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Abstract— This tutorial reviews historical milestones and 

main concepts regarding the pipelining of electronic circuits. 

Although the technique emerged in the 1960s, it remains a 

direct way to simultaneously increase throughput and reduce 

power in FPGA-based systems. However, the efficacy of 

pipelining is limited by the dominance of register and routing 

delays.  This work focuses on bit-level pipelining. It analyses by 

examples keys aspects such as construction hints, pipeline 

metrics, effects of registering, preferential pipeline directions, 

and synchronization failures. The text condenses the first 

section of the invited tutorial lecture at the 2019 Southern 

Conference on Programmable Logic (SPL).  Whenever is 

possible, numeric examples are particularized to FPGA 

technology, but in some cases, cell-based ASICs data are 

deemed more convenient. The ideas would be useful for 

students of an advanced course on digital electronics, or PhD 

candidates interested in the details of the design of integrated 

circuits. 

Keywords—Pipeline, FPGAs, High-speed digital design, 

Henry Ford, Clock skew, Wave pipeline, Power consumption. 

I. INTRODUCTION 

Main concepts of pipelining originated on the assembly 
line of the T-Model in 1908. In that year, production in the 
Ford plant was reorganized by dividing the construction of 
the cars between groups of workers who specialized in only 
one part of the process. Each team was placed along lines, 
repeating the assigned task – always the same – on 
successive pieces situated on a conveyor belt (Fig.1). In this 
scheme, the maximum manufacturing speed is limited by the 
slowest task. As a consequence, these tasks must be planned 
to require the same time. The flow of parts is continuous, 
except for the inevitable time needed to fill or empty the 
conveyor belts. Henry Ford eliminated this inconvenience by 
introducing an 8-hour working day, with 3 shifts a day. 
Therefore, the steady-state was virtually infinite and all the 
workers operated in parallel making simultaneously the same 
part of the assembly, but on different cars.  This type of 
process is now called temporal parallelism. Using all these 
concepts, Ford sped up chassis assembly from 12.5 to 1.5 
hours making nearly 15 million cars between 1908 and 1927 
[1]. The success of the process converted the T-model into a 
milestone of mass production history, as well as an agent of 
urban and social revolution.  

Henry Ford´s ideas to improve production are also valid 
for digital circuits. Large combinational blocks are unable to 
process data at high-speed rates. Normally, new data cannot 
be imputed until the previous result is outputted. If this rule 
is violated, the fastest bits of the next data reach the slowest 
bits of the previous one. Each line of gates only works during 
a short fraction of the processing period [2]. Like in an 
unorganized car production, most of the time the gates are 
waiting for the arrival of new data.  

Nevertheless, the main difference between car production 

and digital processing is the matter of the parts. Mechanical 
objects must be artificially moved while bits must be 
artificially stopped.  On the contrary, they travel along the 
circuit until the electric potential equilibrium is reached. 
Thus, digital pipelines require the insertion of edge-triggered 
D-type flip-flops (FFs) in the datapath in order to align and 
stop the intermediate results. These FFs make it possible to 
synchronize the operations, but they do not contribute to any 
transformation of the data, just as conveyor belts do not 
assemble the cars. Like in the car production, in digital 
pipelines the slower stage fixes the system period. To 
maximize pipeline speed, the circuit partition must be 
balanced. A direct option is to make identical the processing 
elements. In the 1980s, this type of circuit was renamed a 
“systolic arrays” [3]. However, once again the beneficial 
effect of uniformity had already been discovered by Ford. 
The T-model was originally built in black, red, green or grey. 
But in the following years, the colour choice was reduced to 
only one. "Any colour so long as it's black", said Ford [4]. 
Fortunately, in electronics there is a myriad of digital circuits 
based on identical blocks: they were designed to be 
extensible and cascadable.  Even today, these features 
facilitate circuit description, construction, width extension, 
and debugging.  

 

Fig.1: Workers on a T-model moving assembly line with magnetos and 

flywheels in 1913. Reproduced from Wikicommons [5]. 

