
978-1-7281-1363-0/19/$31.00 ©2019 European Union

Pipelining on FPGAs: A Tutorial

Eduardo Boemo

Universidad Autónoma de Madrid

Madrid, Spain

eduardo.boemo@uam.es

Abstract— This tutorial reviews historical milestones and

main concepts regarding the pipelining of electronic circuits.

Although the technique emerged in the 1960s, it remains a

direct way to simultaneously increase throughput and reduce

power in FPGA-based systems. However, the efficacy of

pipelining is limited by the dominance of register and routing

delays. This work focuses on bit-level pipelining. It analyses by

examples keys aspects such as construction hints, pipeline

metrics, effects of registering, preferential pipeline directions,

and synchronization failures. The text condenses the first

section of the invited tutorial lecture at the 2019 Southern

Conference on Programmable Logic (SPL). Whenever is

possible, numeric examples are particularized to FPGA

technology, but in some cases, cell-based ASICs data are

deemed more convenient. The ideas would be useful for

students of an advanced course on digital electronics, or PhD

candidates interested in the details of the design of integrated

circuits.

Keywords—Pipeline, FPGAs, High-speed digital design,

Henry Ford, Clock skew, Wave pipeline, Power consumption.

I. INTRODUCTION

Main concepts of pipelining originated on the assembly
line of the T-Model in 1908. In that year, production in the
Ford plant was reorganized by dividing the construction of
the cars between groups of workers who specialized in only
one part of the process. Each team was placed along lines,
repeating the assigned task – always the same – on
successive pieces situated on a conveyor belt (Fig.1). In this
scheme, the maximum manufacturing speed is limited by the
slowest task. As a consequence, these tasks must be planned
to require the same time. The flow of parts is continuous,
except for the inevitable time needed to fill or empty the
conveyor belts. Henry Ford eliminated this inconvenience by
introducing an 8-hour working day, with 3 shifts a day.
Therefore, the steady-state was virtually infinite and all the
workers operated in parallel making simultaneously the same
part of the assembly, but on different cars. This type of
process is now called temporal parallelism. Using all these
concepts, Ford sped up chassis assembly from 12.5 to 1.5
hours making nearly 15 million cars between 1908 and 1927
[1]. The success of the process converted the T-model into a
milestone of mass production history, as well as an agent of
urban and social revolution.

Henry Ford´s ideas to improve production are also valid
for digital circuits. Large combinational blocks are unable to
process data at high-speed rates. Normally, new data cannot
be imputed until the previous result is outputted. If this rule
is violated, the fastest bits of the next data reach the slowest
bits of the previous one. Each line of gates only works during
a short fraction of the processing period [2]. Like in an
unorganized car production, most of the time the gates are
waiting for the arrival of new data.

Nevertheless, the main difference between car production

and digital processing is the matter of the parts. Mechanical
objects must be artificially moved while bits must be
artificially stopped. On the contrary, they travel along the
circuit until the electric potential equilibrium is reached.
Thus, digital pipelines require the insertion of edge-triggered
D-type flip-flops (FFs) in the datapath in order to align and
stop the intermediate results. These FFs make it possible to
synchronize the operations, but they do not contribute to any
transformation of the data, just as conveyor belts do not
assemble the cars. Like in the car production, in digital
pipelines the slower stage fixes the system period. To
maximize pipeline speed, the circuit partition must be
balanced. A direct option is to make identical the processing
elements. In the 1980s, this type of circuit was renamed a
“systolic arrays” [3]. However, once again the beneficial
effect of uniformity had already been discovered by Ford.
The T-model was originally built in black, red, green or grey.
But in the following years, the colour choice was reduced to
only one. "Any colour so long as it's black", said Ford [4].
Fortunately, in electronics there is a myriad of digital circuits
based on identical blocks: they were designed to be
extensible and cascadable. Even today, these features
facilitate circuit description, construction, width extension,
and debugging.

Fig.1: Workers on a T-model moving assembly line with magnetos and

flywheels in 1913. Reproduced from Wikicommons [5].

Probably the first published study about pipelining in
digital circuits is the work of Leonard Cotten [6]. But even in
the 1960s, the origin of pipelining was uncertain. Cotten
writes: “…The term pipeline has been used for over 5 years
by designers to describe maximal rate processing ….
However, the author has so far been unsuccessful in
determining the origin of the term as used in this context…”.
A second paper of Cotten [7] studied the effect of clock skew
(Section VII of this tutorial), and the wave pipeline
alternative. The IBM 360 FPU was an early materialization
of the technique [8]. At that time, the term was quite novel as
they used “pipelined”, in quotation marks [8],[9]. Pipeline
adders and multipliers were explored in [10]. After that,
notable pipeline implementations were [11]-[14].

