RSC

Part III: Transport
Layer

3. TCP

Redes y Servicios de Comunicaciones
Universidad Carlos Ill de Madrid

These slides are, mainly, part of the companion slides to the book “Computer
Networking: A Top Down Approach” generously made available by their
authors (see copyright below). The slides have been adapted, where
required, to the teaching needs of the subject above.

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

COMPUTER #memen
NETWORKING

KUROSE - ROSS

Computer Networking:
A Top Down Approach

5th edition.

Jim Kurose, Keith Ross
Addison-Wesley, April

2009.

Network Layer II-1

RSC Part ITT: Transport Layer

0 III. 1Basic Transport 0O III.3 TCP

layer concepts O TCP connection

O Transport layer O TCP Segment, sequence
Principles and ack numbers

O Transport layer O RTT Estimation and
Services Timeout

O Multiplexing and O Reliable Data Transfer

Demultiplexing

o Flow Control

O TCP connection
0 IIT.2 UDP Management

© UDP Segment format o TCP Congestion Control

o UDP cheksum

Network Layer II-2

TCP: Overview rrcs 793, 1122, 1323, 2018, 2581

O point-to-point: O full duplex data:
O one sender, one receiver O bi-directional data flow
O reliable, in-order byte In same connection
steam: O MSS: maximum segment
size

O ho “message boundaries”) .
I pielined: O connection-oriented:
PP ' o handshaking (exchange
of control msgs) init's

) sender, receiver state
0O send & receive buffers before data exchange

O flow controlled:
e O sender will not

door H
overwhelm receiver

Q] (seameng —» [

O TCP congestion and flow
control set window size

socket
door

Transport Layer 3-3

TCP segment structure

32 bits

URG: urgent data

(generally not used)~._| Source port # | dest port # counting

by bytes

ACK: ACK # sequence number of data
valid ——acRnowledgement number (not segments!)
head —
PSH: push data now ,ea ":Zd p Receive window

bytes
rcvr willing
to accept

(generally not used)— | cheeksum Urg data pnter

RST, SYN, FIN:—| Opf/izr{s (variable length)

connection estab
(setup, teardown

commands) application

Internet data

checksum (variable length)
(as in UDP)

Transport Layer 3-4

TCP seq. #'s and ACKs

Seq. #'s:
O byte stream

“number"” of first User _Seqsqs 50
byte in segment's types W
data ¢ host ACK
ACKs: receipt of
ACKs: =A%, gate = 'C', echoes
O seq # of next byte o1 back 'C
expected from
other side host ACKs
O cumulative ACK receipt Segs
. Q‘43, ACK~
Q: how receiver handles of eChOedx
out-of-order segments ¢
O A: TCP spec doesn't .
say, - up to . : fime
implementor simple telnet scenario
Transport Layer 3-5
TCP reliable data transfer
O TCP creates rdt 0 Retransmissions are
service on top of IP's triggered by:
unreliable service O timeout events
3 Pipelined segments © duplicate acks
A Cumulative acks O Initially consider
77 TCP uses single simplified TCP sender:
retransmission timer o ignore duplicate acks
O ignore flow control,
congestion control
Transport Layer 3-6

TCP sender events:

data rcvd from app:

O Create segment with
seq #

0 seq # is byte-stream
number of first data
byte in segment

O start timer if not
already running (think
of timer as for oldest
unacked segment)

O expiration interval:
TimeOutInterval

timeout:

O retransmit segment
that caused timeout

O restart timer

Ack revd:

O If acknowledges
previously unacked
segments

O update what is known to
be acked

o start timer if there are
outstanding segments

Transport Layer 3-7

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum

if (timer currently not running)
start timer
pass segment to IP

NextSeqNum = NextSeqNum + length(data)

event: timer timeout

retransmit not-yet-acknowledged segment with
smallest sequence number

start timer

event: ACK received, with ACK field value of y

if (y > SendBase) {
SendBase =y

if (there are currently not-yet-acknowledged segments)

start timer

}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1 =71,
y=73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-8

TCP: retransmission scenarios

timeout

SendBase
=100

time

gj@;-‘) Host A Host @

Seg=
9=92 g byteg data

lost ACK scenario

i

3

E

3

3
Sendbase #_
=100 5
SendBase é
=120 s

&

S
SendBase 1
=120 premature timeout

time

Transport Layer 3-9

TCP retransmission scenarios (more)

SendBase
=120

timeout

Host A Host B

Se, =
9=92 g byteg data

P\C\(s‘\()

S datg

X
loss
_420
AP\C’\A/

Seq=100, 20 b

time

Cumulative ACK scenario

Transport Layer 3-10

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-11

Fast Retransmit

0 Time-out period often
relatively long:
O long delay before
resending lost packet
0 Detect lost segments
via duplicate ACKs.

O Sender often sends
many segments back-to-
back

O If segment is lost,

there will likely be many
duplicate ACKs.

O If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

o fast retransmit: resend
segment before timer
expires

Transport Layer 3-12

Host B

timeout

eseny 2ng
Seg Men
t

time

Figure 3.37 Resending a segment after triple duplicqtr%é&% Layer

a duplicate ACK for
already ACKed segment

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y

if (there are currently not-yet-acknowledged segments)
start timer
}

else {

increment count of dup ACKs received fory
if (count of dup ACKs received fory = 3) {

resend segment with sequence numbery
}

fast retransmit

Transport Layer 3-14