 

Probably the first published study about pipelining in 
digital circuits is the work of Leonard Cotten [6]. But even in 
the 1960s, the origin of pipelining was uncertain. Cotten 
writes: “…The term pipeline has been used for over 5 years 
by designers to describe maximal rate processing …. 
However, the author has so far been unsuccessful in 
determining the origin of the term as used in this context…”.  
A second paper of Cotten [7] studied the effect of clock skew 
(Section VII of this tutorial), and the wave pipeline 
alternative. The IBM 360 FPU was an early materialization 
of the technique [8]. At that time, the term was quite novel as 
they used “pipelined”, in quotation marks [8],[9].  Pipeline 
adders and multipliers were explored in [10]. After that, 
notable pipeline implementations were [11]-[14].  
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II. A SIMPLE EXAMPLE: PIPELINING A RIPPLE-CARRY ADDER 

The extremely well-known ripple-carry adder (RCA) is 
adequate for illustrating the effects of pipelining. This circuit 
suffers from a large serial delay caused by the propagation of 
the carries. Even so, nowadays it is one of the fastest options 
for addition in FPGA technology. The cause is the low 
fanout of its nets. 

Fig.2 shows an 8-bit RCA composed of identical full-
adders (FAs). Unusually in digital design, it is drawn with 
the input data traveling from bottom to top, and from right to 
the left. It reflects the way in which the calculation is done 
by hand.  

 

 

Fig.2: 8-bit ripple-carry adder (RCA). 

A fine-grain pipeline version of an RCA is obtained by 
adding 117 FFs (Fig.3). As is traditional in pipeline 
schematics, an FF (and its associated clock and reset lines) is 
represented as a small square or dot [15], [16]. At the input, a 
triangular arrangement of FFs are utilized to delays each 
datum to synchronize it with the corresponding carry bits. At 
the output, another triangular arrangement of FFs delays each 
result to synchronize it with slower S8 and S7 bits. These 
triangles are named skewing and deskewing registers in [12].  

  

 

Fig.3: 8-bit RCA pipeline version. 

 Fig.3 illustrates an obvious property of pipelines: the 
number of FFs along any I/O path is a constant number (9 in 
this example, including the I/O registering). A path with 
more (or less) FFs cannot exist as this would lead to the 
mixing of bits of different data. 

 The flow of bits after each clock edge is shown in Fig.4. 

Only the first clock cycles are shown. The second index 

indicates the position of successive data (A02 is the bit A0 

of the second data, and so on). Initially, the pipeline outputs 

spurious additions. For example, the first bit S01 (of the first 

addition) is obtained after the 2nd clock cycle, but the 

corresponding last bit S81 of the same result is outputted 

after the 9th cycle. So, it is necessary to delay the least 

significant bits to maintain the parallel format. But unlike 

the combinational version, after filling the pipeline all the 

gates operate completely in parallel. 

III. EVIDENCING DEPENDENCIES 

In order to pipeline a circuit it is better to redraw it to 
evidence the dependencies between processors (B depends 
on A, if B needs the results of A to begin its calculations).  

 
 

Fig.4: Details of the computation at each RCA pipeline stage. 

The procedure for evidencing dependences is simple 
(Fig.5): the FA that first starts to operate is positioned at the 
bottom of the circuit, then the second, and so on.  

 

 

 

Fig.5: RCA topology evidencing dependencies. 



Naturally, the resulting structure is identical to the 
represented by the Fig.2, but now pipelining is 
straightforward. The intersection between the horizontal lines 
and the wires indicates the places where the synchronization 
FFs must be inserted (supposing that all the FA blocks and 
wiring have the same delay).  

Fig.5 confirms the first drawback of pipelining: the area 
overhead. For example, in standard cell technology [17] both 
full-adder and D-type FF (with reset) have a minimum of 28 
transistors each. So, during the pipeline of the 8-bit RCA of 
Fig.4, the total number of transistors passes from 224 to 
3500. Moreover, as the number of FF grows as NFF(n) = 1.5 
n2 + 2.5 n + 1, (for a input data width n), a hypothetical 
1024-bit fine-grain pipeline RCA would surpass 1.5 times 
the maximum 1,095,200 available FFs in a state-of-the-art 
Virtex chip [18]. These numbers explain why FPGAs 
architects reuse the FFs of the configuration path to get 
additional chains of registers, called SRL16, 32, etc. [19]. In 
any case, such a huge pipeline would require tens of amperes 
to raise the clock edge along the circuit in few nanoseconds. 

Finally, Fig.6 shows another example of pipelining. 
Drawing the “cubic” processors (above) according to its data 
dependencies (below) makes the solution direct: a 36-register 
and five-stage pipeline. Processing elements number 2, 3 and 
4 do not exchange data between each other; so, they can 
operate in parallel. The same situation occurs with 
processing elements 6 and 7.  

