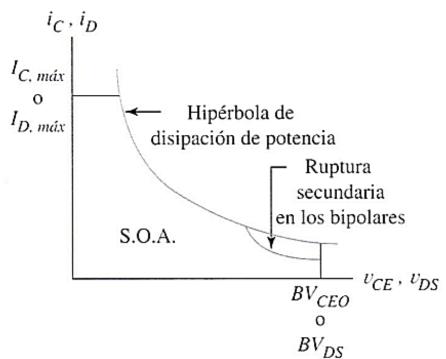
2.3. Montaje de disipadores


- Un mal montaje de los disipadores podría anular su efecto:
 - Debe garantizarse un contacto térmico perfecto
 - Con grasas de relleno especiales y tornillos y grapas de apriete
 - Garantizando además (con frecuencia)
 el aislamiento eléctrico
 - Con separadores no conductores: mica, plásticos especiales, ...

2.3. Componentes para su uso con radiador

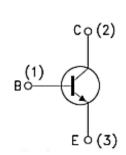
2.3. Disipación del calor: radiadores

- □ Ejemplo 1 (ejemplo 10.1 Malik):
 - Un trt. de potencia con θ_{JA} =12°C/W se polariza en Q=(2A, 10V) a 25°C de T_A . Si se sabe que T_{lmax} =180°C:
 - 1. Demuestre que el transistor se quemará
 - 2. Si se enfriase el ambiente ¿hasta qué temperatura tendría que hacerse?
 - 3. Manteniendo T_A =25°C estime la nueva θ_{JA} que se necesitaría (cambiando el encapsulado, poniendo un radiador, etc.)
- Ejemplo 2 (ejercicio 10.1 Malik):
 - Partiendo de los datos del apartado 3 anterior. Halle la resistencia térmica del radiador necesario si el fabricante indica para su transistor una $\theta_{JC}=1,3^{\circ}C/W$ y la resistencia de montaje (grasa + aislante) se estima en un valor de $\theta_{CS}=0,2^{\circ}C/W$. ¿Cree que el radiador se notaría caliente al tacto?


```
Soluciones. 1.1: se quema porque TJ sería de 265^{\circ}C>TJmax=180^{\circ}C. 1.2: TA = -60^{\circ}C. 1.3: debe ser de 7,75°C/W. 2: 6,25°C/W; está muy caliente, a unos 150^{\circ}C.
```


2.4. Zona de trabajo seguro (SOA)

- SOA = Safe Operating Area
 - Indica los límites de funcionamiento del dispositivo.
 - $lacktriangleq oldsymbol{V_{max}}$, $oldsymbol{I_{max}}$, $oldsymbol{P_{Dmax}}$ junto a otros posibles efectos de ruptura
 - Hay que mantener al dispositivo funcionando dentro de la SOA


Otros efectos

- La SOA depende también de las características temporales de las señales de salida:
 - Conmutación o no
 - Ciclo de trabajo, etc.
- El fabricante de dispositivos de potencia da todos los detalles necesarios para su uso seguro.

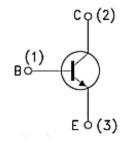
2.4. Ejemplo: BD135/139 (NPN potencia media)

SOT-32

Table 2. Absolute maximum ratings

	Parameter	Value				
Symbol		NPN		PNP		Unit
		BD135	BD139	BD136	BD140	
V _{CBO}	Collector-base voltage (I _E = 0)	45	80	-45	-80	٧
V _{CEO}	Collector-emitter voltage (I _B = 0)	45	80	-45	-80	V
V _{EBO}	Emitter-base voltage (I _C = 0)	5		-5		٧
Ic	Collector current	1.5		-1.5		Α
I _{CM}	Collector peak current	3		-3		Α
IB	Base current	0	0.5		.5	Α
P _{TOT}	Total dissipation at T _c ≤25 °C	12.5			W	
P _{TOT}	Total dissipation at T _{amb} ≤25 °C	1.25			W	
T _{stg}	Storage temperature	-65 to 150				°C
Tj	Max. operating junction temperature	150				°C

Table 3. Thermal data


Symbol	Parameter	Max value	Unit
R _{thj-case}	Thermal resistance junction-case	10	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	100	°C/W