This work has been supported by Comunidad Autónoma de Madrid

(Spain) DIFRAGEOS Project S2013/ICE-3004.

II. A SIMPLE EXAMPLE: PIPELINING A RIPPLE-CARRY ADDER

The extremely well-known ripple-carry adder (RCA) is
adequate for illustrating the effects of pipelining. This circuit
suffers from a large serial delay caused by the propagation of
the carries. Even so, nowadays it is one of the fastest options
for addition in FPGA technology. The cause is the low
fanout of its nets.

Fig.2 shows an 8-bit RCA composed of identical full-
adders (FAs). Unusually in digital design, it is drawn with
the input data traveling from bottom to top, and from right to
the left. It reflects the way in which the calculation is done
by hand.

Fig.2: 8-bit ripple-carry adder (RCA).

A fine-grain pipeline version of an RCA is obtained by
adding 117 FFs (Fig.3). As is traditional in pipeline
schematics, an FF (and its associated clock and reset lines) is
represented as a small square or dot [15], [16]. At the input, a
triangular arrangement of FFs are utilized to delays each
datum to synchronize it with the corresponding carry bits. At
the output, another triangular arrangement of FFs delays each
result to synchronize it with slower S8 and S7 bits. These
triangles are named skewing and deskewing registers in [12].

Fig.3: 8-bit RCA pipeline version.

 Fig.3 illustrates an obvious property of pipelines: the
number of FFs along any I/O path is a constant number (9 in
this example, including the I/O registering). A path with
more (or less) FFs cannot exist as this would lead to the
mixing of bits of different data.

 The flow of bits after each clock edge is shown in Fig.4.

Only the first clock cycles are shown. The second index

indicates the position of successive data (A02 is the bit A0

of the second data, and so on). Initially, the pipeline outputs

spurious additions. For example, the first bit S01 (of the first

addition) is obtained after the 2nd clock cycle, but the

corresponding last bit S81 of the same result is outputted

after the 9th cycle. So, it is necessary to delay the least

significant bits to maintain the parallel format. But unlike

the combinational version, after filling the pipeline all the

gates operate completely in parallel.

III. EVIDENCING DEPENDENCIES

In order to pipeline a circuit it is better to redraw it to
evidence the dependencies between processors (B depends
on A, if B needs the results of A to begin its calculations).

Fig.4: Details of the computation at each RCA pipeline stage.

The procedure for evidencing dependences is simple
(Fig.5): the FA that first starts to operate is positioned at the
bottom of the circuit, then the second, and so on.

Fig.5: RCA topology evidencing dependencies.

Naturally, the resulting structure is identical to the
represented by the Fig.2, but now pipelining is
straightforward. The intersection between the horizontal lines
and the wires indicates the places where the synchronization
FFs must be inserted (supposing that all the FA blocks and
wiring have the same delay).

Fig.5 confirms the first drawback of pipelining: the area
overhead. For example, in standard cell technology [17] both
full-adder and D-type FF (with reset) have a minimum of 28
transistors each. So, during the pipeline of the 8-bit RCA of
Fig.4, the total number of transistors passes from 224 to
3500. Moreover, as the number of FF grows as NFF(n) = 1.5
n2 + 2.5 n + 1, (for a input data width n), a hypothetical
1024-bit fine-grain pipeline RCA would surpass 1.5 times
the maximum 1,095,200 available FFs in a state-of-the-art
Virtex chip [18]. These numbers explain why FPGAs
architects reuse the FFs of the configuration path to get
additional chains of registers, called SRL16, 32, etc. [19]. In
any case, such a huge pipeline would require tens of amperes
to raise the clock edge along the circuit in few nanoseconds.

Finally, Fig.6 shows another example of pipelining.
Drawing the “cubic” processors (above) according to its data
dependencies (below) makes the solution direct: a 36-register
and five-stage pipeline. Processing elements number 2, 3 and
4 do not exchange data between each other; so, they can
operate in parallel. The same situation occurs with
processing elements 6 and 7.

Fig.6: Redrawing a circuit (above) to evidence its data dependencies
(below).