 

 

Fig.6: Redrawing a circuit (above) to evidence its data dependencies 
(below). 

The visualization of the dependencies also facilitates the 
trimming of the pipeline. In those cases where the delays of 
the processing elements are different, some lines can be 
eliminated, without affecting the speed of the circuit. For 

example, if the delay of PE1 is 200 ns while the other PEs 
has a delay of 100 ns, the c and e lines can be eliminated. 

 

IV. PIPELINING IN NUMBERS 

The result of pipelining can be described by several 
numbers: throughput, latency, speed-up, area penalty, 
pipeline granularity, and logic depth among others.  
Pipelining does not reduce the time required to obtain an 
individual result; but increases the number of obtained 
results per second. R. F. Lyon describes a pipeline as a 
circuit “which has an operation period less than its 
operation delay” [20]. This phrase condenses the two main 
numbers of a pipeline: throughput and latency.  

The Oxford dictionary states throughput as “the amount 
of material or items passing through a system or process”. 
In electronic pipelines, it can be adapted as the number of 
results per second [21], or simply the processing rate. Other 
key terms are bandwidth or production, as well as its inverse 
magnitude, the pipeline period.  The annual production of the 
T-model reached in 1914 the number of 260,720 units [22]. 
That is, a throughput of nearly a car every 2 minutes.  

The latency is the time necessary to process a single 
piece of data. It also called the delay or response time. 
Latency is masterfully defined by Peter Cappello as “the 
amount of time between the first-bit-of-the-first-data 
entrance and the last-bit-of-the-last-data output, for a single 
(just one) computation” [23]. However, sometimes the 
latency of a block is specified as the time between first input 
bit and first output bit of a single piece of data.  

The Boing Company is a useful illustration of the above 
concepts, even considering that apply both spatial parallelism 
(assembly lines in parallel) and temporal parallelism 
(pipelines). Nowadays, Boeing produces a 777-model plane 
every 3 days (throughput = 0.33 planes/day). Naturally, a 
single plane cannot be assembled in 3 days. It is composed of 
more than 3 million parts, and has approximately 60,000 
rivets [24]. To determine the latency of the process it would 
only be necessary to time any of those rivets from when it 
enters the factory to when it leaves as part of the plane at the 
other end of the factory. 

The effectiveness of pipelining in terms of time is 
measured using the speedup figure. This is the throughput of 
the pipelined version divided by the throughput of the 
original circuit. In return, this extra speed increases the 
circuit cost. The area penalty is the pipeline area divided by 
the original circuit area. 

A more useful concept is the pipeline granularity β [25]. 
This is the maximum number of processors operating in 
series between successive lines of FFs. In a regular pipeline, 
granularity is the key to tuning the result, trading speed for 
extra FFs. For example, if lines 2, 4, 6, and 8 are removed in 
the circuit of Fig.4, the granularity is β=2, the FF count 
passes from 117 to 65 but the minimum clock period is 
greater than the delay of 2 FAs. Now it is necessary to wait 
for the results of two FAs. Another area-time pair is obtained 
using β=4, by removing lines 2, 3, 4, 6, 7, and 8 Fig.4. Now, 
the number of FFs is 38 and the minimum clock period must 
be greater than the delay of 4 FAs. The idea is illustrated in 
Fig.7. 



Granularity is a topological parameter. At silicon level, 
its equivalence (or consequence) is the logic depth. In FPGA 
technology, logic depth can be considered as the maximum 
number of LUTs in series between successive lines of FFs. A 
fine-grain pipelined RCA has a granularity β=1 but the logic 
depth can be 1, 2 or more LUTs, depending on diverse 
parameters such as the LUT size, dedicated XOR gates and 
carry-chain lines, routing congestion criteria, or the ability of 
the synthesis tool. In his remarkable book, H. B. Bakoglu 
includes the gates of the input FF in the calculus of the logic 
depth, for masked integrated circuits [26]. 

 

 

 

Fig.7: RCA pipelined with β=2 (above) and β=4 (below). 

 

V. THE EFFECT OF REGISTERING AND EXTRA WIRING 

The followers of Henry Ford in the field of electronics 
shared his frustration about pipelining. The N-fold gain in 
speed is a myth; it is only possible if the wiring and FF 
delays are insignificant in comparison with logic delays. In 
other words, fine-grain pipelines have a relatively slow 
processing speed limit.  

