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Section Objectives

In the last section we showed how the solution to the 1-D Poisson
Equation could be approximated using two degrees of freedom.

In this section we will:

@ show how to move from a global to local description of the
approximating functions

@ introduce local descriptions of ‘finite elements’

@ introduce an implementation of a local-to-global assembly operator
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Finite Elements: global description

We have seen a 2-dof approximation of the 1-D domain. Accuracy of

approximation may clearly be improved by increasing the number of
degrees of freedom.

0 1/n 2/n | | (n-1)/n 1

Finite Element: global description

Domain [xa, xat1]
Nodes {xa, xat1}
DoF {dA, dA+1}
Shape Functions {Na, Nas1}

Interpolation Function u/(x) = Na(x)da + Nay1(x)das1
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Finite Elements: local description

We notice that the individual basis functions are highly localized in space
and have the same repeated form. We can therefore standardize a single

local element description.

Finite Element: local description

Domain [51, 52]
Nodes {&1,6}
DoF {d1, o}
Shape Functions {Ni, N2}

Interpolation Function u"(¢) =
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Local to Global Mapping

The local coordinate £ is related to the global coordinate x via an affine
transformation (i.e. a linear transformation followed by a translation)

€ [xa, xaq1] = [€1, &2]

such that {(xa) = & and {(xat1) = &

Visualizer

Determine &(x) and x(&) for the 2-dof finite element and consider the
form of the shape functions

N.B. upper-case subscripts refer to the global element description, and
lower-case subscripts refer to the local element description
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Element ‘Stiffness’ Matrix and ‘Force’ Vector

Consider a finite element approximation to the 1D BVP with ng elements

and element numbers e =1,2,--- , ng.
1 2 n,
— o e - —e————o
X1 X2 X3 X, X

Recall that we have previously defined the global ‘stiffness’ matrix
K = [Kag| and ‘force’ vector F = {Fa} with

1
Kag = a(Na, Ng) = / NaxNp xdx
0

and
1 1
Fa = (Na,l)+6a1h—a(Aa, Npi1)g = / NA/C/X+5A1/7—/ NaxNny1,xdxg
0 0
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Assembly: global sense

Nel

K=Y K K°=[KSg]
e=1

Ne|

F=) F°, F={F5}
e=1

in which
KEB = a(NA7 NB)e = / NA,XNB,XdX

e

and
Fj = (NA,/)6+5615A1h— a(AA,N,,H)eg
= / NAIdx+5elc5A1h—/ NA,an—I—l,deg

The elemental domain is defined as Q¢ = [x{, x5].
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Assembly: local sense

It is much more convenient to define an individual stiffness matrix and
force vector for the eth element with respect to local node numbering:

k® = [kab] f¢ = [f]

ke, = a( Ny, Np)© = / Ny Nl cx
(531/7 e=1
fae:/ N,ldx + 0 e=2,3,---,nyg—1
Qe

—k58 e =ng

These expressions may be determined from the global definitions by
inspection.
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1-D Assembly Operator Implementation

We can obtain the global stiffness matrix and force vector from the

locally-defined elemental stiffness matrix and force vector by defining an
assembly operator A(-) such that

K=A (k) F=Aa (f)
e=1 e=1

This operator may be implemented computationally for the 1-D case by
means of a Location Matrix (LM) which has dimensions ne, X e.

Global eqn. no. A= LM(a,e) = { . i 1 :: Z i é

Visualizer

Example assembly operation for a 1-D problem approximated with 4
elements each having 2-dof
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Summary

This section has introduced one of the most important aspects of the
finite element method: the local element representation.

@ Local element definitions are transformed to global coordinates via an
affine mapping

@ An assembly operator has been introduced which generates global
“stiffness’ matrices and ‘force’ vectors from local element stiffnesses
and forces

@ A computational implementation of the assembly operator for a 1-D
problem has been demonstrated

1-D problems are useful to consider for fundamental understanding, but it
is now time to move to the use of the finite element for 2-D domains with
applicability to ‘real’ engineering problems.
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