SECTION II: KINETICS AND BIOREACTOR DESIGN:

LESSON 9.3. - Enzymatic kinetics, microbial kinetics and metabolic stoichiometry – Models and Metabolic Stoichiometry

JAVIER CALZADA FUNES

Biotechnology Department, Biosciences School

UNIVERSIDAD FRANCISCO DE VITORIA
AIMS FOR TODAY’S LESSON

1.- KINDS OF MODELS
 Using concepts as “segregation” and “structure”.

2.- MALTHUS MODEL and its prediction capability.

3.- LOGISTIC EQUATION and its prediction capability.

4.- MONOD EQUATION and its prediction capability.

5.- OTHER MODELS
1. KINETIC MODELS

A model is a simplified representation of a biological phenomenon, designed to facilitate predictions and calculations that can be expressed in mathematical form.

A model is an approximation to a real phenomenon.

"All models are wrong but useful“

Modeling involves an agreement between the reliability, degree of complexity and the effort required to produce the model.
1. KINETIC MODELS

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NON STRUCTURED</th>
<th>STRUCTURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON SEGREGATED</td>
<td>Cell population considered as a whole: average individual and one single component</td>
<td>Description of a Average cell whose different components vary along time</td>
</tr>
<tr>
<td>SEGREGATED</td>
<td>Cell population (distribution of any characteristic), one single component</td>
<td>Multicomponent description within a una cell population, heterogeneity from one cell to another cell</td>
</tr>
</tbody>
</table>
1. KINETIC MODELS

Structured Model ➔ considering a large network of enzymatic reactions within the cell.

Totally Segregated Model ➔ considering that every cell in the culture is different in both size and metabolic state.
1. KINETIC MODELS

Balanced Growth ➔ cell growth is defined as a function of a limiting **component**, which controls its rate of limiting substrate, while the other components are in adequate concentrations and not limiting growth.

Average Cell ➔ cells within a population are equal and behave in the same way.
1. KINETIC MODELS

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NON STRUCTURED</th>
<th>STRUCTURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON SEGREGATED</td>
<td>Cell population considered as a whole: average individual, one single component</td>
<td>Description of a cell population whose different components vary at the same time.</td>
</tr>
<tr>
<td>SEGREGATED</td>
<td>Cell population (distribution of any characteristic), one single component</td>
<td>Multicomponent description within a single cell population, heterogeneity from one cell to another cell.</td>
</tr>
</tbody>
</table>

Balanced Growth
1. KINETIC MODELS

Real case ➔ Growth of cells in the system is segregated and structured ➔ very complex to describe.

Simplest case ➔ cell population is considered as a non-segregated and unstructured system.
1. KINETIC MODELS

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NON STRUCTURED</th>
<th>STRUCTURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON SEGREGATED</td>
<td>Cell population considered as a whole: average individual and one single component</td>
<td>Description of a Average cell whose different components vary along time</td>
</tr>
<tr>
<td>SEGREGATED</td>
<td>Cell population (distribution of any characteristic), one single component</td>
<td>Multicomponent description within a una cell population, heterogeneity one cell to another</td>
</tr>
</tbody>
</table>
1. KINETIC MODELS

1. Non structured Nor Segregated models
2. **Structured** but Non Segregated
3. Non structured but **Segregated**.
1. KINETIC MODELS

1. Non structured Nor Segregated models
 - Growth Models.
 - Models describing both growth and substrate uptake.
 - Models describing growth, substrate uptake and product generation.

2. Structured but Non Segregated

3. Non structured but Segregated.
1. KINETIC MODELS

1. Non structured Nor Segregated models
 - Growth Models.
 - Models describing both growth and substrate uptake.
 - Models describing growth, substrate uptake and product generation.

2. Structured but Non Segregated
 - Cell Models
 - Metabolic Models
 - Chemically Structured Models

3. Non structured but Segregated
1. KINETIC MODELS

1. **Non structured Nor Segregated models**
 - Growth Models.
 - Models describing both growth and substrate uptake.
 - Models describing growth, substrate uptake and product generation.

2. **Structured but Non Segregated**
 - Cell Models
 - Metabolic Models
 - Chemically Structured Models.

3. **Non structured but Segregated**
 - Filamentous microorganisms
 - Mixed culture
1. KINETIC MODELS

1. Non structured Nor Segregated models

➢ Growth Models.
➢ Models describing both growth and substrate uptake.
➢ Models describing growth, substrate uptake and product generation.

MAIN CHARACTERISTICS:

• Black box: what happens inside the cells?
• Non structured
• Homogeneously distributed population ➔ Non segregated.
• Great simplification of the reality.
• Useful for technological purposes.
• Can be applied under different situations.
1. KINETIC MODELS

1. Non structured Nor Segregated models
 - Growth Models.
 - Models describing both growth and substrate uptake.
 - Models describing growth, substrate uptake and product generation.

