FUNDAMENTOS DE ELECTRÓNICA

Mariola Peláez Coca Francisco Aznar Tabuenca

18 de febrero de 2015

ÍNDICE

- > La asignatura
- Objetivos
- Contenido
- > Evaluación
- Bibliografía
- > Tutorías

LA ASIGNATURA

- Asignatura del modulo de formación común de 3º del Grado en Ingeniería de Organización Industrial
- Prerrequisito:
 - Teoría de circuitos (Fundamentos de Electrotecnia)
- También está relacionada con:
 - Física, Química, Matemáticas, Informática,...
- Asignatura afín:
 - Sistemas Automáticos
- Dos especializaciones más vinculadas:
 - SISTEMAS DE COMUNICACIONES (Transmisiones)
 - SISTEMAS RADAR Y MISILES (Artillería)

LA ASIGNATURA

➤ 6 ECTS:

- 4 horas semanales: teoría + problemas + prácticas
- 150 horas de trabajo personal del cadete: clases + estudio

> 3 prácticas

- En el laboratorio de Electrotecnia y Fundamentos de Electrónica
- Por parejas

> Exámenes:

- Parcial: Viernes 8 de Mayo
- Primera convocatoria: Lunes 22 de Junio
- Segunda convocatoria: Miércoles 26 de Agosto

OBJETIVOS

- Sus contenidos describen las bases tecnológicas de la mayor parte de los sistemas de comunicaciones y procesado de señal.
- Objetivo general: proporcionar una visión general de los dispositivos electrónicos básicos, tanto analógicos (diodos, transistores,...) como digitales, y de los modelos básicos que se emplean para el análisis y diseño de circuitos.

OBJETIVOS

- De cara al examen:
 - Conocer la teoría básica relativa a semiconductores, diodos, transistores y electrónica digital
 - Resolver problemas de:
 - Semiconductores
 - Circuitos con diodos
 - Polarización y pequeña señal para BJT y MOS
 - Circuitos con amplificador operacional
 - Simplificación y representación de funciones digitales
 - Sistemas combinacionales y secuenciales

OBJETIVOS

- > De cara a las prácticas:
 - Identificación de componentes (diodos, transistores, ...)
 - Numeración de pines en circuitos integrados
 - Montaje de circuitos en placa de prácticas
 - Manejo básico del:
 - Multímetro
 - Osciloscopio
 - Generador de señales
 - Entrenador
 - Interpretación de medidas experimentales
 - Análisis de resultados

CONTENIDO

- Tema 1. Semiconductores. Diodo
 - > 1.1 Semiconductores
 - > 1.2 Unión PN. Diodo
 - > 1.3 Aplicaciones de los diodos
- > Tema 2. Transistor bipolar
 - ➤ 2.1 BJT
 - 2.2 Circuitos con BJT
- Tema 3. Transistor MOS
 - > 3.1 MOSFET
 - > 3.2 Circuitos con MOSFET
- > Tema 4. Amplificador Operacional
 - > 4.1 OPAMP
- Tema 5. Sistemas Digitales
 - > 5.1 Fundamentos de electrónica digital
 - > 5.2 Funciones lógicas
 - 5.3 Sistemas Digitales

PRÁCTICAS

- Los días de prácticas serán comunicados por el profesor durante la clase y en la plataforma moodle.
- Las prácticas se realizarán por parejas.
 - El primer día de prácticas las parejas se sitúan en el puesto que mantendrá durante todo el curso.
 - Al principio de la clase informará de si hay algún desperfecto en su puesto
 - Cada pareja será la responsable de que al final de la práctica el puesto quede en perfecto estado.
- Se realizará un estudio previo de cada práctica
 - Si no se realiza el estudio previo, la práctica se puntuará sobre 7.

