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1. INTRODUCTION

The Intemetis becaming ubiquitous: everyone wantsto join in. Since the adwent of the
World Wide Web, the number of uses, hosts domains, and networks connectedto the
Interret seens to be growing explosively. Not surprisingly, network traffic is doubling
every few months. The proliferatian of multimeda networking apgdications (e.g, Napster)
ard devices(e.g, IP phones)is expectedto give traffic another major boost.

The increasingtraffic demard requres four key factoss to keep paceif the Internetis
to continue to provide good senice: link speeds router datathroughput, paclet forward
ing rates, and quick adagtation to routing charges. Readly avail able solutions exist for
thefirst two factos: for examge, fiberoptic caldes canprovide fasterlinks ard switch-
ing tecmaogy canbe usedto move pacletsfrom the input interfaceof a router to the
correspnding output interface at multi-gigabit speeds[Partridge et al. 1998]. Our paper
dealswith the other two factois: forwardng pacletsat high speedswhile still allowing for
freqentupdatesto therouting tale.

A major stepin padket forwarding is to lookup the destinatim add-ess(of anincoming
packet)in the routing datatase. While there areother chores sud asupdating TTL fields,
these are computatianally inexpersive comparedto the majar task of addresslookup. Data
link Bridgeshave beendoing addresslookups at 100 Mbps[Spinney 1995] for many years.
However, bridgesonly do exact matcting on the destingion (MAC) addess,while Inter
net routers have to searchtheir databasdor the longeg prefix matcing a destination IP
address. Thus, standrd technques for exact matchirg, suchas peifect hashing, binary
search and standard Contert AddressableMemaies (CAM) canrot directly be used for
Interretaddresslookups. Also, the mostwidely usedalgarithm for IP lookups, BSD Patri-
cia Tries[Sklower 1993], haspoor performarce.

Prefixmatching in Interret routerswasintroducedin theealy 1990s,whenit wasfore-
seenthat the number of erdpoints and the amount of routing information would grow
ermormously. At thattime, only addressclas®s A, B, and C existed,giving individual sites
eithe 24, 16, and 8 hits of address space,allowing up to 16 Million, 65,534, ard 254 host
addressesyrespetively. The size of the network coud easilybe dedwcedfrom thefirst few
address bits, making hashing a popular techrique. The limited granudarity turned out to
be extremely wasgful on addressspace.To make betteruseof this scaceresurce, espe-
cially theclassB addresss, bundles of classC networks were given out insteadof classB
addresses. This would have resulted in massive growth of routing tale entriesover time.
Therebre, Classlessinter-Domain Routing (CIDR) [Fuller et al. 1993] was introduced
which allowed for aggegation of networks in arhbitrary powersof two to reduce routing
tabe ertries. With thisaggegation, it wasno longer passible to identify the number of bits
relevant for the forwarding decisionfrom the address itself, but requred a prefix match
wherethe number of relevart bits wasonly known whenthe matchng entry hadalread
beenfoundin thedatalase.

To achieve maxmum routing table spacerediction, aggegation is done aggressvely.
Supposeall the sumetsin abig network haveidertical routing information exceptfor asin-
gle, small subretwith differert information Insteadf having multiple routing ertriesfor
eachsumetin thelarge network, justtwo entiies are needel: one for the overall network,
ard one ertry showing the exception for the small sumet. Now there are two matches
for packets addres®d to the exceptional sulnet. Cleaty, the exceptim entry shaild get
preferene there. Thisis achevedby prefering the more specific ertry, resultingin a Best
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Matching Prefix (BMP) operaion. In sunmay, CIDR traded off better usageof the lim-
ited IP addessspae and a reduction in routing information for a more complex lookup
schene.

The upsiotis thattoday anlP router' s datdbasecorsistsof anumberof addressprefixes
Whenan IP routerrecevesa packet, it must compute which of the prefixesin its database
has the longestmatch when comparedto the destindion addressin the packet. The packet
is thenforwardedto the output link as®ciatedwith that prefix, dirededto the next router
or the destination host. For examge, a forwardng datalase may have the prefixes P, =
0000, P, = 0000_111x and P; = 0000-1111_0000%, with « mearing all further bits
areunsyecified. An addesswhosefirst 12 bits are 0000_.0110_1111 haslongestmatchirg
prefix P;. On the otha hard, an address whase first 12 bits are 0000_1111_0000 has
longest matchirg prefix Ps.

The useof bestmatding prefix in forwarding hasallowed IP routersto acconmodate
various levels of address hierarchies,andhas allowed partsof the network to be oblivious
of detailsin other parts. Giventhatbestmatchirg prefix forwarding is necessaryor hier-
archies,and hashirg is a natural solution for exact matchirg, a natual quesion is: “Why
carit we modify hashing to do best matchirg prefix?” However, for several yeass now, it
wasconsiderednat to be “apparenthow to accanmodatehierachieswhil e usinghashing
otherthanrehashirg for eachlevel of hierarchy possible”[Sklower 1993].

Our pagper descrilesa novel algorithmic soluion to longeg prefix match using binary
searchover hash tables organizedby the length of the prefix. Our soluion requires a
worst caseof log W hashlookups, with W being the length of the addessin bits. Thus,
for thecurrent Intemetprotocol suite(IPv4) with 32 bit acdresses,we needat most5 hash
lookups. For the upcoming I P version 6 (IPv6) with 128 bit addesseswe candolookupin
atmost7 steps, asopposedto longerfor currert algaithms (seeSectian 2), giving anorder
of magnitude performarceimprovenent Usingperfect hashing [Fredmanetal. 1984], we
canlookup 128 bit IP addressesin atmost7 memay accesss. This is sigrificant because
on currert proces®rs, the calculation of a hashfunction is usudly much cheape thanan
off-chip menory access

In addtion, we use several optimizations to significantly redwce the average number
of hashesneedkd. For example our aralysisof the largestIPv4 forwardng tablesfrom
Interret backbore routers show thatthe majarity of addressescan be found with at mast
two hashes. Also, all available daabasesllowed us to reduce the worst case to four
accesses.In both casesthe first hashcan be replacedy a simple index tablelookup.

The restof the pgperis organized asfollows. Section2 introducesour taxonomy ard
comparesexisting approactesto IP lookups. Sectin 3 descrilesour basc schemein ase-
riesof refinements that cuminate in the basc binary seach schene. Sectin 4 focuseson
aseriesof importantoptimizations to the basicschene thatimprove averageperformarce.
Section5 descibesways how to build the appropriate structures and perform dynamic
insetions ard deletims, Sedion 6 introduces prefix partitioning to improve worst-case
insetion anddeldion time, andSection7 explains fag hashimg techniques. Sedion 8 de-
scribesperformane measuements using our sckemefor |Pv4 addresgs,andperfformarce
projedionsfor IPv6 addresses.We conclude in Sectio 9 by assessg thetheoreticd ard
practicalcontributions of this paper.
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2. COMPARISON OF EXISTING ALGORITHMS

As severd algorithmsfor efficient prefix matchirg lookups have appeaedin theliterature
over thelastfew yeass (including a recent pgper[Srinivasanard Vamghese 1999] in ACM
TOCS), we feel that it is necessary to structure the presentatia of relatedwork using
a taxonomy. Our classfication goes beyond the lookup taxanomy recently introduced
in [Ruiz-Sarchezet al. 2001]. However, the paper [Ruiz-Sarchezet a. 2001] shaild be
consultedfor a more in-depth discusdon and comparisonof some of the other popular
schenes.
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Fig.1. PrefixMatching Overview

Traditionally, prefix matchng has beendone on tries [Gwehenkerger 1963; Morrison
1968], with bit-wise (binary) triesbeng the foremast representatie. Figure 1 shows suwch
atrie. Tofind the longed prefix matchirg agiven seach string, the treeis traversedstartirg
attheroot (topmost)node. Deperding on thevalueof thenext bit in the search string, either
theleft or right link is followed, always rememtering the mostrecen prefix node visited.
Whenthe seachstring is exhaustedr anonexistert link is selected,the remenberedprefix
nodeis returned asthe bestmatch

Thus a trie hastwo aspets (Figure 1) that we baseour taxanomy on: the first is the
verticalaspet thatsigrifies prefix length (aswe travel vertically down thetrie the prefixes
we enounter are correspandingly longer); the secand horizontal asgectis the prefix value
(the value of the bit string represetting the prefix, prefixesof the samelength are sotted
from left to right). Our simple insight, which is the basisof our taxonomy, is that existing
schemeseither do linear or binary search in either the prefix length or value dimersions.
The schenescanalsobe augmerted using parllelism, caching, andcompresson.

2.1 Taxonomy

Thus our taxanomy is orgarized alorg four dimensiors. The two majar dimersiors are
defined by the main searchspacen which to operae (seeFigure 1) andthe basicseach
algorithm used. The minor dimensiors, orthogonal and largely indeperdert of the main
dimensims, identify parallelism, memay optimizations and compression ard the useof
cachng.

Search space Seachin prefix length or value space

Search algorithm: Linear or binary seach

Parallelism: Seialized,pipelined or pardlel execuion

Data Compaction and caching: Optional use of conpresson and caching.
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2.2 Linear Search on Prefix Lengths

The basictrie schene descrited above is an examge of linear searchin the prefix lengh
spacewithout compression This is becausetrie traversalexplores prefixes in increaing
order of lengths. Many schemes have exterded this idea by redicing the trie menory
footprint or thenumbe of trie nodesaccessdduring search

The most commonly available IP lookup implemertation is found in the BSD Unix
kemel, andis aradx trie implemertation [Sklower 1993]. It usesa path-compessedtrie,
where non-brandiing intemal nodes are eliminated improving memay utilization. The
actwal implementatian usespotentially expersive backtracking. Even an efficient seach
implemenrtationwould require O(WW) node accesss, where W is thelength of anaddress.
Thus,seachimplementatian recquiresup to 32 or 128 costly external memay accessegor
IPv4 or IPv6, respetively. Therefore, thesealgaithmsarenat diredly usedin high-spesd
networking equpment. Unlik e mostother algorithms, updatesto these unibit triesarevery
fastard make themideal cardidatesfor datastructures with a high update/®archratio.