The visualization of the dependencies also facilitates the
trimming of the pipeline. In those cases where the delays of
the processing elements are different, some lines can be
eliminated, without affecting the speed of the circuit. For

example, if the delay of PE1 is 200 ns while the other PEs
has a delay of 100 ns, the c and e lines can be eliminated.

IV. PIPELINING IN NUMBERS

The result of pipelining can be described by several
numbers: throughput, latency, speed-up, area penalty,
pipeline granularity, and logic depth among others.
Pipelining does not reduce the time required to obtain an
individual result; but increases the number of obtained
results per second. R. F. Lyon describes a pipeline as a
circuit “which has an operation period less than its
operation delay” [20]. This phrase condenses the two main
numbers of a pipeline: throughput and latency.

The Oxford dictionary states throughput as “the amount
of material or items passing through a system or process”.
In electronic pipelines, it can be adapted as the number of
results per second [21], or simply the processing rate. Other
key terms are bandwidth or production, as well as its inverse
magnitude, the pipeline period. The annual production of the
T-model reached in 1914 the number of 260,720 units [22].
That is, a throughput of nearly a car every 2 minutes.

The latency is the time necessary to process a single
piece of data. It also called the delay or response time.
Latency is masterfully defined by Peter Cappello as “the
amount of time between the first-bit-of-the-first-data
entrance and the last-bit-of-the-last-data output, for a single
(just one) computation” [23]. However, sometimes the
latency of a block is specified as the time between first input
bit and first output bit of a single piece of data.

The Boing Company is a useful illustration of the above
concepts, even considering that apply both spatial parallelism
(assembly lines in parallel) and temporal parallelism
(pipelines). Nowadays, Boeing produces a 777-model plane
every 3 days (throughput = 0.33 planes/day). Naturally, a
single plane cannot be assembled in 3 days. It is composed of
more than 3 million parts, and has approximately 60,000
rivets [24]. To determine the latency of the process it would
only be necessary to time any of those rivets from when it
enters the factory to when it leaves as part of the plane at the
other end of the factory.

The effectiveness of pipelining in terms of time is
measured using the speedup figure. This is the throughput of
the pipelined version divided by the throughput of the
original circuit. In return, this extra speed increases the
circuit cost. The area penalty is the pipeline area divided by
the original circuit area.

A more useful concept is the pipeline granularity β [25].
This is the maximum number of processors operating in
series between successive lines of FFs. In a regular pipeline,
granularity is the key to tuning the result, trading speed for
extra FFs. For example, if lines 2, 4, 6, and 8 are removed in
the circuit of Fig.4, the granularity is β=2, the FF count
passes from 117 to 65 but the minimum clock period is
greater than the delay of 2 FAs. Now it is necessary to wait
for the results of two FAs. Another area-time pair is obtained
using β=4, by removing lines 2, 3, 4, 6, 7, and 8 Fig.4. Now,
the number of FFs is 38 and the minimum clock period must
be greater than the delay of 4 FAs. The idea is illustrated in
Fig.7.

Granularity is a topological parameter. At silicon level,
its equivalence (or consequence) is the logic depth. In FPGA
technology, logic depth can be considered as the maximum
number of LUTs in series between successive lines of FFs. A
fine-grain pipelined RCA has a granularity β=1 but the logic
depth can be 1, 2 or more LUTs, depending on diverse
parameters such as the LUT size, dedicated XOR gates and
carry-chain lines, routing congestion criteria, or the ability of
the synthesis tool. In his remarkable book, H. B. Bakoglu
includes the gates of the input FF in the calculus of the logic
depth, for masked integrated circuits [26].

Fig.7: RCA pipelined with β=2 (above) and β=4 (below).

V. THE EFFECT OF REGISTERING AND EXTRA WIRING

The followers of Henry Ford in the field of electronics
shared his frustration about pipelining. The N-fold gain in
speed is a myth; it is only possible if the wiring and FF
delays are insignificant in comparison with logic delays. In
other words, fine-grain pipelines have a relatively slow
processing speed limit.

The organization of a pipelined production requires
several blocks receiving each datum at the right time. Even
though the nature of bits and car parts is different, the
consequences of introducing mechanisms to synchronize
them lead to the same result: loss of time. Ford divided the
motor assembly into 48 operations (N=48). This arrangement
should lead in the abstract to a speedup to nearly 48.
However, he merely obtained a speedup of 3. In the same
way, the construction of the magneto was split into 29 parts,
allowing the time to be reduced only from 20’ to 13’10”
(speedup=1.5). Finally, the overall car assembly evolved
from 12’30 hours to only 1’33 (speedup=8.3) [27].

