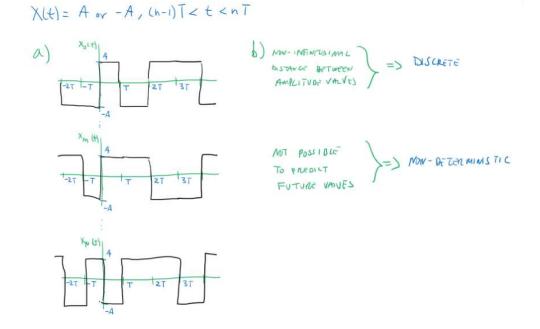
UNIT 2

Exercises of UNIT 2- Part I: Temporal Characteristics

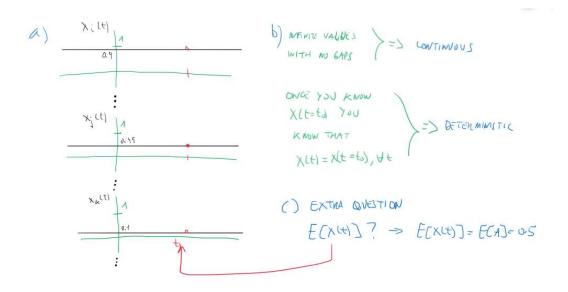
2.1 A two-level random binary process is defined by

X(t) = A or -A,(n-1)T < t < nT where the levels A and -A occur with equal probability, T is a positive constant, and $n = 0, \pm 1, \pm 2, ...$

- (a) Sketch a typical sample function
- (b) Classify the process



- 2.2 A random process is defined by X(t) = A, where A is a continuous random variable uniformly distributed on [0,1].
 - (a) Determine the form of the sample functions
 - (b) Classify the process



- 2.3 Given the random process $X(t) = Acos(\omega_0 t + \Theta)$ where A and ω_0 are constants and Θ is a uniformly distributed random variable on the interval $[0, 2\pi]$. Find
 - (a) The mean
 - (b) The autocorrelation
 - (c) The time average
 - (d) The time autocorrelation

b) Auto conclution
$$\rightarrow R_{XX}(t_1, t_2) = R_{XX}(t_1, t_2) = \left[E[X(t_1 | X(t_1 \tau)] \right]$$

$$= A^2 E[(\omega_1(w_0 t_1 t_0)) (\omega_1(t_1 t_2) + 0)]$$

$$= A^2 E[(\omega_1(w_0 t_1 t_0) + \frac{1}{2} [(\omega_1(x_1 + \lambda) + 0) (\alpha_1 + \lambda)] + \frac{1}{2} [(\omega_1(x_1 + \lambda) + 0) (\alpha_1 + \lambda)]$$

$$= A^2 E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)] + E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)]$$

$$= A^2 E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)] + E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)]$$

$$= A^2 [E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)] + E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)]$$

$$= A^2 [E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)] + E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)]$$

$$= A^2 [E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)] + E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)]$$

$$= A^2 [E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)] + E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)]$$

$$= A^2 [E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)] + E[(\omega_1(w_0 t_1 + \lambda) + 2\theta)]$$

() Time average
$$\rightarrow A[x(t)] = \lim_{T \rightarrow a} \frac{1}{T} \int_{T}^{T} x(t) dt = \lim_{T \rightarrow a} \frac{1}{T} \int_{T}^{T} (t) dt = \lim_{T \rightarrow a} \frac{1}{T} \int_{T}^{T} (t) dt = \lim_{T \rightarrow a} \frac{1}{T} \int_{T}^{T} (t) dt$$

$$= \lim_{T \rightarrow a} \frac{1}{2T} = 0$$

d) Time autocorrelation
$$\Rightarrow A[x(t)x(t+\tau)] = \lim_{T \Rightarrow p} \frac{1}{2T} \int_{T} \frac{x(t)x(t+\tau)dt}{x(t+\tau)dt} \frac{1}{2T} \int_{T} \frac$$

c) Some conclusions - X(t) is wish hime
$$\left\{ \begin{array}{l} E[X(t)] = 0 = contant \ |former \\ R_{XX}(t,ttr) = \frac{A^2}{2} convert = Rex(t) \ 2^{norder} \\ order \end{array} \right.$$

-
$$E[X(t)] = A[X(t)] => ERGODIC IN THE MEAN- $R_{XX}(\tau) = |R_{XX}(\tau) => ERGODIC IN THE AUTOCORDERATION$$$

2.4 Given the random process

 $X(t) = Asin(\omega_0 t + \Theta)$ where *A* and ω_0 are constants and Θ is a uniformly distributed random variable on the interval $[-\pi,\pi]$. Define a new random variable $Y(t) = X^2(t)$.