PRÁCTICAS

- > 3 sesiones de laboratorio
 - Diodos
 - Rectificadores
 - Recortadores
 - Regulador de tensión
 - Transistores
 - Cálculo de la β
 - Amplificación de señales
 - Electrónica Digital
 - Lógica diodos
 - Lógica transistores
 - Circuitos integrados MOS
 - Implementación de un IFF

METODOLOGÍAS

- Evaluación por pares
 - Objetivo: Aprender de los errores
 - Evaluación: Actividades/Examen
- Aprendizaje Basado en Problemas
 - Objetivo: Aumentar la autonomía de estudiante
 - Evaluación: Actividades/Examen
- La metodologías serán evaluadas, con un breve cuestionario, por parte de los alumnos al finalizar el cuatrimestre.

METODOLOGÍAS: EVALUACIÓN POR PARES

> Desarrollo:

- Se propondrá ejercicios a resolver durante el curso, relacionado con el tema de clase.
- Al menos un dato cambiará, por lo que el resultado para cada alumno será único.
- La corrección del ejercicio correrá a cargo de otro alumno en la semana siguiente, bajo una tabla orientativa para homogeneizar.
- Estas actividades contarán para la evaluación de la asignatura.

METODOLOGÍAS: ABP

> Desarrollo:

- Temas 5.1 y 5.2 (Electrónica digital).
- Sin previa explicación del profesor, se aborda una colección exhaustiva de problemas.
- Desde el comienzo del cuatrimestre, en paralelo al desarrollo de la asignatura.
- Seguimiento mediante ejercicios entregables.
- Tutorías facilitadoras, el profesor puede orientar en la búsqueda de la solución pero no explicar el problema o cuestión.
- Esta actividad se evalúa mediante los ejercicios entregables y en el examen de la asignatura.

EVALUACIÓN

- La evaluación se basará en:
 - Examen escrito (70% 80% de la nota)
 - Parcial
 - 1ª convocatoria en dos partes
 - 2ª convocatoria en una parte
 - Prácticas de laboratorio (20% de la nota)
 - Actividades realizadas durante el curso (10% de la nota).
 - Se tienen en cuenta si mejoran la nota del alumno
- Por tanto la nota final de la asignatura será el máximo de:
 - 80% Examen + 20% Prácticas
 - 70% Examen + 20% Prácticas + 10% actividades
- Para aprobar la asignatura es necesario obtener un mínimo de 5 tanto en el examen escrito como en las prácticas de laboratorio.

EVALUACIÓN

- Las prácticas de laboratorio se evaluarán teniendo en cuenta:
 - Memoria cumplimentada durante la práctica. Parte de la misma se corresponde con resultados del estudio previo.
 - La nota final de prácticas será el promedio de la nota de las tres sesiones en caso de que se realicen todas.
 - Si no se supera el 5 o alguna práctica no se ha llevado a cabo, se realizará una prueba individual en el laboratorio.
- Las actividades realizadas durante el curso se evaluarán según los criterios que se fijen para cada una.

BIBLIOGRAFÍA

- De referencia principal:
 - Sedra, A.S. y Smith, K.C. Microelectronic Circuits. Oxford University,1998
 - Thomas L. Floyd. Fundamentos de Sistemas Digitales. Pearson Prentice Hall
 - Capilano Computing. LogicWorks 5 Interactive Circuit Design Software
- Complementaria:
 - Razavi B. Fundamentals of Microelectronics. John Wiley & Sons 2008
 - Prat LI. Circuitos y dispositivos electrónicos. Edicions UPC
 - Malvino A. y Bates D. Principios de Electrónica. Mc Graw Hill

TUTORÍAS

Edificio Félix de Azara Planta baja, ala sur

Mariola Peláez Coca. <u>mdpelaez@unizar.es</u>. Despacho D.3 Francisco Aznar Tabuenca. <u>faznar@unizar.es</u>. Despacho D.7

Página web de la asignatura: moodle.unizar.es

Observación: usar cuenta de e-mail de UNIZAR (no hotmail, ni gmail, ...)