In current integrated circuits, the effect of transporting
(wiring) and synchronizing (FFs) the parts (bits) is expensive
in term of time. FFs and wiring delays are larger than
combinatorial logic delays. This fact destroys the magic
effect of pipelining: dividing the task in N concurrent blocks
never produces the theoretical speedup of N. For example, in
Fig.7 a circuit is shown with a total combinational delay of
value ∆COMB. The propagation delay and setup of the FFs are
labelled ∆CK-OUT and ∆SETUP respectively. The pipelining of

the block in N stages, effectively diminish the combinational
delay of each stage by N, but the delays associated to the FF
remain constant. Additionally, a wiring delay ∆W must be
also computed. Thus, the pipeline period is:

T ≥ ∆CK-OUT + ∆COMB / N + ∆SETUP + ∆W + SKEW (1)

The effect of the clock skew in Eq.1 is analysed in
Section VIII. In any case, for a large number N of stages, the
clock period will remain dominated by FF and wiring delays.

Fig.8: The expansion of the stage delay.

Fig.9 shows the relationship between FF delays (∆CK-OUT
+ ∆SETUP) and minimum ∆COMB for ten different technologies
[28]-[38] ranging from discrete logic to FPGAs. The TILO
parameter of Xilinx datasheets was taken as the minimum
combinational delay for LUT-based circuits, while the two-
input NAND was selected for discrete logic. In any case, the
period of a maximum fine grain-pipeline would be
practically fixed by FFs and wires. Even in high-
performance computers, the logic depth cannot be just one
gate or LUT. For example, the CRAY models 1, 2 and 3 had
a logic depth of 8, 4 and 6 levels respectively [26].

Fig.9: Ratio between the total FF delay (propagation + setup) and
minimum combinational delay for different technologies.

As result, pipelining leads to a paradox. It is applied to
avoid inactive gates while waiting for new data (as it
happens in a combinational circuit). But for fine-grain
pipelining, only 20-30 % of the period is involved in the data

processing. The rest of the time is necessary to synchronize
and transport the bits. After all, the gates still remain inactive
most of the time. But at least, they work in parallel.

Meanwhile the delays of a FF are well-characterized
numbers; the nature of wiring delay is more complicated.
The wiring distribution depends on the number of stages N.
Pipelining expands the number of wires, changes the fanout
of the nets, and modifies the wiring distribution delay itself.
Some aspects that pipeline designers must take into account
about ∆W(N) are:

 Some pipeline directions change the nature of input
data wiring, passing from heavily loaded global or
broadcasted lines to lines with a minimum fanout.
This point is explained in the next section.

 Pipelining usually improves the circuit routability
and reduces wiring congestion in FPGAs. In a
pipeline circuit, FFs that drive another FF are the
most common structure of the circuit. So that, from
all the pins associated to a FPGA logic elements (a
k-LUT plus the associated FF), only two are utilized:
the input and output pins of the FF.

 In any well-routed circuit, the wiring histogram
follows a Pareto-Levi distribution [39]. That is, there
are lots of wires with low delays and few with the
highest delay values. In a combinational circuit, the
worst wire not always is part of the worst (critical)
path. But in a balanced pipeline, all paths are equally
critical for the minimum clock period. Normally, the
worse wire nests within the worse stage.

VI. GLOBAL LINES AND DIRECTIONS OF PIPELINING

The word pipeline evokes water and tubes. If friction is
neglected, the speed of the water is independent of the pipe
length [15]. However, on digital pipelines the circuit size
imposes a speed limit. Clock skew and heavily loaded global
lines increase the pipeline size. In this section, the second
effect is illustrated.

In [40], Jump and Ahuja analysed the different directions
of pipelining for array multipliers. The idea is illustrated in
Figs.10 and 11. The array of Fig.10 has a typical structure of
communication. The horizontal data enter in just one
processor. There are local communications, exhibiting a low-
fanout that is almost independent of the array size. In
contrast, the vertical data are broadcasted: each one requires
a global line to reach a complete column of processors. The
fanout of the vertical global wires is a function of the array
size. This type of mixed communication is common in binary
multipliers where a column (or a row) of AND gates
concurrently calculates, for example, the partial products
A0B0, A0B1, A0B2 …, A0Bn. The signal A0 requires a global
line to reach all the ANDs, meanwhile any Bi is local [41].