MAIN EXAMPLES:

- Malthus Law.
- Logistic Equation
- Monod equation
1. - MALTHUS MODEL

2. - LOGISTIC EQUATION

3. - MONOD EQUATION

4. - OTHER MODELS
1. - MALTHUS MODEL
2. MALTHUS MODEL

1. **Non structured Nor Segregated models**
 - Growth Models.

 \[
 \frac{d[X]}{dt} = r = \mu \cdot f([X])
 \]

 - Describing one single process
 - Simple equations only considering [X]
2. MALTHUS MODEL

1. Non structured Nor Segregated models
 ➢ Growth Models.

\[
\frac{d[X]}{dt} = \mu \cdot f ([X]) \\
\frac{d[X]}{dt} = \mu \cdot [X] \Rightarrow [X] = [X]_0 \cdot \exp(\mu \cdot t)
\]

Valid only to describe the exponential growth stage.

Unable to describe the stationary phase.
2. MALTHUS MODEL

1. Non structured Nor Segregated models

- Growth Models.

\[t = 0 \iff [X] = [X]_0 \]
\[t = t_{lat} \iff [X] = [X]_0 \]
\[
\begin{cases}
0 \leq t < t_{lat} \therefore \frac{d[X]}{dt} = 0 \Rightarrow X = X_0 \\
t \geq t_{lat} \therefore \frac{d[X]}{dt} = \mu[X] \Rightarrow X = X_0 \cdot \exp[\mu(t - t_{lat})]
\end{cases}
\]
2. MALTHUS MODEL

1. Non structured Nor Segregated models

➢ Growth Models.

![Graph showing growth over time](image_url)
1. - MALTHUS MODEL

2. - LOGISTIC EQUATION

3. - MONOD EQUATION

4. - OTHER MODELS
2.- LOGISTIC EQUATION
3. LOGISTIC EQUATION

1. Non structured Nor Segregated models

➢ Growth Models.

\[
\text{Substrate} \xrightarrow{\text{Cells}} \text{Cells} \\
\frac{d[X]}{dt} = r = \mu \cdot f ([X])
\]

- Describing one single process
- Simple equations \(\leftarrow \) only considering \([X]\)
3. LOGISTIC EQUATION

1. Non structured Nor Segregated models

- Growth Models.

\[
\frac{d[X]}{dt} = \mu \cdot f([X])
\]

\[
\frac{d[X]}{dt} = \mu \cdot \left([X] \left(1 - \frac{[X]}{[X]_{\text{max}}} \right) \right)
\]

\[
X = \frac{X_0 \cdot \exp(\mu \cdot t)}{1 - \frac{X_0}{X_{\text{max}}} \left[1 - \exp(\mu \cdot t) \right]}
\]
3. LOGISTIC EQUATION

1. Non structured Nor Segregated models

- Growth Models.

\[
X = \frac{X_0 \cdot \exp(\mu \cdot t)}{1 - \frac{X_0}{X_{\text{max}}} \cdot [1 - \exp(\mu \cdot t)]}
\]

It predicts exponential and stationary phase,

but it does not consider the influence of the substrate (limiting nutrient).
3. LOGISTIC EQUATION

1. Non structured Nor Segregated models

➢ Growth Models.

\[t = 0 \iff [X] = [X]_0 \]

\[t = t_{lat} \iff [X] = [X]_0 \]

\[
\begin{cases}
0 \leq t < t_{lat} \therefore \frac{d[X]}{dt} = 0 \implies X = X_0 \\
t \geq t_{lat} \therefore \frac{d[X]}{dt} = \mu \cdot X \left(1 - \frac{X}{X_{max}}\right); \implies X = \frac{X_0 \cdot \exp(\mu \cdot [t - t_{lat}])}{1 - \frac{X_0}{X_{max}} \cdot [1 - \exp(\mu \cdot [t - t_{lat}])]}
\end{cases}
\]
3. LOGISTIC EQUATION

1. Non structured Nor Segregated models

- Growth Models.
1. - MALTHUS MODEL
2. - LOGISTIC EQUATION
3. - MONOD EQUATION
4. - OTHER MODELS
3.- MONOD EQUATION
4. MONOD DEQUATION

1. Non structured Nor Segregated models

➢ Growth Models.

\[\frac{d[X]}{dt} = \mu \cdot f ([X], [S]) \]

\[\frac{d[X]}{dt} = \mu([S])[X] = \frac{\mu_m[S]}{K_s + [S]}[X] \]

Predicts specific growth rate according to substrate concentration

Under limiting substrate conditions.