2.4. Ejemplo: BD135/139 (NPN potencia media)

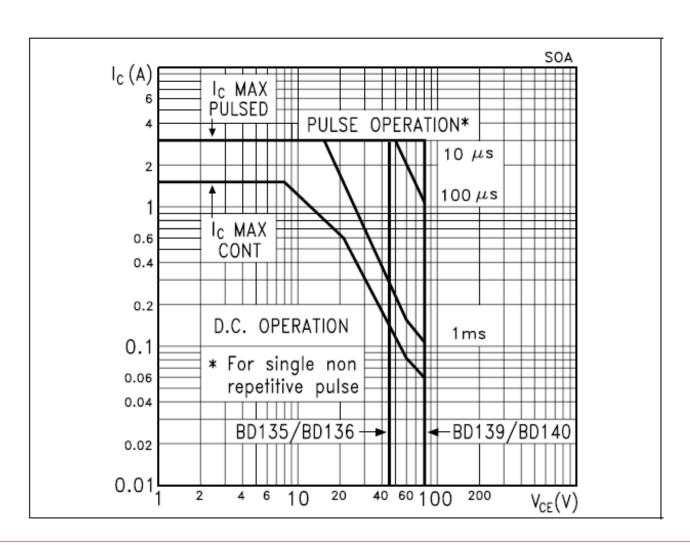
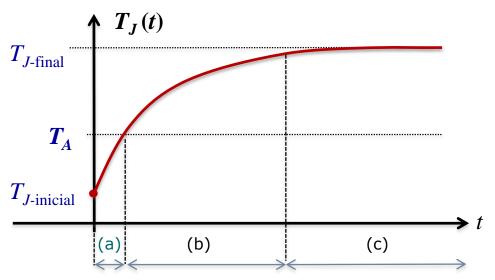
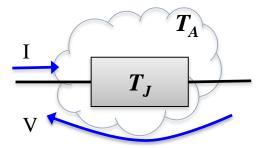


Figure 2. Safe operating area

SOT-32



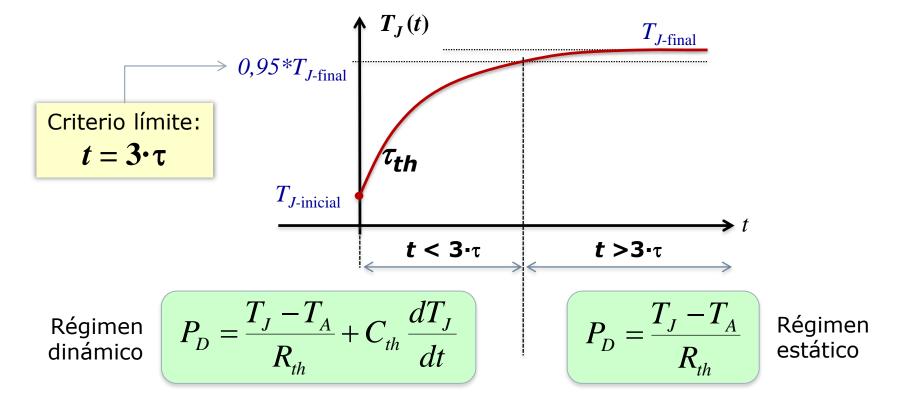

2.5. Régimen dinámico: introducción.

- □ El caso más general es el *régimen dinámico*
 - Potencias y temperaturas cambian con el tiempo
 - Se modelan los procesos de generación y transferencia de calor.

- (a) $T_J < T_A$ (en su caso): todo el calor generado es *almacenado*.
- (b) $T_J > T_A$ (transitorio): parte del calor se transfiere al exterior, el resto se almacena.
- (c) $T_J > T_A$ (caso estático $T_J = \text{cte.}$): todo el calor se *transfiere* al exterior.

$$P_{D} = \frac{6 7^{10} 8}{T_{J} - T_{A}} + C_{th} \frac{dT_{J}}{dt}$$

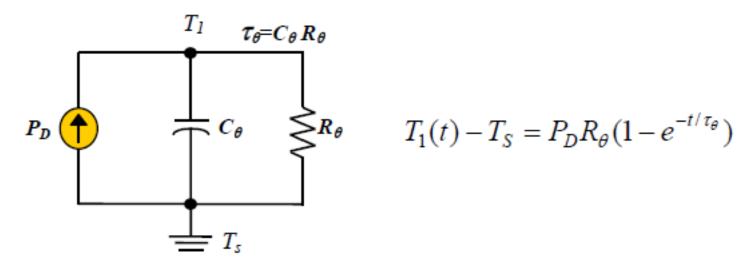
- (1) Calor transmitido desde el interior al ambiente: $f(\mathbf{R}_{th})$
- (2) Cantidad de calor que el componente almacena: $f(C_{th})$


2.5.1. Régimen dinámico: R_{th} y C_{th}

- □ Empleando la analogía de circuito térmico, podemos definir:
 - \mathbf{R}_{th} = Resistencia térmica [°C/W]
 - C_{th} = Capacidad térmica [Ws/°C]

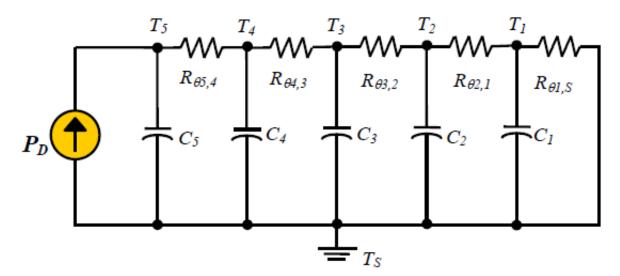
Parámetros intrínsecos del componente. f(materiales, forma,...)

