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TCP: Overview rrcs 793, 1122, 1323, 2018, 2581

O point-to-point: O full duplex data:
O one sender, one receiver O bi-directional data flow
O reliable, in-order byte In same connection
steam: O MSS: maximum segment
size

O ho “message boundaries” ) .
I pielined: O connection-oriented:
PP ' o handshaking (exchange
of control msgs) init's

) sender, receiver state
0O send & receive buffers before data exchange

O flow controlled:
e O sender will not

door H
overwhelm receiver

Q] (seameng —» [

O TCP congestion and flow
control set window size

socket
door
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TCP segment structure

32 bits

URG: urgent data

(generally not used)~._| Source port # | dest port # counting

by bytes

ACK: ACK # sequence number of data
valid ——acRnowledgement number (not segments!)
head —
PSH: push data now ,ea ":Zd p Receive window

# bytes
rcvr willing
to accept

(generally not used)— | cheeksum Urg data pnter

RST, SYN, FIN:—| Opf/izr{s (variable length)

connection estab
(setup, teardown

commands) application

Internet data

checksum (variable length)
(as in UDP)
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TCP seq. #'s and ACKs

Seq. #'s:
O byte stream

“number"” of first User _Seqsqs 50
byte in segment's types W
data ¢ host ACK
ACKs: receipt of
ACKs: =A%, gate = 'C', echoes
O seq # of next byte o1 back 'C
expected from
other side host ACKs
O cumulative ACK receipt Segs
. Q‘43, ACK~
Q: how receiver handles of eChOedx
out-of-order segments ¢
O A: TCP spec doesn't .
say, - up to . : fime
implementor simple telnet scenario
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TCP reliable data transfer
O TCP creates rdt 0 Retransmissions are
service on top of IP's triggered by:
unreliable service O timeout events
3 Pipelined segments © duplicate acks
A Cumulative acks O Initially consider
77 TCP uses single simplified TCP sender:
retransmission timer o ignore duplicate acks
O ignore flow control,
congestion control
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TCP sender events:

data rcvd from app:

O Create segment with
seq #

0 seq # is byte-stream
number of first data
byte in segment

O start timer if not
already running (think
of timer as for oldest
unacked segment)

O expiration interval:
TimeOutInterval

timeout:

O retransmit segment
that caused timeout

O restart timer

Ack revd:

O If acknowledges
previously unacked
segments

O update what is known to
be acked

o start timer if there are
outstanding segments
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NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum

if (timer currently not running)
start timer
pass segment to IP

NextSeqNum = NextSeqNum + length(data)

event: timer timeout

retransmit not-yet-acknowledged segment with
smallest sequence number

start timer

event: ACK received, with ACK field value of y

if (y > SendBase) {
SendBase =y

if (there are currently not-yet-acknowledged segments)

start timer

}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1 =71,
y=73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked
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TCP: retransmission scenarios

timeout

SendBase
=100

time

gj@;-‘) Host A Host @

Seg=
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lost ACK scenario
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TCP retransmission scenarios (more)

SendBase
=120

timeout

Host A Host B

Se, =
9=92 g byteg data

P\C\(s‘\()

S datg

X
loss
_420
AP\C’\A/

Seq=100, 20 b

time

Cumulative ACK scenario
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TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap
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Fast Retransmit

0 Time-out period often
relatively long:
O long delay before
resending lost packet
0 Detect lost segments
via duplicate ACKs.

O Sender often sends
many segments back-to-
back

O If segment is lost,

there will likely be many
duplicate ACKs.

O If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

o fast retransmit: resend
segment before timer
expires
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Figure 3.37 Resending a segment after triple duplicqtr%é&% Layer

a duplicate ACK for
already ACKed segment

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y

if (there are currently not-yet-acknowledged segments)
start timer
}

else {

increment count of dup ACKs received fory
if (count of dup ACKs received fory = 3) {

resend segment with sequence numbery
}

fast retransmit
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