- (a) Find the autocorrelation function of Y(t)
- (b) Find the cross-correlation function of *X*(*t*) and *Y*(*t*)
- (c) Are *X*(*t*) and *Y*(*t*) wide-sense stationary?
- (d) Are *X*(*t*) and *Y*(*t*) jointly wide-sense stationary?

$$\begin{array}{l} (A) \quad \mathcal{R}_{yy}\left(t, t+z\right) = \left[\left[\begin{array}{c} Y(t) \quad Y(t+z)\right] = \left[\left[\begin{array}{c} \left[\frac{A^{2}}{2}\left[1+G_{2}(z_{u_{0}}t+z\Theta)\right]\right] \\ \frac{A^{2}}{2}\left[1+G_{2}(z_{u_{0}}(t+z)+z\Theta)\right]\right] \\ = \left[\begin{array}{c} A^{2} \\ \frac{A^{2}}{4}\left[1+\int_{z}\left[G_{2}(z_{u_{0}}(t+z)+z\Theta)\right] + \int_{z}\left[G_{2}(z_{u_{0}}(t+z)+z\Theta)\right] \\ \frac{A^{2}}{2}\left[1+\int_{z}\left[G_{2}(z_{u_{0}}(t+z)+z\Theta)\right] + \int_{z}\left[G_{2}(z_{u_{0}}(t+z)+z\Theta)\right] \\ \frac{A^{2}}{4}\left[1+\int_{z}\left[G_{2}(z_{u_{0}}(t+z)+z\Theta)\right] \\ \frac{A^{2}}{4}\left[1+\int_{z}\left[G_{2}(z_{u_{0}}(t+z)+z\Theta)\right] + \int_{z}\left[G_{2}(z_{u_{0}}(t+z)+z\Theta)\right] \\ \frac{A^{2}}{4}\left[1+\int_{z}\left[G_{2}(z_{u_{0}}(t+z)+z\Theta)\right] \\ \frac{A^{2}$$

c)
$$\chi(t) = \chi(t) \rightarrow E[\chi(t)] = E[A (G_{W_0}t + \Theta)] = 2 = 2 [J^T OKKA
\chi(t) w.s.s.?
Rex(t,t+z) = E[A (G_{W_0}t + \Theta)] A (G_{W_0}(t+z) + \Theta)]
= A^2 [E[G_{W_0}t + \Theta)] + E[G_{W_0}(z)] = 0 = 2 [J^T OKKA
= A^2 (G_{W_0}t + \Theta)] + E[G_{W_0}(z)] = 0 = 2 [J^T OKKA
(G_{W_0}t, z)] = A^2 (G_{W_0}t + \Theta)] + E[G_{W_0}(z)] = 0 = 2 [J^T OKKA
(J(t)) \rightarrow E[(\chi(t)]] = E[\chi^2(t)] = R_{XX}(0) = A^2 = 2 [J^T OKKA
R_{YY}(t, t+z) = R_{YY}(z) = 2 Z^{MD} OK GER \qquad W.s.(z)$$

d) X(t) and Y(t) are w.s.s. and $R_{XY}(t, t + \tau) = 0$.

Since $R_{XY}(t, t + \tau) = 0$, the function can be a function of τ as well as a function of $(t_1 = t, t_2 = t + \tau)$. However, if it is constant changing the values of the couple

 (t_1, t_2) does not affect the outcome of R_{XY} . Thus, we can perfectly state that X(t) and Y(t) are j.w.s.s.

