Bring ideas to life VIA University College

DES M1 Refrigeration circuit, components

<u>Lesson 4</u>

- Feed back on hand in exercise Refrigeration Circuit 1
- Intro to compressors
- Basic calculations for compressor dimensioning
- Evaporator and condenser dimensioning

Refrigeration circuit components

- Intro to compressors
- Basic calculations for compressor dimensioning
- Evaporator and condenser dimensioning

Refrigeration circuit Compression

Hermetic compressor video

Commercial refrigeration systems with semi hermetic or hermetic compressor

Open compressor example

SMC 108 singlestage reciprocating compressor unit with Unisab III systems controller b

Screw compressor Internal view

https://youtu.be/stjvbAO _6JQ

SAB 202 - principle

Industrial system with open compressors

Refrigeration circuit components

- Intro to compressors
- Basic calculations for compressor dimensioning
- Evaporator and condenser dimensioning

Chosing the right compressor "The engineer's challenge"

The criteria you have to balance normally include:

- Required capacity
- Operating conditions
- Available space
- Part-load requirements
- Temperature levels

- Energy consumption
- Choice of refrigerant
- Environmental concerns
- Maintenance issues
- Peak vs average ratio.

Compressor data Sabroe compressors

Calculated from mass flow rate, volumetric efficiency and specific volume in suction pipe

Should match Cooling Capacity

HPC 108 singlestage reciprocating compressor block (40 bar) with Unisab III systems controller

Model	Number	Swept	Swept	Nominal capacities in kW at 1500 rpm				
	of cylinders	volume at 1500 rpm	volume at 1800 rpm	Heating	Cooling	Cooling	Cooling	Cooling
				R717	R717	R410A	R744	R744
		m³/h	m³/h	+35/+72°C	0/+55°C	0/+35°C	-50/-10°C	-40/-5°C
HPO 24	4	97	116	267	71	117	92	138
HPO 26	6	146	175	397	106	176	138	207
HPO 28	8	194	233	529	141	235	184	276
HPC 104 S	4	226	N/A	629	168	284	228	338
HPC 106 S	6	339	N/A	942	252	426	343	507
HPC 108 S	8	452	N/A	1256	335	568	457	676

Compressor dimensioning overview

To find	Calculate	Using
Mass flow, q _m	Cooling capacity, ϕ_0	Cooling load
Pressure ratio	Evaporator and condenser temperatures	Room and outdoor temperatures
Compressor/motor size	Compressor shaft power, P _{shaft}	lsentropic efficiency, η _i
Compressor discharge temperature, h ₂	Cooled/uncooled compression	Compressor cooling flow rate
Compressor capacity	Swept volume, V _{s,v}	Volumetric efficiency, η _s
COP _{EI}	Compressor motor power, P _m	Motor efficiency

Compressor Isentropic efficiency

The isentropic efficiency is dependent on the pressure ratio PR, ratio between suction pressure (P_L) and discharge pressure (P_H) .

Typical values for isentropic efficiency, η_s (reciprocal compressor).

Isentropic efficiency Ideal and real compression

The model for an ideal compression follows an isentropic process – there is no friction and no heat exchange with surroundings (adiabatic process). The compressor's specific work w_{is} is parallel to the constant entropy line (s= constant).

Uncooled compression

Isentropic efficiency Influence on shaft power

In a real refrigeration system the compressor's power consumption is higher than the ideal power needed.

Influence on shaft power:

$$P_{shaft} = \frac{q_{m(h_2 - h_1)}}{\eta_{is}}$$

Exercise Isentropic efficiency

150 kW

at an evaporation temperature of

An ammonia refrigeration plant has a cooling capacity of -10°C. There is a superheating in the evaporator of 5°C. The condensing temperature is 30°C and the refrigerant is sub-cooled 5°C in the condenser.