Path compresson is most usefd when compressinglong non-branching chains of in-
ternal nodes,which occur in sparsely popuated areasof the trie. LC-Tries [Andersson
ard Nilsson 1994; Nilssonand Karlsson1999] exterd this nation by introducing level
compresson, whete, for ary given prefix lengh, derseareaswith a conmon ancestor are
aggregatedinto a single 2*-ary brarching node. This schrememairtainsa good balarce of
memory usagesearctspeed,andupdae times.

For applications where seart speed is much more important than update speed or
worst-casemenory corsumption, sud asfor Intemet forwarding lookups, more agges-
sive seart time optimizationis required. To reducethe number of levelstha needto be
touched, Controlled Prefix Expansion[SrinivasarandVarghese1999] selectsa small num-
ber of prefix lengthsto be seached All datataseertriesthat arenct alreadyof oneof these
lengths,areexpardedinto multi ple ertries of the next higher selectedengh. Depering
on the length of the “strides” s betwea the seleded lengths and the prefix length distri-
bution, this canleadto an exparsion of up to 2°~!. Selectingthe strides using dynamic
progranming techniques resultsin minimal exparsion whenused with current|P routing
tades. Despiteexpansion this seach schemeis still linear in the prefix lengh because
exparsiononly providesa constart facta improvenment.

Prefix expansionis usedgenemusly in the sckremedevelopedby Guptaet al. [Gupta
etal. 1998] to reducememay accessesvenfurthe. In the DIR-24-8 sclremepreserted
there, dl prefixesareexpardedto atleast24 bits (the Internet badbone forwardng tables
containalmostno prefixeslongerthan24 bits). A typicallookupwill thenjustusethemast
significant24 bits of theaddessasanindex into the 16M ertriesof the tade, reducing the
expeded numberof memay accesset almostone.

A differentapproac waschosenby Degemark etal. [Degermark etal. 1997]. By first
exparding to a conmpletetrie andthen usingbit vectas and mappng tades they are able
to represent routing tablesof up to 40,000 entiies in around 150KBytes. This compact
represetiation allows the datato be keptin on-chip cache, which provide much better
performancethanstandird off-chip memory. A further approachto trie compressionusing
bitmapsis describel in [Eatheton 1999].

Cresceuni etal. [Cresceni etal. 1999] presernt arothe compres®d trie lookup schene.
They first fully expand the trie, sothatall leaf nodesare at lengh 1. Then they divide
thetreeinto multiple subtreesof identical size. These slicesarethenput side-by-side, say
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in cdumns. All the neighboring identical rows are then collapsed, and a single talde is
createdto mapfrom the original row number to the new, compressedow number. Unlike
thepreviousapproach [Degermark etal. 1997], this does nat resut in asmallenaigh table
to fit into typical on-chip cactes,yetit guaranteesthatall lookups canbe done in exactly
3 indexedmenory lookups.

McAuley and Frands [McAuley ard Francis 1993] use standrd (“binary”) contert-
addressalle memaies (CAMSs) to quickly seart the differert prefix lenghs. The first
soluion disculssedrequres multiple passeshrough, startirg with the longestprefix. This
searchorder waschaosento be ableto terminae after the first match The other solution
is to have multiple CAMs queried in parallel. CAMs are geneally much slower thancon
ventional menory anddo not provide enaugh entries for backlone routersare still rare,
wherein the nearfuture more than 100,000 forwardng ertries will be required. Never
thdess, CAMs arepopular in edge routers,which typically only have up to hundredsof
forwarding ertries.

2.3 Binary Search on Prefix Lengths

The prior work closesto binary seachonprefix lengths occursin computationd geonetry.
De Bem etal. [deBerg etal. 1995] de<ribe a schemefor one-dimensioral point location
based on stratified trees [van Emde Boas1975; van Emde Boaset al. 1977]. A stratified
treeis probally bestdescriled asa self-similar tree, where eachnode interrally hasthe
samestructure asthe overall tree. The actualsearchis not peiformed on a prefix trie, but
on a balarcedinterva tree. The schene doesnot support overlapping regions, which are
required to implement prefix lookups. While this coud be resohed in a preprocessng
step,it would degrade the increnentalupdatetime to O(NN). Also unlike the algorithm
introducedin Sectio 3, it camot take advartage of addtiond strudure in therouting table
(Sectio 4).

2.4 Linear Search of Values

Pur linea valueseach is only reasonabe for very small tables. But a hardware-parallel
versionusingterrary CAMs has becane attradive in the recentyears. Ternay CAMSs,
unlik e the binary CAMs alove, which require multiple stagesor multiple CAMs, have a
mask as®ciatedwith every ertry. This mask is usedto descibe which bits of the ently
shauld be comparedto the quely key, allowing for onepassprefix matching. Due to the
higher per-ertry hardwvare overhead ternary CAMs typically provide for only abaut half
the entriesascompaable binary CAMs. Also, asmultiple entries may matchfor a single
searchkey, it becanesnecessity to prioritize ertries. As priorities aretypicdly as®ci-
atedwith an internal menory address inseting a new ertry canpotentially causea large
number of other entriesto be shifted around. Shah and Gupta [Shahand Gupta 2000]
presentanalgaithmic soluion to minimize the<e shifts while Kobayashi etal. [Kobayashi
et al. 2000] modfy the CAM itself to return only the longestmatch with littl e hardware
overhead.

2.5 Binary Search of Values

The useof binary searchon the value spacewas originally proposedby Butler Lampson
ard describel in [Perlman 1992]; additional improvementswere proposedin [Lampson
etal. 1998]. The key ideasareto represei eat prefix as a range using two values (the
loweg andhighestvaluesin the range), to preprocessthe tableto as®ciatematching pre-
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fixeswith thesevalues,andthento doordinary binary seart on thesevalues. Theresultirg
searchtime is [log, 2N searchstepswith N being the number of routing tableertries.
With current routing table sizes this getscloseto theexpectel number of memay accesss
for unibit tries, which is fairly slow. However, lookup time canbe reducedusing B-trees
insteadof binary treesandby using aninitial memory lookup [Lampsonetal. 1999].

2.6 Parallelism, Data Compaction, and Caches

The minor dimensions descrited albove in our taxanomy can be applied to all the majar
schenes. Almost every lookup algaiithm canbe pipelined Also, almast all algorithms
lend thenselvesto more compressedepresentatiors of their datastructures however, in
[Degemark et al. 1997; Crescenizet al. 1999; Eatheton 1999, the main novelty is the
manner in which amultibit trie is compressedwvhile retainirg fastlookup times

In addition, all of the lookup schenes cantake advartage of an added lookup cacte,
which doesnot store the prefixes matched, but insteadstoresrecer lookup keys, asexact
machesare geneally much simger and fasterto implement. Unfortunately, with the
growth of thelnterret, acesslocality in packet streans seemdo deceaserequiring larger
ard larger cachesto achieve similar hit rates.In 1987, Feldneier[Feldmeier1988] found
that acaclefor the mostrecen 9 deginationaddresesalread provided for a90% hit rate.
8 years later, Partidge [Partridge 1996] did a similar study, where cacteswith close to
5000 entrieswererequiredto achieve the sane hit rate. We expectthis trend to continue
ard potertially to becorre evenmore pronounced

2.7 Protocol Based Solutions

Finally, (leaving behird our taxanomy) we notethat oneway to finessethe problemsof IP
lookup is to have extra information sert along with the packet to simgify or eventotally
get rid of IP lookups at routers. Two maja proposalsalong theselineswere IP Switching
[Newmanetal. 1997] ard Tag Switching [Rekhteretal. 1997], both now mostly replaed
by Multi-Protoml Label Switching (MPLS [Rosenet al. 2001]. All threeschenesrequre
large, contiguous parts of the nework to adt their protocol changes before they will
shav a major improvement. The speedy is actieved by addng information on the des-
tination to every IP paclet, a techique first describel by Chandrarmeron and Varghese
[Chandramtmeron andVarghesel995]. This switching information is included by adding a
“label” to eachpacket, a small integer that allows direct lookup in the router's forwarding
tade.

Neither schene can conmpletely avoid ordinary IP lookups. All schenesrequire the
ingressrouter (to theportions of the network implementing their protocol) to perform afull
routing decision In their basicform, both systems patentially require the boundary routers
betweenautanomous systemge.g, betweena compary andits ISP or betweenISP9 to
perform the full forwardng decision again, be@useof trustissues, scace resources, or
differentviews of the network. Labelswill become scarceresouces,of which only afinite
amount exist. Thus towards the backbone, they neal to be aggregated away from the
backbone, they needto be sepaatedagain.

2.8 Summary of Existing Work

Thereare two basicsolutionsfor the prefix matchirg problem causedby Intemet growth:
(1) making lookupsfasteror (2) redicing the numberof lookupsusingcachng or protocol
modifications. As seenabove, the latter mechaisms are not able to completely avoid
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lookups, but only reduce themto eithe fewer routers (label switching) or fewer perrouter
(caching). The advantag of using cache will disappearin a few years, aslInterret data
rates aregrowing much fasterthanhardvare spedls, to the point that all lookup menory
will haveto usethe fasest availale memay (i.e., SRAM of thekind tha is currently used
by cachhe memay).

The mast popularly deployedschemes today are basecn linear searchof prefix lengths
using multibit or unibit triestogether with high speednenoriesandpipdining. However,
these algorithmsdo not scalewell to longernext gereratian IP addessesLookup schemes
basedon unibit triesand binary seach are (currently) too slow and do not scalewell; CAM
soluionsarerelatively expensive and are hardto field upgrace;

In summary; all existing schemes have problerns of either performance scdability, gen
erdity, or cost, epecially when addessesxterd beyond the current 32 bits. We now
describe a lookup sctemetha hasgood performance is scalableto large addessesand
doesnot require protocd charges.Our sclemeallows a cheap fastsoftwareimplemerta-
tion, ard is also amenalte to hardware implemertatiors.

3. BASIC BINARY SEARCH SCHEME

Our basic algorithm is based on three sigrificant ideas: First, we use hashimg to check
whetheran address D matchesary prefix of a particdar length; secand, we use binary
searcho reducenumber of seachesfrom linearto logarithmic; third, we usepre-canputation
to prevert backracking in caseof failuresin the binary seach of a range. Rather than
presentthe final sdution directly, we will graduwally refinethese ideasin Section 3.1, Sec-
tion 3.2, and Sectin 3.4 to arrive at a working basic sckeme. We descibe further opti-
mizaionsto thebasicschemein the next section As there aremultiple waysto look atthe
daa structure, wherever possiblewe will usethe terms“shorter” and“longer” to signify
selectingshater or longer prefixes

3.1 Linear Search of Hash Tables

Our point of departure is a simde schene that doeslinearsearch of hash tadesorganized
by prefix lengths. We will improve this schemeshatly to do binary seach on the hash
tabes.

