Linear Systems and Circuit Applications
BIOMEDICAL ENGINEERING
Part I - Linear Systems
19th November 2018

Surname:

Name: \qquad

1. (2 points) Let be

$$
x(t)= \begin{cases}-t+1 & ; t \in[0,1] \\ 0 & ; \text { otherwise }\end{cases}
$$

And let be the following signals:

$$
\begin{aligned}
r(t) & =\sum_{k=-\infty}^{+\infty}(-1)^{k} \delta(t-2 k) ; z(t)=x(t) * r(t) \\
s(t) & =-2 x(-t / 2-1)+2 ; y(t)=\frac{d z(t)}{d t}+1
\end{aligned}
$$

(a) (1 point) Sketch the signal $z(t)$ and give an analytical expression for $x(t)$. Is $z(t)$ a periodic signal? If it is, what is its period? What is the average value of $z(t)$.
(b) (1 point) Sketch the signals $s(t)$ and $y(t)$
2. (1 point) Consider the following system, whose output can be represented as:

$$
y(t)=|x(t)|+\frac{d x(t)}{d t}
$$

Study the following properties: invertibility, time-invariance and linearity.
3. (1 point) Compute the following convolution, $x(t) * h(t)$:

$$
h(t)=e^{-5(t-1)} u(t-1) ; x(t)=u(t)-u(t-1)
$$

4. (1 point) Let be an LTIS, which is the interconnection of different subsystems. We know the following data:

- S1: $h_{1}(t)=u(t-1)$
- S3: $h_{3}(t)=e^{-5(t-2)} u(t-2)$
- S2: $s_{2}(t)=u(t-3)$
- S4: $h_{4}(t)=\sqcap\left(\frac{t}{2 T}\right)$

where $s_{3}(t)$ is the step response of the system S 2 , answer the following questions:
(a) (0.5 points) Compute the equivalent impulse response $h_{e q}(t)$, for the whole system.
(b) (0.5 points) Study system properties depending on the value of T : memory, causality and stability.

Note: you may find useful:

$$
\sqcap\left(\frac{t}{T}\right)= \begin{cases}1 ; & \frac{-T}{2} \leq t<\frac{+T}{2} \\ 0 ; & \text { otherwise }\end{cases}
$$

5. (1 point) Let be a LTIS, whose step response is $s(t)=e^{-t} u(t)$. Find the output of the system when the input is:

$$
x(t)= \begin{cases}1 ; & 1<t<3 \\ 0 ; & \text { otherwise }\end{cases}
$$

6. (2 points) Let be

$$
x(t)= \begin{cases}-t+1 & ; t \in[0,1] \\ 0 & ; \text { otherwise }\end{cases}
$$

And let be:

$$
r(t)=\sum_{k=-\infty}^{+\infty}(-1)^{k} \delta(t-2 k) ; z(t)=x(t) * r(t)
$$

Compute the FS coefficients of $y(t)=\frac{d z(t)}{d t}$
7. (2 points) Compute the Fourier Transform of the signal $x(t)$, represented in the following figure