 $au_{th} = R_{th} \cdot C_{th} = \text{Constante de tiempo térmica [s]}$



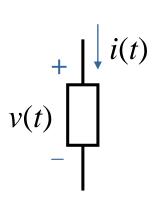
2.5.1. Régimen dinámico: R_{th} y C_{th}

- El estudio en régimen dinámico ha de incorporar los conceptos de Resistencia y Capacidad térmica.
- El equivalente eléctrico (circuito térmico) más simple en régimen dinámico quedaría:


- La fase transitoria en la evolución de la temperatura se podría modelar de la misma forma que un proceso de carga-descarga de la capacidad C_{th} .
- El régimen estático se evalúa simplemente para $t \rightarrow \infty$.

2.5.1. Circuitos térmicos dinámicos

- El modelo dinámico se complica cuando se pretende tener en cuenta todos los efectos en las diversas interfaces o zonas:
 - Unión-cápsula, cápsula-radiador, radiador-ambiente, etc.
- Usando un modelo simple R-C para cada interfaz resulta:


- Alternativas de análisis:
 - Modelo de *impedancias térmicas* → señales en *conmutación*
 - Simulación por *elementos finitos* → simulación.

2.5.2. Régimen dinámico: señales variables

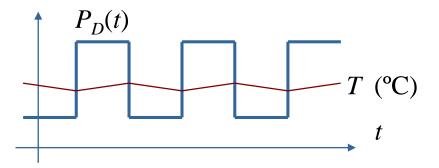
- Potencia disipada por señales variables en el tiempo
 - En el caso estático consideramos señales continuas (DC)
 - Con señales variables (AC) el calor generado (P_D) y su transferencia son función del tiempo \rightarrow estamos en régimen dinámico.
- □ Simplificación del problema dinámico:
 - Usando las propiedades de: potencia instantánea y potencia media
 - ullet Referenciando el *tiempo de las variaciones* con la au térmica:

Potencia instantánea:

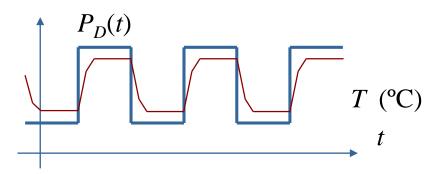
$$P_{di}(t) = i(t) \cdot v(t)$$

Potencia media:

$$P_D = I \cdot V$$


$$P_{dm} = \frac{1}{T} \int_{0}^{T} P_{di}(t) dt = \frac{1}{T} \int_{0}^{T} i(t) \cdot v(t) dt$$

2.5.2. Régimen dinámico: P_D y τ térmica

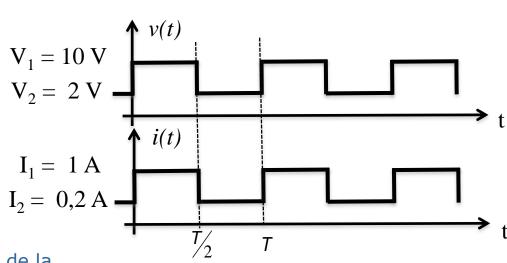


- Aproximación: considerar sólo efectos en régimen permanente
 - Si las señales son "mucho más rápidas" que el sistema térmico...
 - lacktriangleright ...trabajaremos con la **POTENCIA MEDIA**. **Criterio:** $T << au_{th}$

Un ejemplo de variaciones de P_D más rápidas que la τ térmica. En estos casos trabajamos con P_{medias}

- Si las señales son "mucho más lentas" que el sistema térmico...
 - ...hay que trabajar con potencias instantáneas. Criterio: $T >> \tau_{th}$

Un ejemplo de variaciones de P_D más lentas que la τ térmica. En estos casos trabajamos con la $P_{instantanea}$ al final de $cada\ tramo$, analizando cada uno de ellos por separado.


2.5.2. Régimen dinámico: ejercicio

- Un componente está sometido a una diferencia de potencial y por él pasa una corriente como la que se representa en la figura adjunta. Sus datos térmicos son:
 - Conductancia^(*) térmica (G_{th}) de 0,1 W/°C; capacidad térmica (C_{th}) de 0,05 Ws/°C; temperatura de unión máxima (T_{Jmax}) de 120°C.

Sabiendo que la temperatura ambiente es de 30°C, analícese si el componente soporta las condiciones impuestas en el circuito para los siguientes casos:

- a) Si T=1 ms.
- b) Si T= 30 minutos.

(*) La **conductancia térmica** es la inversa de la resistencia térmica, esto es: $G_{th} = (1/R_{th})$

Referencias

Material de estudio:

- "Electrónica de Potencia", sección 2.4.
 - Varios autores. Servicio de Publicaciones UAH. ISBN 84-8138-332-5
- Malik,
 - capítulo 10, secciones 10.1 a 10.3. Teoría y ejercicios.

Material complementario

- Sedra-Smith
 - capítulo 9, secciones 9.1 y 9.2.
- Hambley,
 - *capítulo 10, secciones 10.1 y 10.3*

Otros:

- Gráficas extraídas de los textos detallados.
- Trabajos de documentación y elaboración de materiales:
 - Profesores del Dpto. de Electrónica de la UAH.

Control de revisiones

- 2017-03-22: versión inicial (curso 16-17).
- 2017-04-04: corregido un error en la T del radiador en el ejemplo 2 de la trp. 23; la respuesta correcta es T = 150C.