Hash tables
Length | Hash | [01010
> o~ 0101011
! O—T|o110110
12 o—| .
01101101010]

Fig.2. HashTabesfor each possble prefixlengh

The ideais to look for all prefixesof a certainlength [ using hashiry anduse multiple
hashesto find the bestmatching prefix, stating with the largeg value of [ and working
backwards. Thuswe stat by dividing the datatase of prefixesaccoring to lengths. As-
suming a patticularly tiny routing tablewith four prefixesof lengh 5, 7, 7, and12, respec-
tively, each of themwould be stored in the hash tablefor its lengh (Figure 2). So each
setof prefixes of distinct length is organzed asa hashtable. If we have a sortedarray L
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correspnding to the distinct lengths, we only have 3 entiiesin thearray, with a pointerto
thelongestlength hash tablein the lastertry of thearray.

To searb for destindion acdress D, we simply stat with the longestlength hashtale [
(i.e. 12in the exarmple), and extractthefirst( bits of D anddo a seach in the hashtable
for lengh [ entries. If we succed, we have found the longestmatchandthus our BMP; if
nat, we look at the first lengh smallerthani, say!’ (this is easy to find if we have the array
L by simply indexing one positionlessthanthe paosition of {), and continuing the seach.

3.2 Binary Search of Hash Tables

The previous scheme essentiallydoes (in the worst case) linear search amag all dis-
tinct string lengths. Linearseach requiresO (W) time (more precisely O(Wy;st), where
Waise < W is the numberof distind lengthsin the datalase.)

A betterseach strat@y is to usebinary seart on the array L to cut down the number
of hashs to O(log Wy;s:). However, for binary search to make its branching decigon, it
requiresthe resultof an ordered compaiism, retuming whether the probedertry is “less
than,” “equal,” or “greaterthan” our seach key. As we are deding with prefix lenghs,
these map to indications to look at “shorter,” “same length,” or “longer” respectiely.
Whendealirg with hashlookups, orderedconpaiison doesseemimpossible: either there
is ahit (thenthe ertry found equalsthe hash key) or thereis a missandthusno conmpairison
possble.

Let’'slook at the problem from the other side: In ordinary binary seard, “equal” indi-
categhatwe have found the matching ertry and can terminatethe search Whenseaching
among prefix lenghs, having found amatching entry doesnot yetimply thatthisis alsothe
best ertry. So cleaty, whenwe have found a match we needto continue seaching among
the longer prefixes. How doesthis obsewation hep? It signifies, that whenanently has
beenfound, we shoud rememter it as a potertial canddatesolution, but cortinue looking
for longer prefixes. The only other informationthat we canget from the hash lookup is a
miss. Due to limited choice, we start taking hashmissesas anindication to inspectshorter
prefixes This resultsin the pseua code givenin Figure 3.

Function NaiveBinarySearc(D) (* seachfor address D *)
Initialize seach rangeR to coverthewhole array L;
While R is notasingle enty do
Let ¢ corresponl to themiddlelevel in rarge R;
Extract themostsigrificant L[i].length bitsof D into D’;
Seach(D’, L[i].hash); (* search hash table for D’ *)
If foundthensetR :=longe half of R (*longerprefixes*)
ElsesetR :=shorerhadf of R; (*shorter prefixes*)
Endif
Endwhile

Fig.3. NaiveBinary Seach

Figure 4 illustratesbinary seart over 7 prefix lengths. Thetreeon thetop indicatesthe
binary seach brarching thatis to be taken: Starting atthe roat (length 4), the currenthash
tabeis probedfor the key shateredto the currentprefix length. If the key is found, longer
prefixesareselectedotherwiseshorter prefixesaretedednext. As anexamge, we try to
find the longestprefix for “1100100." We find a matchat length 4 (1100%), thus taking
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(a) Binary search tree

(b) Hash Tables

o* 111100*
1111010

1100* 110011* ([1100111

bold: Prefixes italic: Markers

Fig.4. BinarySearch: First Attempt

the branch towards longer prefixes, nanely lengh 6. Looking for “110010*” therefails.
Therebre, we look for shorter prefixesat length 5, ard missagain. The bestmatchfound
during our seart is “1100*,” which is correct.

Trying to locateaddess*1111000” fails miseably. We missat 4, go storter to 2, miss
again, and have no luck at length 1 either. The correct match would have been “111100*”
atlengh 6. Unlike the previous example, there hadbeen no guiding prefixesin this case.
To make sure that sudh guiding prefixesexist, we insert additional branching information
called markers. Thesemarkers look like prefixes, except that they have no assodated
informationfields, their sheempresencés all we wart for now.

But where dowe needmarkers, and how many arethere?Naively, it seemghatfor every
ertry, there would be a marker at all other prefix lengths, leadng to amassve increase in
thesizeof thehashtades Luckily, markers do not neel to be placedat all levels. Figure 5
again shows a binary seach tree. At eachnode, a branding decigon is made, going to
eithe the shater or longer subtree, urtil the correctently or a led nodeis met. Clearly,
at mostlog W internd nodeswill be traversedon ary seach, resultingin at most log W
branding decisibns. Also, ary seach that will end up at a given node only hasa single
pah to choose from, eliminatingthe needto placemarkersat ary otherlevels.

3.3 Problems with Backtracking

Unfortunately, thealgaithm shavn in Figure 3 is nat correct asit stand and doesnot take
logaiithmic time if fixed naively. The problem is thatwhile makersaregood things (they
leadto patentially better longer prefixesin the table) can alsocause the searcho follow
falseleads which may fail. In case of failure, we would have to modify the binary seach
(for corredness)to backrack and search the shater prefixesof R again. Sucha naive
moadification canlead us bad to linear time search An exanple will clarify this.
Firstconside the prefixes P, = 1, P, = 00, P; = 111 (Figure 6). As discusseabove,
we add amarkerto the middle tablesothatthemiddle hashtalde contairs 00 (arealprefix)
ard 11 (a marker painting down to P3). Now conside a seach for 110. We startat the
middle hashtableandget a hit; thus we seach the third hashtablefor 110 andfail. Butthe
corred bestmatchirg prefix is atthefirst level hash table—i.e., P;. Themarkerindicating
that there will be longer prefixes,indispensale to find P;, wasmisleadng in this case;so
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(a) Binary search tree

(b) Hash Tables including Markers

0* 1111* 111100*
111101* |[{ 1111010
1100* 110011* ||1100111
bold: Prefixes italic: Markers

Fig.5. ImprovedBranding Decisions dueto Markers

oo

1* 11* 111

00*

Fig.6. Misleading Markers

apparently, we have to go backandseart the shater half of therange.

Thefacttha eachertry cortributes at mostlog, W markers may causesone reacersto
suspet that the worst casewith backtracking is limited to O(log® W). This is incorrect.
The worst caseis O(W). Theworst-caseexanple for sayW bitsis asfollows: we have a
prefix P; of lengh ¢, for 1 < ¢ < W thatcontains all 0s. In addition we have the prefix @
whosefirst W — 1 bits areall zeroes, but whoselag bitisa 1. If we seach for the W bit
address containing all zercesthenwe canshow that binary searchwith backtracking will
take O(W) time ard visit everylevel in thetale. (Theproblem is thatevery level contairs
afalse marker thatindicates the presere of sonmething betterin the longer sectia.)

3.4 Pre-computation to Avoid Backtracking

We use pre-computationto avoid backtracking whenwe shrirk the currentrange R to the
longer half of R (which hagers when we find a marker at the mid point of R). Suppose
every marker node M is arecad tha cortainsavariable M.bmp which is the valueof the
best matching prefix of the marker /.1 M.bmpcanbe precmputed whenthe marker M is
insetedinto its hash table. Now, when we find M atthemid point of R, weindeedseach
the longer half, but we also rememberthe value of M.bmp asthe current bestmatchirg
prefix. Now if the longe hdf of R fails to produce anything interesting, we need not

I This can either be a pointer to the best maiching node or a copy of its value. Thelatter is typicaly preferred,
asthe information stored is often comparale to the size of a pointer. Very often, the BMP is anindexinto a
next-top table.
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backtrack, becausethe resultsof the backtracking are already summaiizedin the valueof
M.bmp. Thenew coce is shawvn in Figure?7.

Function BinarySard(D) (* seachfor addressD *)
Initialize seachrange R to coverthewhole array L;
Initialize BMP found so far to null string;
While R is notempty do
Let 7 correspondto themiddlelevel in rarge R;
Extract thefirst L[i].len gth bits of D into D’;
M :=Seach(D’, L[i].hash); (* search hashfor D’ *)
If M isnil Thenset R :=shorerhalf of R; (* not found*)
Elseif M is aprefixand nota marke
Then BMP := M.bmp break; (* exit loop *)
Else(* M is apuremarker, or marker and prefix *)
BMP := M.bmp (* updai bestmatching prefix sofar *)
R :=longerhdf of R;
Endif
Endwhile

Fig.7. Working Binary Search

The standhrd invariant for binary searty when seaching for key K is: “ K is in rarge
R”. We thenshrink R while presening this invariart. The invaiiant for this algaithm,
when seaching for key K is: “either (The BestMatching Prefixof K is BMP) or (There
is alonger matchirg prefix in R)".

It is eagy to see thatinitialization preservesthis invaiant, and ead of the searchcases
preseres this invariant (this can be edablished using an inductive proof). Finally, the
invariantimpliesthe corectresultwhenthe rangeshrinks to 1. Thus the algorithm works
corredly; alsosinceit hasno backtracking, it takesO(log, Wa;st) time.

4. REFINEMENTS TO BASIC SCHEME

The basicschenedescribedin Section3 takesjust 7 hashcomputations,in the worst case,
for 128 hit IPv6 addesses.However, eachhashconputation takesat leastone acess to
memoly; at gigabit speedseat memory accessis significant. Thus, in this section, we
explore a sefes of optimizaionsthat exploit the degoer structure inherent to the problem
to reducethe average number of hashcomputations.