Hyperbolic kinetics \(\approx \) Michaelis-Menten kinetics for an enzymatic process.
4. MONOD EQUATION

1. **Non structured Nor Segregated models**

 - Growth Models.

 \[
 \frac{d[X]}{dt} = \frac{\mu_m \cdot [S]}{K_S + [S]} \cdot [X]
 \]

 - \(\mu = \) specific growth rate for a particular substrate concentration
 - \(\mu_m = \) maximum = specific growth rate for a particular substrate concentration
 - \(S = \) substrate concentration
 - \(K_S = \) saturation constant ([S] for \(\mu = 1/2 \) de \(\mu_m \))
4. MONOD DÉQUATION

1. **Non structured Nor Segregated models**

 ➢ Growth Models.

\[
\frac{d[X]}{dt} = \mu([S])[X] = \frac{\mu_m[S]}{K_S + [S]}[X]
\]

\[
K_S \ll [S] \Rightarrow \frac{d[X]}{dt} = \mu_m[X] \quad \text{Malthus}
\]

\[
K_S \gg [S] \Rightarrow \frac{d[X]}{dt} = \frac{\mu_m[S][X]}{K_S} \quad \text{M'Kendrick y Pai}
\]
1. MALTHUS MODEL

2. LOGISTIC EQUATION

3. MONOD EQUATION

4. OTHER MODELS
4.- OTHER MODELS
5. OTHER MODELS

1. **Non structured Nor Segregated models**
 - Growth Models.
 - Models describing both growth and substrate uptake.
 - Models describing growth, substrate uptake and product generation.

2. **Structured but Non Segregated**
 - Cell Models
 - Metabolic Models
 - Chemically Structured Models.

3. **Non structured but Segregated**
 - Filamentous microorganisms
 - Mixed culture
5. OTHER MODELS

2. Structured but Non Segregated

- Cell Models

<table>
<thead>
<tr>
<th>SUBSTRATES</th>
<th>CELLS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>BIOMASS 1</td>
<td>Products</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>BIOMASS 2</td>
<td>Biomass</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Biomass SUBSTRATES</td>
<td>CELL PRODUCTS</td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
2. Structured but Non Segregated

- Cell Models

Model of Williams (1967)

Two compartment:

- **Synthetic section (K):** RNA + small biomolecules.
- **Genetic-Structural section (G):** DNA + proteins

Hypothesis

Cell Division \leftrightarrow G section doubling its size

Reaction Scheme

$$ S \rightarrow K + G $$

Universidad Francisco de Vitoria
UFV Madrid
5. OTHER MODELS

2. Structured but Non Segregated

- Cell Models

 Model of Williams (1967)

Reaction Scheme

\[
\begin{align*}
 r_1 &= k_1 \cdot [S] \cdot ([K] + [G]) \\
 r_2 &= k_2 \cdot [K] \cdot [G]
\end{align*}
\]
2. Structured but Non Segregated

- Cell Models

Model of Williams (1967)

Reaction Scheme

\[r_1 = k_1 \cdot [S] \cdot ([K] + [G]) \]
\[r_2 = k_2 \cdot [K] \cdot [G] \]

\[\frac{d[S]}{dt} = -r_1; \quad \frac{d[K]}{dt} = r_1 - r_2; \quad \frac{d[G]}{dt} = r_1 + r_2 \]
5. OTHER MODELS

1. Non structured Nor Segregated models
 - Growth Models.
 - Models describing both growth and substrate uptake.
 - Models describing growth, substrate uptake and product generation.

2. Structured but Non Segregated
 - Cell Models
 - Metabolic Models
 - Chemically Structured Models.

3. Non structured but Segregated
 - Filamentous microorganisms
 - Mixed culture
3. Non structured but Segregated

- Filamentous microorganisms
- Mixed culture

<table>
<thead>
<tr>
<th>SUBSTRATES</th>
<th>MICROORGANISM</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>BIOMASS 1</td>
<td>Products CO₂ Biomass</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>BIOMASS 2</td>
<td>Products CO₂ Biomass</td>
</tr>
<tr>
<td>Oxygen</td>
<td>BIOMASS 3</td>
<td>Products CO₂ Biomass</td>
</tr>
<tr>
<td></td>
<td>BIOMASS 4</td>
<td>Products CO₂ Biomass</td>
</tr>
</tbody>
</table>
5. OTHER MODELS

3. Non structured but Segregated

SEGREGATION based on a property distribution function

Cellular age: difficult to measure and to relate to composition

Biomass: filamentous fungi.
5. OTHER MODELS

3. Non structured but Segregated

- Filamentous microorganisms

<table>
<thead>
<tr>
<th>Unicellular</th>
<th>Fission and Budding</th>
</tr>
</thead>
</table>

- Filamentous Mycelium

- Bud

- Branching
5. OTHER MODELS

3. Non structured but Segregated

- Filamentous microorganisms

Growth: r_{yema} → Branching frequency (ϕ)
ANY QUESTION?
SECTION II: KINETICS AND BIOREACTOR DESIGN:

LESSON 9.3. - Enzymatic kinetics, microbial kinetics and metabolic stoichiometry – Models and Metabolic Stoichiometry

JAVIER CALZADA FUNES

Biotechnology Department, Biosciences School
UNIVERSIDAD FRANCISCO DE VITORIA