Fig.10 shows other valid directions of pipelining (there are

other possible “angles” but they do not maximize speed).

From a topological point of view, neglecting wiring delays,

both pipeline directions have a granularity of one processor.

So, in the abstract they should reach the same speed. The

“vertical” pipeline option sounds better because it exhibits a

less latency and smaller number of FFs. But the situation is

different in actual integrated circuits were wiring delay is

dominant: for large array sizes, these global lines will

exhibit high delays.

Fig.10: Generic pipeline with global lines inside each stage.

Fig.11: Pipeline direction disrupting global lines.

The vertical line pipeline confines each of these global
lines inside a pipeline stage. So, the total delays of these
heavily loaded interconnections are a part of the clock
period. In contrast, the “45 degrees” pipeline breaks the
global lines, transforming them into almost local wires. The
effect is detailed in Fig.12 for Y0 signal as example.

Fig.12: Elimination of global lines by pipelining (detail).

Work [42] carries out a case-study of the transformation
of global lines by the direction of pipelining. Target
technology was 1µ CMOS Standard Cells from the former
ES2 foundry [43], and Xilinx FPGAs. Two 16-bit arrays
multipliers were compared: the Hatamian-Cash [12] and the
McCanny-McWhirter [44]. Both pipeline circuits share the
same topology but the first maintain global interconnection
inside each stage, meanwhile the second transforms these
interconnections into a set of local wires with fanout equal to
2.

Fig.13 shows the histogram of wiring capacitance for
each version: Hatamian-Cash (above) and McCanny-
McWhirter (below). In both graphs there are two similar
groups of wires. On the left, there are a high number of local
interconnections loaded with small capacitances. On the
right side, a set of heavily loaded lines corresponding to the
clock and global reset signals. The delay of theses clock
branches does not directly affect the period. Its maximum
difference (skew) only increases the pipeline period (Section
VII).

Fig.13: Histograms of wiring capacitance.

The Hatamian-Cash pipeline exhibits less datapath nodes
(3115 versus 3986). But there is in the middle a group of
global lines of data that affect the clock period. These lines
do not exist in the fully local-line pipeline of McCanny-
McWhirter. As result, its throughput for typical delays is
higher (154 versus 117 MOPS).

VII. SYNCHRONIZATION FAILURES IN PIPELINES

In the previous sections, it was shown that fine grain
pipelining easily increases the total number of FFs from a
few units to tens of thousands. A large number of FFs makes
a clock distribution tree indispensable to drive them
synchronously. And clock trees generate latency and skew.
The first effect is mitigated in FPGA technology by adding
digital PLLs to align external and internal clock edges. More
problematic is the clock skew: almost all the pipeline´s paths
are vulnerable to it.

The clock skew is the maximum difference in time
between the same clock edge at two points of the die. The
factors that contribute to clock skew even in balanced trees
are differences in parameters like wiring length, distributed
RC, local temperature and voltage, FF trigger thresholds, and
finally buffer and FFs propagation delays. The mixture of all
these components makes skew inevitable.

Fig.13 clarifies the effect of clock skew. In a single-phase
clock scheme, each clock edge initiates a race between the
data in D1 and D2. To work properly, the data in D2 must be
captured by the FF2 before being replaced by the data that
travels from D1. Moreover, after the arrival of the edge to
FF2, the previous data in D2 must still remain stable during
the hold time of the FF.

Fig.14: FFs vulnerable to clock skew in single-phase clocking.

As a consequence, for the worst case (wiring delay zero),
the maximum admissible clock skew is:

SKEW = ΔCLK2- ΔCLK1 < ΔCK-OUT - HOLD (2)

As a rule-of-thumb, chip designers know that clock skew
must always be lower than the FF propagation delay. This
problem was called double-clocking by Fishburn [45]
because one bit passes through two FFs in one clock edge. It
is also known as a short-path fault. That is, not only the
longest path generates problems in digital systems. An
important fact is that the clock period is not present in (2). If
a circuit suffers clock skew, the circuit will never work at
any frequency. Another aspect to consider is the sign of the
skew. If it has an opposite sign, the clock edge arrives first at
FF2, and the risk of double-clocking is reduced. Eq. 2 is
completely applicable to pipeline circuits where FF chains
are very common. For example, in the 8-bit fine grain
pipeline RCA of Fig.4, the 77 % of the FFs only drive
another FF.