2.5 Given the random process

 $Y(t) = X(t)cos(\omega_0 t + \Theta)$ where X(t) is a wide-sense stationary random process that amplitude-modulates a carrier of constant angular frequency ω_0 with a random phase Θ independent of X(t) and uniformly distributed on $[-\pi,\pi]$

- (a) Find E[Y(t)]
- (b) Find the autocorrelation of *Y*(*t*)
- (c) Is *Y*(*t*) wide-sense stationary?

$$Y(t) = \chi(t) (\sigma_{0}(w_{0}t + m)) \quad a_{0} \quad E[\chi(t)] = E[\chi(t) (\sigma_{0}(w_{0}t + m))]$$

$$- \chi(t) \quad w.s.s. = E[\chi(t)] E[(\sigma_{0}(w_{0}t + m))]$$

$$- w_{0} \quad constant = E[\chi(t)] E[(\sigma_{0}(w_{0}t + m))]$$

$$- w_{0} \quad \chi(t-n,n) = 0$$

$$- \chi(t), \quad m \quad one \quad INDERE \quad NDERT$$

b)
$$R_{\gamma\gamma}(t, t_{FT}) = E[\gamma(t)\gamma(t+\tau)] = E[\chi(t)G_{W}(t+\tau)G_{W}(t+\tau)G_{W}(t+\tau)+G_{W}]$$

$$= E[\chi(t)\chi(t+\tau)G_{W}(t+\tau)G_{W}(t+\tau)+G_{W}]$$

$$= E[\chi(t)\chi(t+\tau)]E[G_{W}(t+\tau)+G_{W}(t+\tau)+G_{W}]$$

$$= R_{\chi\chi}(\tau) = \frac{1}{2}\left[EE[G_{W}(t+\tau)+T_{W}] + E[G_{W}(t+\tau)+T_{W}] + E[G_{W}(t+\tau)+T_{$$

c) Y(t) is w.s.s. since E[Y(t)] is constant and its autocorrelation is

a fuction of τ .

2.6 The random processes *X*(*t*) and *Y*(*t*) are statistically independent, have zero mean and have autocorrelation functions

$$Rxx(\tau) = e_{-|\tau|}$$
$$Ryy(\tau) = cos(2\pi\tau)$$

- (a) Find the autocorrelation function of $W_1(t) = X(t) + Y(t)$
- (b) Find the autocorrelation function of $W_2(t) = X(t) Y(t)$
- (c) Find the cross-correlation function of $W_1(t)$ and $W_2(t)$

$$\begin{aligned} & \begin{array}{c} -iz_{1} \\ R_{XX}(z) = C \\ \hline X = 0 \\ R_{YY}(z) = C \\ \hline X = 0 \\ \hline X = 0 \\ \hline X = 7 = 0 \\ \hline X$$

$$= \frac{E[x(t) x(t+z)] + E[x(t) x(t+z)] + E[x(t+z)] + E[x(t$$

$$b) \quad h_{2}(t) = \chi(t) - \chi(t) \\ R_{W_{2}W_{2}}(t, t+z) = E[W_{2}(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] = E[\chi(t)W_{2}(t+z)] + E[\chi(t)W_{2}(t+z)] = E[\chi(t$$

- 2.7 Given two w.s.s. random processes X(t) and Y(t). Find expressions for the autocorrelation function of W(t) = X(t) + Y(t) if:
 - (a) *X*(*t*) and *Y*(*t*) are correlated
 - (b) *X*(*t*) and *Y*(*t*) are uncorrelated
 - (c) *X*(*t*) and *Y*(*t*) are uncorrelated with zero mean

Try to use means over cross-correlations if possible.