4.1 Asymmetric Binary Search

We first descrite a seriesof simple-minded optimizaions. Our main optimization, mutat-
ing binary seach, is descritedin the next sedion. A reade cansafdy skip to Sectian 4.2
on afirstreadng.

The curert algaithm is a fast, yet very geneal, BMP seach ergine. Usually, the
peformanceof gereral algaithms can be improved by tailoring themto the particuar
datasets they will be applied to. Figure 8 shaws the prefix lengh distribution extracted
from forwarding table snapstots from five major backlone sitesin Jaruary 1999 and, for
comparison a Mae-Eastin Decemler 1996 2. As canbe seen the ertries aredistributed
over the different prefix lengths in an extrenely unevenfashion The peak at lengh 24

2http://iwww.merit.edufipmatouting_table/
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AADS ——
10000 ¢ MaeEast -+
MaeWest -&
PAIX -x
PacBell -+---
1000 | MaeEast 1996 x--

Count

100 ¢

10

i

30 32

2 4 6 810121416182022242628
Prefix Length

Fig.8. Histogamof Badbore PrefixLengh Distributions (log scale)

Tablel. Forwarding Tabes: Totd PrefixesDistinct Lengths,and Distinct Lengthslonge than 16 bit

Prefixes | Waist | Waist>16
AADS 24218 23 15
Mae-East 38031 24 16
Mae-West 238®8 22 14
PAIX 5924 17 12
PacBl 2289 20 12
Mae-Eastl996 | 3319 23 15

dominateseverything by atleastafactorof ten if weignorelengh 24. Thereare alsomore
than 100 timesasmary prefixesatlengh 24 thanatary prefix outsidetherange 15. . . 24.
This graphclearly shovstheremnantsof the original classA, B, and C networks with local
maxima atlenghs 8, 16, ard 24. This distribution patern is retainedfor mary yearsnow
ard seens to be valid for all backbone routing tables,indepencert of their size (Mae-Eat
has over 38,000, while PAI X hasless than 6,000 ertries).

Thesechamcteristicsvisibly cry for optimizatiors. Although we will quartify the po-
tertial improvemerts usingthese forwardng tales we believe that the optimizations in-
troducedbelon apply to arny currentor future setof addesses

As the first improvement, which hasalrealy been menticned and usedin the basic
schene, the searchcanbelimited to those prefix lenghswhich do contan atleastoneen
try, redwcing the worst casenumberof hashesgrom log, W (5 with W = 32) tology Wt
(4.1...4.5 with Wy;s: € [17,24], accoding to Table1). Figure 9 applies this to Mae-
Easts 1996 table. While this numeiically improves the worst case,it hams the average
performance,sincethe popular prefix lenghs 8, 16, ard 24 move to lessfavoralde posi-
tions.

A more promising appoachis to charge the tree-shped seart patternin the most
promising prefix lengh layersfirst, introducing asymnetry into the binary tree. While
thiswill improve averagye casepefformarce,introducing asymmetrieswill not improve the
maximum tree height; on the contrary, some seaches will make a few more stefs, which
has a negative impacton the worst case Giventhat routerscantemporarily buffer packets,
worst casetime is not as importart asthe averagetime. Thesearchfor aBMP canonly be
terminatedealy if we have a“stop seach her” (“terminal”) condition storedin the node.
This cordition is signalled by a node being a prefix but no marker (Figure 7).
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Standard Binary Search Distinct Binary Search

Fig.9. SeachTreesfor Standad andDistinct Binaly Search

Avergye time deperds heavily on the traffic patern seenat tha location Optimizing
binary seart treesaccading to usage patternis an old problem [Knuth 1998]. By opti-
mizing the average case somedatasetscould degereratetowards linearsearch(Figure 10),
which is clealy undesiralte.

To build a useful asymmetiical tree,we canrecusively split both the upper ard lower
pat of the binary seachtree’s currentnode’s seart space,at a point selectedy aheuris-
tic weighting function. Two differen weighting functions with different goals (onestrictly
picking thelevel coveringmaost addres®s,the othe maximizing the ertrieswhile keepirg
theworst casebound) are shavn in Figure 10, with coverage ard averagdworstcaseanaly
sisfor bath weighting functionsin Table 2. As canbe seen, balancirg givesfaser increases
after the secord step,resulting in geneally betterperformarce than “narrow-minded’ al-
gorithms.

Maximize
Addresses Covered
(Usage Probability)

Maximize Entries,
Keeping Balance

Fig.10. Asymmetic Trees produedby two Weighting Functions
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Tabe 2. Address(A) and Prefix(P) Count Coveragefor Asymmetric Trees

Steps Usage Balarce
Al P| A% | P%
1| 43% | 14% 43% 14%
2| 83% | 16% 46% | T77%
3| 88% | 19% 88% | 80%
4 | 93% | 83% 95% | 87%
5| 97% | 86% | 100% | 100%
Averagge 2.1 3.9 2.3 2.4
Worstcase 9 9 5 5

4.2 Mutating Binary Search

In this sutsedion, we further refine the basichinary searchtreeto change or mutae to
more specializedbinary treeseach time we encounter a partial matchin sone hash tale.
We believe this afar more effective optimizationthanthe useof asymmaerical treesthough
thetwo ideascanbe conbined.

Previously, we tried to improve seach time based on aralysis of prefix distributions
soited by prefix lengths. The resultinghistogam (Figure 8) led usto propose agymmet-
rical binary seach, which canimprove averag speed. More information about prefix
distributions canbe extraded by further dissectirg the histogam For eachpossible n bit
prefix, we could draw 2™ individual histograms with passibly fewer non-empy buckets,
thus reducing thedepth of the seart tree.

Tabe 3. Histogmamof the Numbe of Distinct Prdix Lengths > 16 in the 16 bit Partitions
1 2 3 4 5 6 7 8 9
AADS 3467 | 740 | 474 | 287 | 195 | 62| 11 2
Mae-East | 2094 | 702 | 521 | 432 | 352 | 168 | 53 8 1
Mae-West | 3881 | 730 | 454 | 308 | 158 | 70| 17 3

PAIX 1471 317 | 139 | 5 | 41| 31| 1| — | —
PacBell 3421 | 704 | 442 | 280 | 168 | 42| 9| — | —
Mae-East

1996 5051 | 547 | 383 | 273 | 166 | 87| 27| 3| —

When pattitioning acording to 16 bit prefixes’, and counting the numbe of distinct
prefix lengths in the partitions, we discover anaher nice propetty of the routing data. We
recall the whde forwarding datalases (Figure 8 and Table 1) showed up to 24 distinct
prefix lenghs with mary bucketscontaining a significart number of entiesandup to 16
prefix lenghs with at least16 bits. Looking at the sliced datain (Table 3), nore of these
partial histogramscortain more than9 distinct prefixeslengths; in fact, the vastmajarity
only containone prefix, which often hgppensto bein the 16 bit prefix length hash table
itself. This suggests that if we startwith 16 bits in the binary seach and g& a match,we

3There is nothing magic abaut the 16 bit level, otherthanit being anaturd starting lengh for a binary search of
32bit IPv4 addresss.



16 . M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

need only do binary searty on a setof lengths thatis much smaller thanthe 16 possible
lengthswe would have to seachin naive binary seart.

In genenal, every matchin the binary seach with some marker X meansthat we need
only seach amag the set of prefixesfor which X is a prefix. Thus, binary seart on
prefix lengths hasan advantageover corvertiond binary search on eachbranchtowards
longer prefixes,not only therangeof prefix lengthsto be seachel is redwced,but also the
number of prefixesin eachof theselengths. Binary searchon prefix lengths thus narows
the searchin two dimensiors on eachmatch, asil lustratedin Figure 11.

Thusthe whole idea in mutatirg binary seachis as follows. whenerer we get a matc
and moveto a new subtrie, we only needto do binary search on the levels of new sibtrie.
In other words, the binary searchmuatesor changesthe levels on which it searclesdy-
namically (in away thatalways rediwcesthelevelsto be searcled), asit getsmore andmore
match information.

Root

New Trie on Failure
m = Median Length

________ X — - — =\ - -Among all prefix
lengths in trie
New Trie on Match
< (first m bits of

Prefix =X)

Fig. 11. Showving howv mutating binary search for prefix P dynamically changes the trie on which it will do
binarysearch of hashtables.

Thusead ertry E in the seach tablecoud contain a desciption of a search tree spe-
cializedfor all prefixesthatstart with E. The optimizationsresultingfromthis obsewvation
improve lookups sigrificantly:

Worst case: In all the datalasesve andyzed, we were ableto reducethe worst case from
five hashego four hashes.

Average case: In the largesttwo databasesthe majarity of the addres®s is found in at
most two hash lookups. The smdler databaestake a little bit longerto read their
halfway point.

UsingMutatingBinary Seart, looking for anaddess(seeFigure 13) is different. First,
we explain some new corventionsfor readirg Figure 13. Asin the otherfigures,we con
tinue to draw a binary searchtreeon top. However, in this figure, we now have multiple
patial trees,originating from ary prefix ertry. This is becawse the seach processwill
move fromtreeto tree,starting with overalltree.Eachbinary treehas the “root” level (i.e.,
thefirstlength to be seached)attheleft; theleft child of eachbinarytreenodeis thelengh
to be searcled on fail ure, and whenever there is a mach, the seart switchesto the more
specifictree.

Corsider now a search for address1100110, matchng the prefix labelled B, in the
daabaseof Figure 13. The searchstartswith the gereric tree, so lengh 4 is checked,
finding A. Among the prefixesstartirg with A, thereare known to be only threedistinct
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Search Steps

Fig. 12. Number of HashLookups(Note No averagecaseoptimizatons)

Overall Search Tree °

0* 00* 000* 0000*] 000000*

1000% 100??
G:

/

*
A
1100*1 11001* || 110000* || 1100000

@' B:
11001]1

[ B H:
1111~} 11110* 1111000
K\ :@

O
0111% Olfif* 011100*

Fig.13. Mutating Binary Seach Example

lengths (4, 5, and 6). So A contairs a de<cription of the new tree, limiting the seach
appropriately. This treeis drawn asrooting in A. Using this tree, we find B, giving a new
treg the empy tree Thebinary treehasmutaed from the original treeof 7 lenghs,to a
secomlay treeof 3 lengths, to atertiaty empty “tree”.