The second source of synchronization failure is more
evident. It is called a long-path fault and states that the
minimum clock period must be larger than the delay of worst
pipeline stage. In [46] was proposed to calculate the clock
period using a circular pipeline, in order to include the I/O
pin delays in the computation of the period. The condition to
avoid long path fault is indicated in (1). The worst effect of
the skew occurs if the slower clock line triggers the input FF

and the faster clock line triggers the output FF. In such a
particular combination, the value of the skew is added to the
clock period.

VIII. CONCLUSIONS

This tutorial reviewed the main aspects of the pipelining
of digital circuits. Students interested in integrated circuits
can discover several points of research interest. However,
some important related issues like wave pipelining, the
relationship between pipeline and power consumption, and
the self-timed synchronization exceed the length available
for this work.

If pipelining is a masterpiece of the classical period of
digital electronics, wave pipelining (WP) is an example of
the baroque period. Both techniques were contemporary. WP
was summarized in [8] in 1967: “…If a section of
combinatorial logic, such as the logic to execute an add,
could be designed with equal delay in all parallel paths
through the logic, the rate at which new inputs could enter
this section of logic would be independent of the total delay
through the logic…”. Leonard Cotten describes the same
concept with different words in 1969: “…It is possible for
max-rate pipeline machines to operate at high rates
determined by path differences, rather than the conventional
maximum delay...” [7]. The WP technique speeds up a
circuit without using intermediate FFs. In a WP all the paths
are equalized; therefore, several “waves” of data can
propagate along the circuit without interference between the
fastest bit of a new data and the slowest bit of the previous
one. The equalization must be immune to temperature and
voltage variations. WP allows the designer to obtain a unique
combination of fine-grain pipeline speed and the latency of
the original combinational circuit. The technique was studied
in detail in [47], [48]. An example of wave pipeline in an
LUT-based FPGA is described in [49], [50].

Another important aspect of pipelining is its hidden
relationship with power consumption. The fact that
pipelining can reduce power defies common sense. This is
especially true in FPGA technology, but negligible in
standard cell devices [51]. In a pipeline, the intermediate
lines of FFs prevent the propagation of glitches that,
otherwise, would produce a snowball effect in the activity of
large combinational circuits. If the synchronization power
overhead caused by the extra FFs is less than the datapath
glitch power reduction, pipelining saves power. The pipeline-
power rule was first reported in [52], [53]. An early
experimental verification for FPGA was performed in [54].
Since then, the effect has been verified in more than 34
experiments of 12 research groups in 8 countries using chips
that cover 17 years of FPGA technology [55].

Other variation of the classical pipelining is the self-
timed technique. In this case, the clock tree is replaced by a
local handshake between processing elements. There is no
global clock line; only low-fanout wires of request-ack
signals. The origin of the technique is [56] but a solid line of
research was led by Steve Furber [57], [58]. An interesting
feature of self-timed circuits is their smooth requirement of
power supply current.

ACKNOWLEDGMENT

The author would like to thank all these people who
engineered electronic pipelines over the last 50 years.

REFERENCES

[1] “Company Timeline”, https://corporate.ford.com/history.html. Ford
Motor Company. Retirved: 5/12/2018.

[2] J. Deverell, "Pipeline Iterative Arithmetic Arrays". IEEE Trans. on
Computers, pp.317-322. March 1975.

[3] H.T. Kung, “Why Systolic Architectures”, Computer, pp.37-46, Jan.
1982.

[4] N. Sherrin (Editor), “The Oxford Dictionary of Humorous
Quotations”, Oxford University Press, 1995.

[5] https://commons.wikimedia.org, File: Ford_assembly_line_-
_1913.jpg. Retrieved: 3/1/2019.

[6] L. Cotten, "Circuit Implementation of High-Speed Pipeline Systems",
Proc. Fall Joint Computer Conference, pp. 489-504, 1965.

[7] L. Cotten, "Maximum-rate pipeline systems", Proc. Sprint Joint
Computer Conference, pp. 581-586, 1969.

[8] S. Anderson, J. Earle, R. Goldschmidt, and D. Powers, "The IBM
system/360 model 91 floating point execution unit", IBM Journal Res.
Development, Vol.11, pp. 34-53, Jan 1967.

[9] M. Flynn, “Very High-speed Computing Systems”, Proceedings of
the IEEE, Vol. 54, No. 12, December, 1966.

[10] T. Hallin and M. Flynn, "Pipeline of Arithmetic Functions". IEEE
Trans. on Computer, pp.880-886. August 1972.