 $W.S.S. \implies E[X(t)=X, R_{XX}(t,t+\tau)=R_{XX}(t)$ $E[Y(t)]=Y, R_{YY}(t,t+\tau)=R_{YY}(t)$ W(t)=X(t)+Y(t)

a)
$$\chi(t)$$
, $\chi(t)$ are correlated
 $R_{WW}(t, t+\tau) = E[W(t)W(t+\tau)] = E[(\chi(t)+\chi(t)) \cdot (\chi(t+\tau)+\chi(t+\tau))]$
 $= R_{XX}(\tau) + R_{XX}(\tau) + R_{YX}(\tau) + R_{YY}(\tau)$

b) Unconcluted =>
$$R_{XY}(z) = E(X(t)Y(t+z)] = E(X(t)] E(Y(t+z)] = \overline{X}, \overline{Y}$$

 $R_{YX}(z) = \overline{Y}\overline{X}$
 $R_{WW}(z) = R_{XX}(z) + R_{YY}(z) + 2\overline{X}, \overline{Y}$

2.8 Consider random processes

$$Y_1(t) = X(t)cos(\omega_0 t)$$
$$Y_2(t) = Y(t)cos(\omega_0 t + 2\Theta)$$

where X(t) and Y(t) are jointly wide-sense stationary processes.

(a) If $\Theta \sim U(\theta_0, \theta_1)$ and independent of X(t) and Y(t), are there any conditions on Θ that will make $Y_1(t)$ and $Y_2(t)$ orthogonal?

$$\begin{split} & \langle (t) = \chi(t) \ \text{(s)} \ \text{(w_0 t + 2 \ensuremath{\overline{\textbf{O}}})} \\ & \chi_{1}(t), \chi_{1}(t) \ \text{(w_0}(t) + 2 \ensuremath{\overline{\textbf{O}}}) \\ & \chi_{1}(t), \chi_{1}(t) \ \text{are } j \cdot \text{w}_{1}(t) = \sum_{\substack{ \in C_{\mathcal{T}}(t) \\ = \\ \mathcal{T}}} R_{\mathcal{T}_{\mathcal{T}}(t)} R_{\mathcal{T}_{\mathcal{T}}(t)} \\ & R_{\mathcal{T}}(t) \\ & R_{\mathcal{T}_{\mathcal{T}}(t)} \\ & R_{\mathcal{T}_{\mathcal{T}}(t)} \\ & R_{\mathcal{T}}(t) \\ & R_{\mathcal{T}}($$

2.9 Consider the random processes

 $X(t) = Acos(\omega_0 t + \Theta)$ $Y(t) = Bsin(\omega_0 t + \Theta)$

where *A*, *B*, and ω_0 are constants while Θ is a random variable uniform on $[0,2\pi]$. *X*(*t*) and *Y*(*t*) are zero-mean, wide-sense stationary with autocorrelation functions:

$$R_{XX}(\tau) = (A^2/2)cos(\omega_0\tau)$$
$$R_{YY}(\tau) = (B^2/2)cos(\omega_0\tau) \text{ Are}$$

X(t) and Y(t) jointly wide-sense stationary?

$$\begin{aligned} \chi(t) &= A G_{0} (w_{0}t + \Theta) \longrightarrow w.s.s. \\ & \forall (t) &= B Sin (w_{0}t + \Theta) \longrightarrow w.s.s. \\ & \textcircledleft \longrightarrow w.s.s. \\ & \textcircledleft \implies w.s.s. \\ \chi(t), \chi(t) \stackrel{\cdot}{j}, w.s.s? \implies \chi(t) w.s.s. \\ & \chi(t), \chi(t) \stackrel{\cdot}{j}, w.s.s? \implies \chi(t) w.s.s. \\ & \chi(t), \chi(t) \stackrel{\cdot}{j} = R_{XY}(z) \end{aligned}$$

Exercises to UNIT 2- Part II: Spectral Characteristics

2.10

if

Given that $X(t) = \sum_{i=1}^{N} lpha_i X_i(t)$ where $lpha_i$ are real constants, show that $\mathcal{S}_{XX}(\omega) = \sum_{i=1}^{N} \alpha_i^2 \mathcal{S}_{X_i X_i}(\omega)$

(a) the processes $X_i(t)$ are orthogonal

(b) the processes are independent with zero mean

2.11

If X(t) is a stationary process, find the power spectrum of $Y(t) = A_0 +$ $B_0X(t)$ in terms of the power spectrum of X(t) if A_0 and B_0 are real constants.