Looking for 1111011, matding G, is similar. Usingtheoverall treg wefind F'. Switch-
ing to its treg we missatlengh 7. Since a miss(no ertry found) carit updateatree,we
follow our current treeupwards to length 5, wherewe find G.

In geneal, whenever we go down in the current tree, we can potertially move to a
specidizedbinary treebecawse eachmatch in thebinary searclis longer thanany previous
meatches,and hencemay contain morespecializél information. Mutating binary treesarise
naurdly in our application (unlik e classicalbinary seach) becawse eachlevel in the binary
searchhasmultiple ertries staredin a hashtade. asopposed to a singe entryin classical
binary searti. Eachof the multi ple ertries canpoint to a more specializedbinary tree.

In other words, the seachis no longer walking through a single binary seach tree,but
through a whale netwak of intercomectedirees. Branching decisiors are not only based
onthecurentprefix lengh and whethe or nat a matchis found, but also on whatthe best
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match so far is (which in turn is basedon the addresswe're looking for.) Thus at each
branding paint, you nat only selectwhich way to branch, but also change to the most
optimal tree. This additional information about optimal tree branchesis derived by pre-
compuation basedon the distribution of prefixesin the current dataset. This givesusa
fastersearchpattern thanjust searting on ether prefix length or address alone.

Two possible disadvantagesof mutating binary seart immedately presenthenselves.
First, precomputing optimal trees canincrease the time to inserta new prefix. Secand, the
storayerequiredto storeanoptimal binary treefor eachprefix appearsto be erormous. We
deal with insertion speedin Section5. For now, we only obsene thatwhile the forwarding
informationfor a given prefix may frequertly changein cost or next hop, the addition or
ddetion of a new prefix (which is the expensie case)s be muchrare. We proceedto deal
with the spaceissueby compadly encodng the network of trees.

4.2.1 Bitmap One shat encaling methal would be to storea bitmap, with ead bit
setto one represetting a valid level of the binary seach tree. While this only usesW
bits, computing a binary treeto follow next is an expersive task with current procesers.
The useof lookup tadesto deternmine the middle bit is passble with shat acddresses(swch
asl|Pv4) anda binary seach roat close to the middle. Then after the first lookup, there
remain around 16 bits (lessin upcoming steps), which lend themsehesto a small (216
bytes)lookup tade.

4.2.2 Rope. A key obsewation is thatweonly needto store the seqence of levelswhich
binary seach on a given subtrie will follow on repeatedfailuresto find a match. This is
becausewhenwe get a successfulmatch(see Figure 11), we move to a completely new
sultrie ard canget the new binary searchpath from the new sultrie. The sequence of
levels which binary searchwould follow on repeatedfailuresis whatwe call the Rope of
asultrie, and canbe encaled efficiently. We call it Rope, becausehe Rope allows usto
swingfromtreeto treein our network of intercannectedbinary searchrees

If we consider a binary seach tree,we defire the Rope for the roat of the trie node to
bethe sequenceof trie levelswe will consider whendoing binary searcton the trie levels
while failing atevery point. Thisis illustrated in Figure 14. In doing binary seachwe start
at Level m which is the median length of the trie. If we fail, we try atthe quattile lengh
(sayn), and if we fail atn we try atthe one-eight level (sayo), and soon. The seaierce
m,n,o,...istheRopeforthetrie.

Fig. 14. Intermsof atrie,aropefor thetrie nodeis the sequenceof lenghsstating from themedanlength the
quatile length, and soon, whichis the sameas the saies of left children (seedottedoval in binary treeonright)
of apefecly balarced binary tree onthetrie levels.
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Figure 15 shawvs the Ropescortaining the same informationasthe treesin Figure 13.
Notethata Ropecanbe storedusingonly log, W (7 for IPv6) pointers. Since eachpointer
needsto only discriminateamang at most W possble levels eachpainter requires only
log, W bits. For IPv6, 64 bits of Rope is more than suficient, though it seens possible
to get away with 32 bits of Rope in most practical cases. Thus a Rope is ustally not
longer than the storage required to store a pointer. To minimize starage in the forwarding
daabasea single bit can be used to decide whetherthe rope or only a pointerto aropeis

storal in anode.
Initial Rope °

o* 00 000* 0000 000000*
| \@
1000* Q@

1100 _11% 110 %OOK %00
110011}:
1111 110* 1 000
)
|

:

0111% Ql@ \0@)0*

Fig.15. SampkRopes

Usingthe Ropeasthedatastructure hasa semnd advantag: it simplifies thealgarithm.
A Rope caneasilybefollowed, by just picking pointer after pointer in the Rope, until the
next hit. Eachstrandin the Ropeis followedin tumn, until thereis a hit (which startsa new
Rope), or theendof the Ropeis reaché. Following the Rope on processasis easilydone
using “shift right” instructions.

Pseud-code for the Rope variation of Mutating Binary Seach is shavn below. An
elermrentthatis a prefix but not a marker (i.e., the “terminal” conditi on) specifiesan empy
Rope,whichleads to seach termination. The algorithm is initi ali zedwith a starting Rope.
The starting Rope corespads to the default binary seach tree. For exanmple, using 32 bit
IPv4 addres®s, the startirg Rope containsthe starting level 16, followedby Levels8, 4, 2,
1. The Levels 8, 4, 2, and 1 carespnd to the “left” painters to follow when no matches
arefound in the default tree. Theresulting psewo-code (Figure 16) is elegart ard simple
to implemert. It appearsto besimpler thanthe basic algarithm.

4.3 Trading Speed Against Memory

Thefollowing sectimswill discussa number of mechanismghatallow tuning thetradeoff
beweenseach speedard memay requiremerts accading to the application’s desires

4.3.1 Using Arrays. In casesvhereprogramcomplexity and menory usecan betraded
for speedit might be desirale to change the first hashtale lookup to a simpe indexed
array lookup, with the index being formedfrom the first wq bits of the address with wq
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Function RopeSeach(D) (* seachfor address D *)
Initialize Rope R contaning the defaut seach sequerce
Initialize BMP sofar to null string;
While R is notempty do
Pull thefirst strand (pointer) off R andstorit in4;
Extrad thefirst L[i]. length bits of D into D’;
M :=Seach(D’, L[i].hash); (* seach hashtablefor D’ *)
If M is notnil then
BMP := M.bmp (* update bestmatching prefix so far *)
R :=M.rope (* getthenew Rope possbly empty *)
Endif
Endwhile

Fig. 16. RopeSeach

beng the prefix length at which the seach would be started For examge, if wg = 16, we
would have anarray for all possible 21¢ valuesof the first 16 bits of adestinatio address.
Ead aray entry for index ¢ will containthe BMP of i aswell asa Rope whichwill guide
binary search anmong all prefixesthatbegin with 7. An initial array lookup is not only faster
than ahashlookup, but also results in redwcing the average number of lookups, sincethere
will be no missesat the startirg level, which could directthe searchhdow wy.

4.3.2 Halving the Prefix Lenghs. It is possble to reduce the worst case seach time
by anothe menory acess. For that, we halve the number of prefix lengths by e.g. only
allowing all the even prefix lengths, deceasingthe log W searchconmplexity by one. All
the prefixes with odd lengths would thenbe expandedto two prefixes,ead onebit longer.
For oneof them theadditional bit would beset to zerg, for the other, to one. Together they
would coverthe samerarge asthe original prefix. At first sight, this looks likethemenory
requirement will be doubled. It canbe shavn that the worstcasemenory corsunption is
not affected sinae the number of markersis reducedatthe same time.

With W bits length, eachertry could possbly require up to log(W) — 1 markers (the
ertry itselfis thelog Wth entry). When expanding prefixesasdescriedabove, sone of the
prefixeswill be doubled. At the sametime, W is halved thuseachof the prefixesrequires
atmostlog(W/2) — 1 = log(W') — 2 markers. Sincethey matchin all but their least bit,
they will shareall the markers,resultirg againin atmostlog W ertriesin the hashtables.

A secaod halving of the number of prefixesagain deceasegheworst caseseachtime,
but this time increaseshe amouwnt of memory, sinceeachprefix canbe extenced by up to
two bits, resulting in four entriesto be stored, exparding the maximum number of entries
neededper prefix to log(W) 4+ 1. For mary casesthe seart speedimprovemert will
warrantthe smdl increasen menory.

4.3.3 Internal Cading. Figure 8 showed that the prefixeswith lenghs 8, 16, and 24
cover mostof the addessspae used Using binary seach, thesethree lenghs can be
coveredin just two memay acesses. To spee up the seart, eachaddress thatrequires
more thantwo memay accesset® seachforwill becachedin one of theseaddesdengths
accading to Figure 17. Comparedto tradtional cachirg of complete addessesthese
cacte prefixescover alargerareaandthusallow for abetterutilization.
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Function Cachdnterrally(A, P, L, M)
(* foundprefix P atlength L aftertaking M memoryaccesses
sardingfor A *)
If M > 2 then(* Caching canbeof advantage*)
Roundup prefix length L to nextmultiple of 8;
Insert copy of P’sentry at L, using the L first bits of A;
Endif

Fig. 17. Building thenterral Cache

4.4 Very Long Addresses

All the calcUations above assume the processor's registers are big enough to had ertire
addresses. For long addres®s, such asthose used for |P version6, this does not always
had. We defire w asthenumber of bits theregistershald. Insteacbf working on theertire
address at once the datatase is setup similar to a multibit trie [Srinivasanand Varghese
1999 of stride w, resuting in adeph of k£ := W/w. Eachof these“trie nodes”is then
implemerted using binary search If the “trie nodes” used corventional tecmaogy, ead
of themwould recuire O(2) menory, cleaty impractical with modernprocesas, which
manipulate 32 or 64 bits atatime.

Slicingthedatalaseinto chunks of w bitsalsorequreslessstoragethanunsliced databaes,
sincenot the ertire longaddesseslo nat needo be storedwith everyelemen. Thesmaller
footprint of anently alsohelps with hashcollisions (Section?).