[11] D. Henlin, M. Fertsch, M. Mazin y E. Lewis. "A 16 bit x 16 bit
Pipelined Multiplier Macrocell". IEEE Journal of Solid-State Circuits,
Vol.SC-20, Nº2, pp.542-547. Abr. 1985.

[12] M. Hatamian and G.L.Cash. "A 70-MHz 8-bit x 8 bit Parallel
Pipelined Multiplier in 2.5-um CMOS". IEEE Journal of Solid-State
Circuits. August 1986.

[13] T. Noll, D. Schmitt-Landsiedel, H. Klar and G. Enders, "A Pipeline
330-MHz Multiplier", IEEE Journal of Solid-State Circuits, Vol. SC-
21, pp. 411-416, Jun. 1986.

[14] M. Santoro and M. Horowitz, "A Pipelined 64x64-bit Iterative
Multiplier", IEEE J.of Solid-State Circuits, VOL. 24, n2, pp.487-
493, Apr. 1989.

[15] H. V. Jagadish, R.G. Mathews, T. Kailath and J.A. Newkirk. "A
Study of Pipelining in Computing Arrays". IEEE Transactions on
Computers, vol. C35, No5 . May 1986.

[16] F. Lu, H. Samueli, J. Yuan and S. Svensson, "A 700-MHz 24-bit
pipelined accumulator in 1.2 µm CMOS for Application on
Numerically Controlled Oscilators", IEEE Journal of SolidState
Circuits, Vol.28, N.8, pp.878-885, August 1993.

[17] Atmel Corp, "SClib ATMEL ATC18", Datasheet Version: 1.5.5-
1.0.0, Jan 2002.

[18] Xilinx Inc., “All Programmable 7 Series Product Selection Guide”,
https://www.xilinx.com/support/documentation/selection-guides/7-
series-product-selection-guide.pdf. Retrieved:12-01-2018.

[19] Xilinx Inc., “Using Look-Up Tables as Shift Registers (SRL16) in
Spartan-3 Generation FPGAs”, XAPP465 (v1.1), May 2005.

[20] R. Lyon, "Two's Complement Pipeline Multipliers", IEEE
Transactions on Communications, pp. 418 - 425, Vol. 24 , Issue: 4 ,
Apr 1976.

[21] C. V. Ramamoorthy, “Pipeline Architecture", Computing Surveys,
Vol.9, No.1, March 1977.

[22] D. Gross, “Greatest bussiness histories of all times”, John Wiley &
Sons, Inc. 1996.

[23] P. Cappello y K. Steiglitz. "A VLSI Layout for Pipelined Dadda
Multiplier". ACM Trans. on Computer Systems, Vol.1, Nº2, May
1983.

[24] Boeing,http://www.boeing.com/resources/boeingdotcom/history/pdf/
Boeing_Chronology.pdf

[25] C. Hauck, C. Bamji and J. Allen, "The Systematic Exploration of
Pipelined Array Multiplier Performance", Proc. ICASSP 85,
pp.1461-1464. New York: IEEE Press, 1985.

[26] H. Bakoglu, "Circuits, Interconnections, and Packing for VLSI",
Reading, Massachusset: Addison-Wesley Publishing Co. 1992.

[27] Burrel G. (Editor), "Crónica de la Técnica", Barcelona: Plaza & Janes
Publishers, 1989, pp. 524-525.

[28] Texas Instruments, “SN74S74 Dual D-type positive-edge-triggered
flip-flops with preset and clear”, SDLS119 – December 1983 –
revised March 1988.

[29] Texas Instruments, “SN74S00, Quadruple 2-input NAND” ,
December 1983.

[30] Xilinx Inc., “Virtex-5 FPGA Data Sheet: DC and Switching
Characteristics”, DS202 (v5.5) June 17, 2016.

[31] Xilinx Inc., “XC8100 FPGA family”, Version 1.0, June 1, 1996.

[32] Xilinx Inc., “Spartan and Spartan-XL FPGA Families Data Sheet”,
DS060 (v2.0) March 1, 2013.

[33] Phillips, “Fast TTL Logic Series”, Holland, 1999.

[34] Xilinx Inc. "XC6200 Field Programmable Gate Arrays", (Version
1.8) January 9, 1997.

[35] Xilinx Inc., “XC4000 Series Field Programmable Gate Arrays”,
Version 1.02, June 1, 1996.