2.12 The autocorrelation function of a random process X(t) is

$$Rxx(\tau) = 3 + 2e_{-4\tau_2}$$

Find

- (a) The power spectrum of *X*(*t*)
- (b) The average power of *X*(*t*)
- (c) The fraction of power that lies in the frequency band $\sqrt{-1/2} \le$

 $\sqrt{-}$

$\omega \leq 1/2^{-}$

2.13 Given a random process with autocorrelation $R_{XX}(\tau) = Pcos^4(\omega_0\tau)$, find

(a) $S_{XX}(\omega)$

(b) P_{XX} from $S_{XX}(\omega)$ (c) P_{XX} from $R_{XX}(\tau)$

- 2.14 Given a random process with autocorrelation $Rxx(\tau) = Ae_{-\alpha|\tau|}cos(\omega_0\tau)$ where A > 0, $\alpha > 0$, and ω_0 are real constants, find the power spectrum.
- 2.15 A random process is given by

W(t) = AX(t) + BY(t) where A and B are real constants and X(t) and Y (t) are jointly widesense stationary processes. Find

- (a) The power spectrum of W(t) as a function of $S_{XX}(\omega)$, $S_{YY}(\omega)$, $S_{XY}(\omega)$ and $S_{YX}(\omega)$
- (b) The power spectrum of W(t) as a function of $S_{XX}(\omega)$, $S_{YY}(\omega)$, X

and Y, if X(t) and Y(t) are uncorrelated

- (c) $S_{XW}(\omega)$ and S_{WX} as functions of $S_{XX}(\omega)$, $S_{YY}(\omega)$, $S_{XY}(\omega)$ and $S_{YX}(\omega)$
- 2.16 A wide-sense stationary X(t) is applied to an ideal differentiator, so that Y(t) = dX(t)/dt. The cross-correlation of the input-output processes is known to be

 $R_{XY}(\tau)=dR_{XX}(\tau)/dt$

- (a) Determine $S_{XY}(\omega)$ in terms of $S_{XX}(\omega)$
- (b) Determine $S_{YX}(\omega)$ in terms of $S_{XX}(\omega)$
- 2.17 The cross-correlation of jointly wide-sense stationary processes X(t) and Y(t) is assumed to be

 $R_{XY}(\tau) = Be^{-W\tau}u(\tau)$ where B > 0 and W > 0 are constants. Find

- (a) $R_{YX}(\tau)$
- (b) $S_{XY}(\omega)$ (use appendix C from Peebles' book)
- (c) $S_{YX}(\omega)$ (use cross-power density properties)

2.18 Consider two random process $X_1(t)$ and $X_2(t)$. The mean of $X_1(t)$ is equal to A(A > 0) and $X_2(t)$ is a white noise with power density 5

W/(rad/s). Given an LTI system with impulse response $h(t) = e^{-\alpha t}u(t)$.

with $\alpha > 0$. Find

(a) The mean value of the response of the LTI system if the input is $X_1(t)$

- (b) The average power (second-order moment) of the response of the system if the input is X₂(t).
- 2.19 A random process *X*(*t*) with known mean *X*⁻ is the input of an LTI system with impulse response

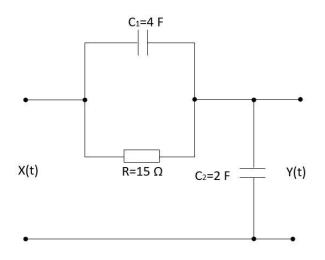
$$h(t) = t e^{-W t} u(t).$$

Find

- (a) The mean value of the response of the LTI system
- (b) The average power (second-order moment) of the response of the system if *X*(*t*) is a white noise with power density 5 W/(rad/s).
- 2.20 A white noise with power density $N_0/2$ is applied to a network with impulse response of a system with impulse response $h(t) = Wte^{-Wt}u(t)$

where W is a real positive constant. Find the cross-correlation of the reponse of input and the output of the system.

2.21 A stationary random process X(t), having an autocorrelation function $R_{XX} = 2e^{-4|\tau|}$ is applied to the network of the figure below. Find the power spectrum of the output of the system.



2.22 A white noise X(t) with $R_{XX} = 4 \cdot 10^{-3} \cdot \delta(\tau)$ is filtered with the network of the figure below. Find the average power of the input and output of the system.