This storageadvartagecomesat a premium: Slower access. The number of menory
accesseschangesfrom log, W to k + log, w, if theseachin theintermediate“trie nodes”
begins at their maximum lengh. This hasno impad on IPv6 seacheson modem 64 bit
processas (Alpha UltraSpac, Merced), which stayat 7 acces®s. For 32 bit processrs,
theworst case usingthe basic schemeraisesby 1, to 8 accesses

4.5 Hardware Implementations

As we have seenin both Figure 7 and Figure 16, the seach functions are very simpe,
soideally suitedfor implementationin hardware. The inner companent, mostlikely done
asa has table in softwareimplementatiors, canbeimplemerted using (perfect) hashirg
hardware suchasdegribed in [Spinney 1995], which storesall cdlisions from the hash
tade in a CAM. Instead of the hashirg/CAM combinatiors, a large binary CAM coud
be used. Besdesthe hashirg function describel in [Spimey 1995], Cyclic Redundang
Check(CRC) generaor poynomials are known to result in good hashirg behavior (see
alsothe comparisonto other hashirg functionsin Sectio 7).

The outer loop in the Rope scherre can be implemerted as a shift register, which is
reloadedon every matchfound, asshown in Figure 18. This makesfor avery simpe hard
wareunit. For higherpeformancestheloop canbeunrolled into a pipelinedarctitecture.
Pipelining is cheaperthanreplicatirg the ertire lookup mecharism: in a pipelinedimple-
mentation eachof the RAM s canbe smalller, sinceit only need to containthe entriesthat
canberetiievedin its pipeline stage (recallthatthe stepduring which anentryis found de-
pends only onthe structure of the datakase, ard not on the seach key). Corsult Figure 12
for a distribution of the ertries amorg the different searchsteps. As is true for sotware
searchRope searchwill redwcethe numberof stes perlookup to at most4 for IP version
4 addres®s, and hardware may adso useaninitial aray. Pipeline depthwould therefore
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Fig. 18. Hardware Block Schemaic

befour (or five,in aconsenative desgn). Besides pipdining, converting binary branching
to k-ary would provide andherway around the relatively high menory aacesslatencies.
Instead of a singe probe asrequired for the binary decision k& — 1 pallel probes would
needto betaken In our implemertation[Braunetal. 2001], using parallel seach engnes
turned out to be more efficient than using higher branching degreeswhenonly a single
external dynamicRAM (DRAM) module was availabe.

The highest speedscanbeachieredusing a pipdinedappoach,whereeachstage hasits
own menory. As of this writing, DRAM techimology (DDR SDRAMSs at 133 MHz), with
informationappropriatelydistributedandcopiedamong the banks of the SDRAM, erables
athroughput of 8 lookup every 9 cycles,resultirg in 118 mill ion packets per secand with
inexpensive hardwvare. This speedis roughly eguivalert to 50 Gbit/s with minimum size
packets(40 bytes)or more than400 Ghit/s usingmeasued packet distributions (354 bytes
average) from Jure 1997 # Using custom hardvareand pipelining, we thus expecta sig-
nificant speedyp to software performance, allowing for affordablelP forwardng reachirg
far beyond the single-device tranrsmisson speedscurrently reacledin high-techreseach
labs.

5. BUILDING AND UPDATING

Beddes hashirg andbinary seach, a precbminant ideain this pager is pre-canputation.
Every hashtable entty hasan asscciatedbmyp field and (possibly) a Rope field, both of
which are precanpued Preconputation allows fast searchbut requires more complex
Insertionroutines. However, asmertionedeatier, whil e the routesstored with the prefixes
may charge frequertly, the addtion of a new prefix (the expersive case)is much rarer.
Thusit is worth paying a penaltyfor Insetion in returnfor improved seach speed.

5.1 Basic Scheme Built from Scratch

Settingup the datastructure for the Badc Schene is straightforward, as shown in Fig-
ure 19, requiring a complexity of O(N log ). For simicity of implementatian, thelist
of prefixesis asamedto be sorted by increasingprefix length in advance(O (V) using
bucket sat). For optimal searchperformance, thefinal hashtablesshould ensure minimal
cadlisions(seeSection 7).

To build abasic seach strudure which eliminatesunusedlevelsor to take advartageof
asynmetiies, it isnecessaryo build the binary seach treefirst. Then, instead of clearirg

4http:/iwww.nlanr.net/NA/Learnpackesizes html
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Function BuildBasig
For all entiesin thesottedlist do
Readnextprefix-length pair (P, L) from thelist;
Let i betheindex for the L’s hashtable;
UseBasic Algorithm onwhat has beenbuilt by now
to find theBMP of P andstoreitin B;
Add anew prefixnoce for P in thehashtable for ¢;
(* Now insert all necessry markers“to theleft’ *)
For ever do
(* Gouponelevel in the binary seachtree*)
Cleartheleast significant sd bitin z;
If ¢ = 0 thenbreak; (* endreached*)
Se L to theapprapriate length for 4;
Shaten P to L bits;
If thereisalreadyan entry for P ats then
Makeit amarker if it isn't already;
break; (* highe levels aread/ do have markes *)
Else
Create anew marker M for P at i's hashtable;
SetM.bmpto B;
Endif
Endfor
Endfor

Fig. 19. Building for theBasicScheme

the leastsignificart bit, asoutlinedin Figure 19, the build algorithm really hasto follow
the binary seach treebackup to find the “paren” prefix length. Some of these parerts
may beat longer prefix lengths, asill ustratedin Figure 5. Sincemarkersonly needto be
setat shorter prefix lengths, ary paentasscciatedwith longer prefixesis justignored

5.2 Rope Search from Scratch
Therearetwo ways to build the datastructuresuitabe for Rope Seach:

Simple: Thesearch orderdoesnat divert fromtheoverall binary seart tree,only missng
levelsare left out. This restuts in only minor improvemerts on the seach speedard
canbe implementedasa straghtforward enfanemer to Figure 19.

Optimal: Calcuating the shortes Ropeson all brarching levels recuiresthe soluion to
an optimization problem in two dimensiors. As we have seen,each branch towards
longer prefix lengths also limits the setof remaining prefixes.

We presert thealgarithm which globally calcdatestheminimum Ropes, basedondynamic
progranming. The algarithm canbe split up into threemainphases:

(1) Build aconventional (uncampres®d) trie structurewith O(INW) nodescontaining all
the prefixes(O(NW) time ard space).

(2) Walk through the trie bottom-up, calculatirg the cost of selecting different branching
points and conrbining them on the way up using dynamic programning (O(NW?3)
time and space).

(3) Walk through the trie top-down, build the Ropesusirg the resultsfrom phase 2, ard
insertthe ertries into the hashtables(O(NW log W) time, working on the space
allocatedin phase 2).
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To understanl the battom-up meging of the informationin phase2, let usfirst look at
theinformationthatis necesary for bottom-up meging. Recallthe Ropesin Figure 15. At
eachbranching point, the searcheither tums towards longer prefixesand a more specific
branding tree or towards shorter prefixeswithout changing the setof levels. Thegod is
to minimize worst-caseseart cost, or the number of hashlookupsrecuired. The overall
cost of putting adecisionpoint at prefix length z is the maximum pah lengh on either side
plus onefor the newly inserteddecision. Looking at Figure 15, thelongestpathon theleft
of our starting point haslengh two (the pathsto 0x or 000«). Whenlooking at theright
hand side, the longestof the individual seachesrequire two lookups (11001, 1100000,
11110%, and 0111000).

Gereralizing, for eachrange R coveredandeachpossible prefix lengh x sgitting this
rarge into two halves, R, and R,., the program neals to calculatethe maximum degh
of the aggregate left-hard tree R;, covering shorter prefixes,andthe maximum depth of
the individual right-hand treesR,.. When trying to find an optimal solution, the goal is
to minimize thesemaxima, of course. Clearly, this processcan be applied recursively.
Instead of implemerting a simge-minded recusive algarithm in exponertial time, we use
dynamic programming to solve it in polynomial time.

Jrie's root (r) <
§’ Merge+ Propagate
g Root of ;
E, processed 2
x subtrie (t) 2
© Start 8
ol S E
= (s)
‘B Mini-
3 tries
S| End
£
(e) O Trie node with associated prefix
(a) Structures (b) Casestreated

Fig.20. RopeCorstruction, Phase?2

Figure 20(a) showstheinformationneeatdto sdvethis minimization problem. For each
sultreet matding a prefix P, atable containng information about the depth assodated
with the sulrange R ranging from start length s to endlength e is kept. Specifically,
we keep (1) the maximum over all the individual minimal-depth trees(77), as used for
branding towards longer prefixesand (2) the minimal aggregate tree (T'4), for going to
shater prefixes. Eachof thesetreesin turn consistsof both aleft-handaggregatetreeand
right-hard individual brandhing trees

Using the dynanic programming paradgm, we start building a table (or in this case,
a table per trie node) from the bottom of the trie towards the root. At ead node, we
combine theinformation the children have accumulatedwith our locd state,i.e. whether
thisnodeis anentry. Five casexanbeidertified: (L) settingupaleafnode,(P) propagating
the aggregate/irdividud tabes up onre level, (P+) same,plus including the fact tha this
nodecontains avalid prefix, (M) meging the child’s aggregate/irdividud tades,ard (M+)
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merging ard including thecurrent node’s prefix. As can beseen,all operations area subset
of (M+), working on lesschildrenor not adding the current nod€'s prefix. Figure 21 lists
thepsewo-codefor this opemtion

Function Phase2MergePUs;
Setp to thecurren prefix lengh;

(* Mergethechildreris 71 bdow p *)
Forall s,ewheres € [p+1...W],e € [s...W];
(* MergetheI’r mini-treesbetweenStart s and Ende *)
If both childreris depthfor T7[s, €] is O then
(* No prefixesin either mini-tree*)
Set this node’s depthfor 77 (s, €] to O;
Else
Set this node’s depthfor 77[s, €] to the
themaxof thechildren’s T s, €] deghs;
Endif
Endforall

(* “Calculate”thedeph of the treescoveringjust this node*)
If thecurrententryis avalid prefix then

Set Tr[p, p] = Talp, p] = 1, (* A treewith asingeertry *)
Else

Set T1[p, p] = Talp, p] = 0; (* An emptytree*)
Endif

(* Mergethechildreris 74, extendto currentlevel *)
Forse[p... W],
Forec[s+1...W];
(* Find the bestnext brarchinglength : *)
Set Ta[s, e]'sdegh to min(T;[s + 1,e] + 1), (* splitats *)
min{_, ; (max(Ta[s,i — 1] + 1, T[i, €]))); (* split below *)
(* SinceT'a[s,i — 1] is only searchedefter missingat ¢, add 1 *)
Endfor
Endfor

(* “Calculate’theT atp aso*)
SetTr[p, *] to T'a[p, *; (* Only one treg soaggregated=ndividual *)

Fig.21. Phae 2 Pseido-@de runat eachtrie node

As canbe seenfrom Figure 21, meming the T'4s takes O(W3) time per node, with a
total of O(NW) nodes. The full meming is only necessary at nodeswith two children,
shavn as (M) and (M+) in Figure 20(b). In ary trie, therecanbe only O(N) of them,
resuting in anoverall build time of only O(NW3).