The organization of a pipelined production requires 
several blocks receiving each datum at the right time. Even 
though the nature of bits and car parts is different, the 
consequences of introducing mechanisms to synchronize 
them lead to the same result: loss of time. Ford divided the 
motor assembly into 48 operations (N=48). This arrangement 
should lead in the abstract to a speedup to nearly 48. 
However, he merely obtained a speedup of 3. In the same 
way, the construction of the magneto was split into 29 parts, 
allowing the time to be reduced only from 20’ to 13’10” 
(speedup=1.5). Finally, the overall car assembly evolved 
from 12’30 hours to only 1’33 (speedup=8.3) [27]. 

In current integrated circuits, the effect of transporting 
(wiring) and synchronizing (FFs) the parts (bits) is expensive 
in term of time. FFs and wiring delays are larger than 
combinatorial logic delays. This fact destroys the magic 
effect of pipelining: dividing the task in N concurrent blocks 
never produces the theoretical speedup of N. For example, in 
Fig.7 a circuit is shown with a total combinational delay of 
value ∆COMB. The propagation delay and setup of the FFs are 
labelled ∆CK-OUT and ∆SETUP respectively. The pipelining of 

the block in N stages, effectively diminish the combinational 
delay of each stage by N, but the delays associated to the FF 
remain constant. Additionally, a wiring delay ∆W must be 
also computed. Thus, the pipeline period is: 

T ≥ ∆CK-OUT  + ∆COMB / N + ∆SETUP + ∆W +  SKEW        (1)                                                                                            

The effect of the clock skew in Eq.1 is analysed in 
Section VIII.  In any case, for a large number N of stages, the 
clock period will remain dominated by FF and wiring delays. 

 

 

 

Fig.8: The expansion of the stage delay. 

Fig.9 shows the relationship between FF delays (∆CK-OUT 
+ ∆SETUP) and minimum ∆COMB for ten different technologies 
[28]-[38] ranging from discrete logic to FPGAs. The TILO 
parameter of Xilinx datasheets was taken as the minimum 
combinational delay for LUT-based circuits, while the two-
input NAND was selected for discrete logic. In any case, the 
period of a maximum fine grain-pipeline would be 
practically fixed by FFs and wires. Even in high-
performance computers, the logic depth cannot be just one 
gate or LUT.  For example, the CRAY models 1, 2 and 3 had 
a logic depth of 8, 4 and 6 levels respectively [26].  

 

Fig.9: Ratio between the total FF delay (propagation + setup) and 
minimum combinational delay for different technologies. 

As result, pipelining leads to a paradox. It is applied to 
avoid inactive gates while waiting for new data (as it 
happens in a combinational circuit). But for fine-grain 
pipelining, only 20-30 % of the period is involved in the data 



processing. The rest of the time is necessary to synchronize 
and transport the bits. After all, the gates still remain inactive 
most of the time. But at least, they work in parallel. 

Meanwhile the delays of a FF are well-characterized 
numbers; the nature of wiring delay is more complicated.  
The wiring distribution depends on the number of stages N. 
Pipelining expands the number of wires, changes the fanout 
of the nets, and modifies the wiring distribution delay itself. 
Some aspects that pipeline designers must take into account 
about ∆W(N) are: 

 Some pipeline directions change the nature of input 
data wiring, passing from heavily loaded global or 
broadcasted lines to lines with a minimum fanout.  
This point is explained in the next section. 

 Pipelining usually improves the circuit routability 
and reduces wiring congestion in FPGAs. In a 
pipeline circuit, FFs that drive another FF are the 
most common structure of the circuit. So that, from 
all the pins associated to a FPGA logic elements (a 
k-LUT plus the associated FF), only two are utilized: 
the input and output pins of the FF.   

 In any well-routed circuit, the wiring histogram 
follows a Pareto-Levi distribution [39]. That is, there 
are lots of wires with low delays and few with the 
highest delay values. In a combinational circuit, the 
worst wire not always is part of the worst (critical) 
path. But in a balanced pipeline, all paths are equally 
critical for the minimum clock period. Normally, the 
worse wire nests within the worse stage. 