Efficiencies: $\eta_s = 0,75$ (Presuppose adiabatic compressor process) and $\eta_{mot} = 0,89$

Volumetric efficiency $\eta_v = 0.7$

1. Calculate h2, find discharge temperature

- 2. Plot process i log P h diagram
- 3. Calculate mass flow rate

Isentropic efficiency Real compression

In a real refrigeration system the compressor's power consumption is higher than the ideal power needed.

The specific internal work w_i (real internal work) is influenced by mechanical friction and "flow friction" in the compressor.

The compressors isentropic efficiency η_s is defined by:

$$\eta_s = \frac{w_{i12s}}{w_{i12}} = \frac{h_{2s} - h_1}{h_2 - h_1}$$

 h_{2s} enthalpy at discharge value if the process is isentropic. h_2 entalphy at discharge value for the real compression process.

Compressor Swept volume

The volumetric efficiency for a <u>reciprocating compressor</u> is highly influenced by the compression ratio and depends on several factors as:

- Recompression of refrigerant vapour from cylinder "top space".
- Pressure drop in valves.
- Leak from high pressure side to low pressure side.
- Heating of refrigerant in suction inlet.

The volumetric efficiency for a <u>screw compressor</u> is less influenced by the compression ration because there is no top dead center.

Compressor Volumetric efficiency

Compressor Volumetric efficiency

Animation

The compressors capacity is characterized by the volume flow rate q_{v1} in the suction inlet valve.

The volume flow rate in the suction pipe depends on the compressors swept volume $q_{v,s}$ and the volumetric efficiency η_v .

$$\eta_{v} = \frac{Actual \, Volume}{Theoretical \, Swept \, Volume} = \frac{q_{v1}}{q_{v_{S}}}$$

Compressor Capacity and mass flow

Relation mass flow rate $q_{m,R}$ can be calculated by:

$$q_{m,R} = \frac{q_{v1}}{v_1} = \frac{q_{v,s} \cdot \eta_v}{v_1}$$

Compressor Swept volume

Animation

Compressor Swept volume

The compressors swept volume q_{v,s} for a <u>reciprocating</u> compressor is defined by:

$$q_{v.s} = \frac{\pi}{4} \cdot D \cdot S \cdot n \cdot z = V_s \cdot n$$

D diameter of cylinder [m]

- S length of stroke [m]
- n number of revolutions [s⁻¹]
- z number of cylinders

V_s compressor displacement [m³]

Exercise Volumetric efficiency

150 kW

An ammonia refrigeration plant has a cooling capacity of at an evaporation temperature of -10° C. There is a superheating in the evaporator of 5°C.

The condensing temperature is 30°C and the refrigerant is sub-cooled 5°C in the condenser.

Efficiencies: $\eta_s = 0.75$ (Presuppose adiabatic compressor process) and $\eta_{mot} = 0.89$

Volumetric efficiency $\eta_v = 0,7$

- 1. Calculate h2, find discharge temperature
- 2. Plot process i log P h diagram
- 3. Calculate mass flow rate
- 4. Calculate swept volume
- 5. Find a compressor in Sabroe catalog (Studynet)

Refrigeration circuit components

- Intro to compressors
- Basic calculations for compressor dimensioning
- Evaporator and condenser dimensioning

Cold side Evaporator

Refrigeration circuit Evaporation

Evaporator and ΔT Rating temperatures

Most fruits and vegetables Products sensitive to dehydration Products not sensitive to dehydration $\Delta T \sim 4 K$ $\Delta T \sim 6-8 K$ $\Delta T \sim 10K or higher$

Hot side Condenser

Refrigeration circuit Condensation

Condenser and ΔT Rating temperatures

Dry aircooler Evaporating condenser ΔT ~ 10-15 K ΔT ~ 8-12 K

Heat transfer

Heat flow rate calculations, air cooled

Design parameters, temperature Question

- Cooling room for vegetables
- Temperature of cooling room: -10 °C
- Average max. outdoor temperature: 30 °C
- Air cooler, dry

Find evaporator and condenser temperatures.