If the optimal next branching point is storel alongsidce eachT'4 s, €], building the rope
for any prefix in Phase3 is a simde matter of following the chain set by thesebranching
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paints, by always following 7’4 [sprev + 1, previous brarching paint]. A node will be used
asamarker, if the higher-level rope listsits prefix length.

5.2.1 Degreesof Freedbm. The only god of the algorithm shawvn in Figure 21 is to
minimize the worst-casenumber of searchsteps. Most of the time multiple branching
pointswill resultin the sameminimal T4 depth Therefore, chacosingthesplit point givesa
further degreeof freedbm to optimize otherfactas within the bounds setby the calcdated
worst cae. This freedbm canbe usedto (1) reduce the number of ertries requiring the
worst caselookup time, (2) improve the averageseart time, (3) redwce the number of
markers placed (4) redwce the numbe of hashcollisions, or (5) improve update behavior
(seebelaw). Becauseof limitations in spaceard scope, they will not be discussd in more
depth.

5.3 Insertions and Deletions

As shavn in [Labovitz etal. 1997], some routersreceve routing update messgesat high
freqendes requring the routersto hande thesemessages within a few millisecords.
Luckily for the forwarding tables, most of the routing messages in thesebursts are of
pahodogicd natue and do not requre ary charge in the routing or forwardng tables.
Also, most routing updatesinvolve only a charge in the route and do not add or delete
prefixes Additiondly, mary wide-arearouting protocds suchas BGP [Rekhter ard Li
1995 use timersto reducetherateof route charges, therety delaying ard batchirg them.
Neverthelessalgaithmsin wantof beingrealy for further Interret growth should support
subsecamd updatesunder mostcircunstances.

Adding entiies to the forwarding databaser deletingenties may be done without re-
building the whole database.The lessoptimizedthe datastructure is, the easier it is to
changeit.

5.3.1 Updating Basic and Asymmetic Sdhemes.Wetherdore startwith basic andasym
metric schenes,which have only eliminated prefix lengthswhich will neverbeused.Inser
tion andddetion of leaf prefixes, i.e. prefixes,thatdo not cover others,is trivia. Insertion
is done asduring initial build (Figure 19). For deletian, a simpe possbility is to justre-
movetheertry itselfand not care for theremainng markers. Whenunusedmarkersshould
bedeletedmmediaély, it is necessaryo maintainper-markerreferercecounters. Ondele-
tion, the marker placenentalgorithm from Figure 19 is usedto determne wheremarkers
would be set,decreaing their refeencecount anddeletirg the marker when the counter
reacheszero.

Shauld the prefix p beinginserted or deletedcover ary markers, thesemarkersneedto
be updatedto point to their changed BMP. There are a number of possibilitiesto find all
the underlying markers. Onethat doesnat require any helper data strudures, but lacks
efficiency, is to either erumerateall possiblelonger prefixes matchirg our modified ertry,
or to walk through all hash tables assocated with longer prefixes On ddetion, every
marker pointing to p will be changed to point to p’s BMP. On insertio, every marker
pointing p’s current BMP and matchirg p will be updated to point to p. A more efficient
solution is to chain all markerspointing to a givenBMP in alinkedlist. Still, this methad
could require O(N log W) effort, since p cancover ary amourt of prefixesand markers
from the entire forwardng datatase. Although the number of markers coveredby ary
given prefix wassmadl in the datdbasesve analyzed(seeFigure 22), Sectio 6 preserts a
solution to bound the updateefforts, which is importantfor applicationsrequring red-time
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Fig.22. Histogran of Markers depending on a Prefix (log scales)

During the previous explanatin, we have assumedthat the prefix being insertedhad a
length which wasalreadyusedin the databa@e. In Asymmetric Seach, this may nat al-
ways be true. Depending on the structure of the binary seach trie around the new prefix
length, adding it is trivial. The addition of length 5 in Figure 23(a) is one of these exam-
ples. Adding length 6 in Figure 23(b) is not aseasy Onepossbility, shown in the upper
examge, is to re-balarce the trie structure, which unlik e balarcing a B-tree can resultin
severalmarkers bang inserted: One for eachpre-existing prefix not coveredby our newly
inseted prefix, but caveredby its parert. This structural change canalso adversely affect
theaverage casebehavior. Anotherpossibility, shown in the lower right, is to immedately
add the new prefix length, posdbly increasingthe worst casefor this single prefix. Then
we wait for acompeterehuild of thetreewhich takes careof the correctre-bdancing.

We prefer the secord solution, since it doesnot needmore than the plain existing in-
sertian procedures. It alsoallows for updatesto take effectimmedately, andonly incursa
negligible performanceperalty until thedatabae hasbeenrehuilt. To reducethefrequeng
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of rekuilds, the binary seach tree may be constricted asto leave room for inserting the
missingprefixlenghsatminimal cost. A third solution would beto split a prefix into mul-
tiple longer prefixes,similar to the one usedby Causal Colli sion Resoldion Section7.1.

5.3.2 Updating Ropes All theaboveinsightsalsoamly to Rope Search andevenmore
so,sinceit usesmary local asynmetic binary seach trees, cortaining a large number of
uncoveredprefix lenghs. Insertirg a prefix hasa higher chane of adding a new prefix
length to the current seach tree, but it will alsoconfine the ne@ssay re-balarcing to a
smallsubset of prefixes. Therefore, we believe the simplest,yetstill very efficient, strategy
is to add amarker at the longestprefix length shorter than p's, pointing to p. If this should
degradethe worst-cae searchtime, or aryway after a large number of these insertians,
a baclground rehuild of the whole structure is ordered. The overall calcdation of the
optimal branching points in phase2 (Figure 21) is very expensice, O(NW?), far more
expersive than calculatirg theropesand insertirg theenties Table4. Justrecalculaing to
incorporatethechangesinducedby arouting updateis muchcheager, asonly the pathfrom
this ertry to the root needsto be updated,at most O(W*), giving a speedadwantage over
simperehuild of aroundthreeorders of magitude. Eventhough Rope Seachis optimized
to very closelyfit araund the prefix datatase,Rope Seach still kees enough flexibility to
quickly adaptto ary of thechanges of the datalase.

Table4. Build Speed Compaisors (Built from Trie)

Basic Rope Entries
Hash | Phase2 | Ropes | Hash
AADS 0.56s| 11.84s| 0.59s| 0.79s | 24218

Mae-East 1.82s| 14.10s| 0.85s| 1.69s | 38031
Mae-West | 0.58s 11.71s| 0.60s | 0.85s 23898

PAIX 0.09s 4.16s| 0.18s| 0.07s 5924
PacBell 0.48s| 11.04s| 0.57s| 0.73s | 22850
Mae-East

1996 1.14s| 13.08s| 0.75s| 1.12s | 33199

Thetimesin Table 4 weremeasued using conpletely unoptimized code on a 300 MHz
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UltraSparcdl. We would exped large improvemerts from optimizing the code. “Hash”
refersto building the hashtables,"Phase2” is phase2 of therope search “Ropes’ calcu
latesthe ropesand setsthe markers. Just adding or deletinga single ertry takesorders of
magnitudeslesstime.

6. MARKER PARTITIONING

The scheneintroducedbelaw, recusivemarker partitioning, significantly redwesthe cost
of marker updatesidentified as a problem above. It doesthis by requiring at most one
additional menory accesger ertire searchwherever the lastmatchin the searchwason
amaker. Usingrope searchon the examned datalasesan additional memory lookup is
requiredfor 2. .. 11% of theaddres®s, a negligible impact on the averag searchtime. Of
the seartiesthat require the idertified worst case of four stegs, only 0...2% requre an
additional fifth memory access.

Furthemore, prefix partitioning offersa tunabletradedf between the peralty incurred
for updatesandsearcles,which malkesit very conveniert for awide rarge of applications.

6.1 Basic Partitioning

To understandthe corcept and implications of patitioning, we startwith a single layer
of partitions. Assune an address spaceof 4 bits with addessesanging from 0 to 15,
inclusive. Thisspa@also contairs nine markers,labeleda1 to ¢3, asshavnin Figure 24(a).
For simgicity, the prefixesthenselvesare not shavn. Recallthateachmarker contains a
pointer to its BMP. This information requiresupdatewherever the closes covering prefix
is changed.

Assumethe prefix designatednew is inserted Traditional approadeswould require the
inset procedure to walk through all the markers coveredby new and corred their BMP,
taking upto N log W stegs. Marker partitioning groups these makers together. Assume
we had groupedmarkersa; to as in group a, makers by to b in b, ande; to c3 in c. Note
that the prefixesin the group are disjoint ard hence,we can store asingle overlapping BMP
pointer information for all of them insteadof at each of themindividually. Thus,in this
examge, we would rememter only threesud entries— one per group or pattition. This
improves the time required from updating eachertry to just modifying the information
comman to thegroup. In our examge above (Figure 24(a)), whenadding the new prefix,
we seethat it ertirely coversthe partitions a, b and ¢. Thus, our basicsctemeworks well
aslong asthe partition boundaries canbe chosen sothat no marker overlapsthemand the
new prefix covers entiregroups.

But when looking at one more examge in Figure 24(b), where partition A contairs
makersas, as, as, patition B cortainsby , bs, b3 and partition C contairscy , ¢2, c3. Cleaty,
the partition boundariesnow overlap. Although in this examge it is possible to find par-
titionings without overlaps, prefixes covering a large part of the addessspacewould
severely limit the allity to find enaugh pattitions. Thus, in the more gererd case,the
boundaries betweenthe splits are no longer well-defined there are overlaps. Becauseof
the nature of prefix-style ranges at most W distinctranges may ercloseary given paint.
This is alsotrue for the markers crossing boundary locatiors. So at eachboundary, we
could store the at most W markersthatoverap it ard teg against thesespecial casesndi-
vidudly whenadding or deletinga prefix like new. It turns out to be enaugh to store these
overlapping markersatonly asinge oneof the boundariesit crosses.This is erough, since
its BMP will only needto charge when a madification is done to an ertry covering our
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Fig.24. Marker partitioning explined

prefix.