 

VI. GLOBAL LINES AND DIRECTIONS OF PIPELINING 

The word pipeline evokes water and tubes. If friction is 
neglected, the speed of the water is independent of the pipe 
length [15]. However, on digital pipelines the circuit size 
imposes a speed limit. Clock skew and heavily loaded global 
lines increase the pipeline size. In this section, the second 
effect is illustrated.  

In [40], Jump and Ahuja analysed the different directions 
of pipelining for array multipliers. The idea is illustrated in 
Figs.10 and 11. The array of Fig.10 has a typical structure of 
communication. The horizontal data enter in just one 
processor. There are local communications, exhibiting a low-
fanout that is almost independent of the array size. In 
contrast, the vertical data are broadcasted: each one requires 
a global line to reach a complete column of processors. The 
fanout of the vertical global wires is a function of the array 
size. This type of mixed communication is common in binary 
multipliers where a column (or a row) of AND gates 
concurrently calculates, for example, the partial products 
A0B0, A0B1, A0B2 …, A0Bn. The signal A0 requires a global 
line to reach all the ANDs, meanwhile any Bi is local [41]. 

Fig.10 shows other valid directions of pipelining (there are 

other possible “angles” but they do not maximize speed).  

From a topological point of view, neglecting wiring delays, 

both pipeline directions have a granularity of one processor. 

So, in the abstract they should reach the same speed.  The 

“vertical” pipeline option sounds better because it exhibits a 

less latency and smaller number of FFs. But the situation is 

different in actual integrated circuits were wiring delay is 

dominant: for large array sizes, these global lines will 

exhibit high delays.  
 

 

Fig.10: Generic pipeline with global lines inside each stage. 

 

 

Fig.11: Pipeline direction disrupting global lines. 

 

The vertical line pipeline confines each of these global 
lines inside a pipeline stage. So, the total delays of these 
heavily loaded interconnections are a part of the clock 
period. In contrast, the “45 degrees” pipeline breaks the 
global lines, transforming them into almost local wires. The 
effect is detailed in Fig.12 for Y0 signal as example. 

 

 

Fig.12: Elimination of global lines by pipelining (detail). 

 



Work [42] carries out a case-study of the transformation 
of global lines by the direction of pipelining. Target 
technology was 1µ CMOS Standard Cells from the former 
ES2 foundry [43], and Xilinx FPGAs. Two 16-bit arrays 
multipliers were compared:  the Hatamian-Cash [12] and the 
McCanny-McWhirter [44]. Both pipeline circuits share the 
same topology but the first maintain global interconnection 
inside each stage, meanwhile the second transforms these 
interconnections into a set of local wires with fanout equal to 
2.  

Fig.13 shows the histogram of wiring capacitance for 
each version: Hatamian-Cash (above) and McCanny-
McWhirter (below). In both graphs there are two similar 
groups of wires. On the left, there are a high number of local 
interconnections loaded with small capacitances.  On the 
right side, a set of heavily loaded lines corresponding to the 
clock and global reset signals. The delay of theses clock 
branches does not directly affect the period. Its maximum 
difference (skew) only increases the pipeline period (Section 
VII). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13: Histograms of wiring capacitance. 

 

The Hatamian-Cash pipeline exhibits less datapath nodes 
(3115 versus 3986). But there is in the middle a group of 
global lines of data that affect the clock period.  These lines 
do not exist in the fully local-line pipeline of McCanny-
McWhirter.  As result, its throughput for typical delays is 
higher (154 versus 117 MOPS). 

VII. SYNCHRONIZATION FAILURES IN PIPELINES 

In the previous sections, it was shown that fine grain 
pipelining easily increases the total number of FFs from a 
few units to tens of thousands. A large number of FFs makes 
a clock distribution tree indispensable to drive them 
synchronously. And clock trees generate latency and skew. 
The first effect is mitigated in FPGA technology by adding 
digital PLLs to align external and internal clock edges. More 
problematic is the clock skew: almost all the pipeline´s paths 
are vulnerable to it. 

The clock skew is the maximum difference in time 
between the same clock edge at two points of the die.  The 
factors that contribute to clock skew even in balanced trees 
are differences in parameters like wiring length, distributed 
RC, local temperature and voltage, FF trigger thresholds, and 
finally buffer and FFs propagation delays. The mixture of all 
these components makes skew inevitable. 