[36] Motorola, “CMOS Logic Data”, 1990.

[37] Xilinx Inc., “Virtex-6 FPGA Data Sheet: DC and Switching
Characteristics, DS152 (v2.4)”, May 11, 2010.

[38] Xilinx Inc, “XC3000 Series Field Programmable Gate Arrays
(XC3000A/L, XC3100A/L)”, Nov. 9, 1998.

[39] W. Donath, "Wire Length Distribution for Placemment of Computer
Logic", IBM J. of Res. Development, vol.25, nº3, May 1981.

[40] R. Jump and S. Ahura. "Effective Pipeline of Digital Systems", IEEE
Trans. on Computers, Vol. C-27, Nº9, pp.855-865, Sept. 1978.

[41] P. Song and G. de Micheli, “Circuit and Architecture Trade-offs for
High-Speed Multiplication”, IEEE Journal of Solid-State Circuits,
Vol.26, No.9, Sept 1991.

[42] E. Boemo, S. Lopez-Buedo, N. Acosta, and E. Todorovich, ”Local
versus Global Interconnections in Pipelined Arrays: An Example of
the Interaction between Architecture and Technology", Proc. XIV
DCIS Conference, pp.181-186, November 1999.

[43] European Silicon Structures, "ES2 ECPD10 Library Databook", Doc.
E01A09, 1993.

[44] J. McCanny and J. McWhirter, "Completely iterative, pipelined
multiplier array suitable for VLSI", IEE Proc. pp.40-46. Vol.129, Part
G, Nº2. April 1982.

[45] J. Fishburn, "Clock Skew Optimization", IEEE Trans. on
Computers, Vol.39, Nº7, pp.945-951, July 1990.

[46] K. Sakallah, T. Mudge, T. Burks and E. Davidson, "Optimal Clocking
of Circular Pipelines", Proceeding ICCD'91, pp.642-646. IEEE Press
1992.

[47] D. Wong, "Techniques for Designing High-Performance Digital
Circuits Using Wave Pipelining", Tech.Rep. nº CLS-TR-92-508,
Stanford Uiversity: Feb. 1992.

[48] C. Gray, W. Liu and R. Cavin, "Wave Pipelining: Theory and
Implementation", Norwell, MA: Kluwer Academic Publishers. 1992.

[49] E. Boemo, S. López-Buedo and J. Meneses, "The Wave Pipeline
Effect on LUT-Based FPGA Architectures" Proc. ACM FPGA 1996,
Monterrey, Feb. 1996.

[50] E. Boemo, S. Lopez-Buedo, and J. Meneses, "Some Experiments
about Wave Pipelining on FPGAs", IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol.6, No.2, June 1998.

[51] E. Boemo, S. Lopez-Buedo, C. Santos, J. Jauregui and J. Meneses:
“Logic Depth and Power Consumption: A Comparative Study
between Standard Cells and FPGAs”, Proc. Design of Circuit and
Integrated Systems Conference (1998).

[52] J. Leijten, “Analysis of Transition Activity and Power Dissipation in
Synchronous Logic Circuits”. Nat. Lab. Technical Note, no. 339/93,
Philips Electronics N.V. (1993).

[53] J. Leijten, J. van Meerbergen’ and J. Jess, “Analysis and reduction of
glitches in synchronous networks”, Proc. European Design and Test
Conference (1995).

[54] E. Boemo, G. Gonzalez de Rivera, S. Lopez-Buedo and J. Meneses:
“Some Notes on Power Management on FPGAs”. In: Field-
Programmable Logic and Applications FPL’05, LNCS, vol. 975,
pp.149-157, Springer-Verlag 1995.

[55] E. Boemo, J.P. Oliver, and G. Caffarena, "Tracking the Pipelining-
Power Rule along the FPGA Technical Literature", Proc. ACM 2013
FPGA World, Stockholm, Sweden. ACM, Sept. 2013.

[56] I. Sutherland, "Micropipelines", Communication of the ACM, vol.22,
nº6, pp.720-734. Jun. 1989.

[57] S Furber, “Computing without clocks: Micropipelining the ARM
processor”, in Asynchronous Digital Circuit Design, pp.211-262,
Springer, London1995.

[58] J. Woods, P. Day, S. Furber, J.D. Garside, N. Paver, and S. Temple,
“AMULET1: An Asynchronous ARM Microprocessor”, IEEE
Transactions on Computers, Vol. 46, No. 4, April 1997.