Fig.13 clarifies the effect of clock skew. In a single-phase 
clock scheme, each clock edge initiates a race between the 
data in D1 and D2. To work properly, the data in D2 must be 
captured by the FF2 before being replaced by the data that 
travels from D1. Moreover, after the arrival of the edge to 
FF2, the previous data in D2 must still remain stable during 
the hold time of the FF.  

 

Fig.14: FFs vulnerable to clock skew in single-phase clocking. 

 

As a consequence, for the worst case (wiring delay zero), 
the maximum admissible clock skew is: 

SKEW = ΔCLK2- ΔCLK1 < ΔCK-OUT - HOLD        (2)                                                                                        

As a rule-of-thumb, chip designers know that clock skew 
must always be lower than the FF propagation delay. This 
problem was called double-clocking by Fishburn [45]   
because one bit passes through two FFs in one clock edge. It 
is also known as a short-path fault. That is, not only the 
longest path generates problems in digital systems. An 
important fact is that the clock period is not present in (2). If 
a circuit suffers clock skew, the circuit will never work at 
any frequency. Another aspect to consider is the sign of the 
skew. If it has an opposite sign, the clock edge arrives first at 
FF2, and the risk of double-clocking is reduced.  Eq. 2 is 
completely applicable to pipeline circuits where FF chains 
are very common. For example, in the 8-bit fine grain 
pipeline RCA of Fig.4, the 77 % of the FFs only drive 
another FF.  

The second source of synchronization failure is more 
evident. It is called a long-path fault and states that the 
minimum clock period must be larger than the delay of worst 
pipeline stage. In [46] was proposed to calculate the clock 
period using a circular pipeline, in order to include the I/O 
pin delays in the computation of the period. The condition to 
avoid long path fault is indicated in (1). The worst effect of 
the skew occurs if the slower clock line triggers the input FF 



and the faster clock line triggers the output FF. In such a 
particular combination, the value of the skew is added to the 
clock period. 

 

VIII. CONCLUSIONS 

This tutorial reviewed the main aspects of the pipelining 
of digital circuits. Students interested in integrated circuits 
can discover several points of research interest. However, 
some important related issues like wave pipelining, the 
relationship between pipeline and power consumption, and 
the self-timed synchronization exceed the length available 
for this work.  

If pipelining is a masterpiece of the classical period of 
digital electronics, wave pipelining (WP) is an example of 
the baroque period. Both techniques were contemporary. WP 
was summarized in [8] in 1967: “…If a section of 
combinatorial logic, such as the logic to execute an add, 
could be designed with equal delay in all parallel paths 
through the logic, the rate at which new inputs could enter 
this section of logic would be independent of the total delay 
through the logic…”. Leonard Cotten describes the same 
concept with different words in 1969: “…It is possible for 
max-rate pipeline machines to operate at high rates 
determined by path differences, rather than the conventional 
maximum delay...” [7]. The WP technique speeds up a 
circuit without using intermediate FFs.  In a WP all the paths 
are equalized; therefore, several “waves” of data can 
propagate along the circuit without interference between the 
fastest bit of a new data and the slowest bit of the previous 
one. The equalization must be immune to temperature and 
voltage variations. WP allows the designer to obtain a unique 
combination of fine-grain pipeline speed and the latency of 
the original combinational circuit. The technique was studied 
in detail in [47], [48]. An example of wave pipeline in an 
LUT-based FPGA is described in [49], [50]. 

Another important aspect of pipelining is its hidden 
relationship with power consumption. The fact that 
pipelining can reduce power defies common sense. This is 
especially true in FPGA technology, but negligible in 
standard cell devices [51].  In a pipeline, the intermediate 
lines of FFs prevent the propagation of glitches that, 
otherwise, would produce a snowball effect in the activity of 
large combinational circuits. If the synchronization power 
overhead caused by the extra FFs is less than the datapath 
glitch power reduction, pipelining saves power. The pipeline-
power rule was first reported in [52], [53]. An early 
experimental verification for FPGA was performed in [54]. 
Since then, the effect has been verified in more than 34 
experiments of 12 research groups in 8 countries using chips 
that cover 17 years of FPGA technology [55]. 

Other variation of the classical pipelining is the self-
timed technique. In this case, the clock tree is replaced by a 
local handshake between processing elements. There is no 
global clock line; only low-fanout wires of request-ack 
signals. The origin of the technique is [56] but a solid line of 
research was led by Steve Furber [57], [58]. An interesting 
feature of self-timed circuits is their smooth requirement of 
power supply current.  
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