For simplicity of the remairing explanatiansin this section it is asaimedthatit is pos-
sibleto split the prefixesin a non-overlagping fashion. Oneway to achieve that would be
to keepa sepratemarker partition for eachprefix lengh. Clearly, this sepaationwil | not
introduceary extra storage and the seachtime will be affectedby at most afacta of W.

Continuing our examge above (Figure 24(b)), whenadding the new prefix, we seethat
it ertirely coversthe partitions a, b andpartially coversc. For all the covered pattitions,
we updatethe pattitions’ BestMatch.Only for the pattially covered pattitions,we needto
process their individud elenments. The changesfor the BMP painters areoutlined in bald
in the Tade 5. The real value of the BMP pointer is the ently’s value,if it is set,or the
patition’s valueothemvise. If neither the ently nor the ently’s containing partition contain
ary information asis thecaseor c3, thepacketdoes nat mach a prefix (filter) atthislevel.

Gereralizing to p patitions of ¢ makersead, we cansee thatary prefix will cover at
most p partitions, requiring at mostp updates.

At mosttwo patitions canbe partially covered oneatthestart of the new prefix, oneat
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Tabe 5. Updaing BestMatching Preixes

Entry/Group | Old BMP | New BMP | Resuling
stared stored BMP

al — — new

ag — — newv

as —_ —_ new

a — new (N/A)

b1 as as as

ba — — new

bs b2 ba b2

b — new (N/A)

1 — new new

() — — —

c3 — — —

c — — (N/A)

theend. In asimple-mindedimplementatian, at most e entriesneedto be updaedin each
of the split partitions. If more than e/2 entiies require updating, insteadof updatingthe
mgority of entiesin this partition, it is alsopossibleto relalel the contairer andupdate
the minority to store the containeg’s original value. This rediwcesthe updateto at moste /2
per partially covered maiker, reaulting in aworst-casetotd of p + 2¢/2 = p 4 e updaes

As p * e waschosento be N, minimizing p + e resllts in p = e = v/N. Thus, the
optimal splitting solution is to split the databae into v/ N setsof /N ertries each. This
reducesupdatetime from O(N) to O(v/N) at the experse of at most a single additional
memory accessduring seach. This menory acess is nealedonly if the erntry does not
storeits own BMP value and we needto revertto checking the contairer's value

6.2 Dynamic Behavior

Insertionanddeletian of prefixesoftengoesaheadwith theinsertion or deletion of marlkers.
Overtime, the numberof elemerts per partition ard alsoin thetotal number of ertries, V,
will charge. Theimplicationsof these changesare discussedbelow. For readability, S will
beusedto representy/ N, the optimal numberof partitions andertries per partition.

The nave sdution of re-balarting the whae structure is to make all pattitions equal
sizeafter every chance to keepthembetween| S | ard [S]. This canbe doneby * shifting’
ertries through the list of partitions in O(.S) time. This breaksassom asthe number of
patitions needs to be changed when S crossesan integer boundary. Then O(S) entries
needto be shifted to the partition that is being createdor from the partition thatis being
destroyed, resultirg in O(N) entiies to be moved This obviously does not fit into our
bounded updatetime.

We needto be alde to createor destry a patition without touching more than O(S)
ertries. We thus introduce a deviation facta, d, which defines howv much the number
of partitions, p, andthe numbe of elenentsin each pattition, ¢;, may deviate from the
optimum, S. The smalleg value for d which allows to split a maximum-sized pattition
(size Sd) into two partitions nat below the minimum size S/d ard vice versais d = /2.
This value will alsosatisfy all otherconditions,aswe will see.

Until now, we have only triedto keepthe elemerts e; in eachpartition within thebounds
sethy S and d. As it turns out, this is satigactory to alsoforce the number of partitions p
within these bounds, sinee N/ mine; > S/d and N/ maxe; < Sd.
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Wherever a pattition growstoobig, it is splitinto two or distributessone of its conterts
acrossone or both of its neighbors, asillustratedin Figure 25. Corversely if anertry is
getting too smadl, it eitherborrows from one or both of its neighbors, or meigeswith a
suitally small neighbor. Cleaty, all theseoperations canbe done with touching at mast
Sd entriesard at most 3 partitions.

The split operatim is sufficient to keep the patitions from exceedirg their maxmum
size,sinceit can be done atary time. Keepng pattitionsfrom shrinking beyond the lower
limit requiresbothborrow (aslong as at leastone of the neighbors is still above the mini-
mum) and meige (assoon asone of themhasreachel the minimum).
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Fig. 25. DynamicOperdions

S crossing aninteger boundary may redult in all partitions to becane eithertoo big or
too smdl in one instart. Obviously, not all of themcan be sfit or meiged a the same
time without violating the O(.S) bound. Obseve tha there will be atleast2S + 1 further
insetionsor 25 — 1 deletimsuntil S crosseshe next boundary. Also obsene tha there
will be at most S/d maximum-sizedenties and Sd minimum-sizedertries reachirg the
boundaries® If we extendthe boundaiies by one on ead sidg ther is plerty of time to
perform the necesarysplitsor mergesone by one before the boundarieschange again.

Instead of being ‘retro-active’ with sgitting andjoining, it canalsobeimagnedto be
pro-active. Then, alwaysthe pattition furthest away from the optima valuewould try to
get closerto the optimum. This would make the updatesevenmore predctable,but at the
experseof always pefforming splitsor joins.

To sunmaize, with the new boundsof S/d — 1 to Sd + 1, eachinsertion or deletin
of anoderequiresatmost2(Sd + 1) updatesof BMP painters, moving Sd/2 ertriesto a
new patition, ard on boundary crossingSd + 1 checks for minimal size patitions. This
resuts in O(Sd) work, or with d chosena constart /2, O(S) = O(v/N). All further
explanatiors will consider d = /2. Alsg, sincewe have O(s) partitions, eachwith O(s)
pointers, the total amount of menory needel for the pattitionsis O (V).

6.3 Multiple Layers of Partitioning

We have shawvn that with a sinde layer of partitions, update conplexity canbe limited to
O(+v/N) with atmost a sinde additional memay accessluring seach.

It seens natural to extend this to more thanone layer of grouping andto sgit the par-
titions into sub-patitions and sub-sub-patitions, similar to a tree. Assune we definred a
treeof a layers(including the leaves) Eachof the layers would then contains = /N
ertries or subpartitions of the enclosedlayer. As will be shown below, the updae timeis

5If there are more than Sd/2 minimum-sizd entries, than someof them have to be right beside eech other.
Thena single mege will eliminat two of them. Therefore, there will beat mostSd/2 operaionsnecessay to
eliminatke all minimum-sized entries.
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then redwcedto O(a ¥/ N) atthe experseof upto o — 1 memay accesseto find the Best
Matchassociatedvith theinnermost cortainerlevel who hasit set.

Prefix updates At the outemost layer, at most sd contairers will be covered with at
mosttwo of thempartially. Thesetwo in turn will contain at mostsd entiesead, of
which at the most sd/2 needto beupdated andat most onefurthersgit partition. We
continuethis until the innermostlevel isfound, resuting in at most sd + (a — 1)2sd/2
charges,or O(s).

Splitting and Joining At ary onre level, the effort is s. In the worst case, « levels are
affected,giving O(sa).

Boundary Crossirg of s The number of insertions or ddetions betweenboundary cross-
ingsis (s + 1)* — s*, while the number of minimal-sizedpartitions is Z;’;f st =
(s*—s)/(s—1). Sothereis emoughtimeto amatize the necesary charges overtime
oneby one during operatimsthat do not themselhescause a split or join.

6.4 Further Improvements

For mary filter datatases it would make senseo choase o dynamically, basedon the real

number of entries. The total numbe of markers for maost databaes will be mucd less
then the worst case. If optimal seart time shauld be achieved with bounded worst-case
insetion, it seemsreasonable to reduce the pattition nestingdepth to matchtheworst-case
update. Often,thiswill reduce thenestingto asingde level or eveneliminateit.

7. FAST HASHING WITH BOUNDED COLLISIONS

Many agorithms are known for hashirg. Sincewe have mentionedasingle memay acess
per lookup, the numbe of cdlisionsneedto betightly bounded Onewell-known solution

is perfecthashirg [Frednanetal. 1984]. Unfortunately, truepeifecthashingrequiresena-

mousanountsof timeto build the hashtabesandalsorequrescomplex functionsto locate
the ertries. While perfecthashirg is a solution that satisfiesthe O(1) accessequiremant,

it is often impracticd. An improvement, dynanic perfect hashing [Dietzfelblinger et al.

1994], also actievesO(1) lookup time atamatizedcast of O(1) perinsetion, by having a
two-level hierarchy of randomly chosenhashing functions. Thus, it requrestwo menory

accesesper hashlookup, making it an attractive option.

With menory pricesdropping, memay cast is ho longer one of the main limiting facta
in routerdesign. Therebre, it is posdble to relaxthe hasling requiremerts. First, we no
longer erforce optimal compaction but allow for spase hashtables. This already greatly
reducesthe charcesfor collisions.

Secmd, we increasethe hashbucket size. With current DRAM techrologies, the cost
of arantdbm accesdo a sinde bit is almostindistinguishablefrom accestng mary bytes
seqentially. Modem CPUstake advartage of this ard aways read multiple consecutve
words,evenif only asinde byte is requesed The anount of memay fetchedperaccess,
calleda cache line, ranges from 128to 256 bitsin modem CPUs.This cacheline fetchirg
usto store a(small) number of ertriesin thesame hash budket, with no additional menory
acces peralty (recall that for most currert processrs, acces2o main menory is much
slower than accessto on-chip menory and cachesor instruction execttion.)

We have seen several key ingredents: randbmized hash functions (usually only asingle
parameteris variade), over-provisioning menory, ard allowing alimited number of colli-
siors, asboundedby the bucketsize. By combining these ingredentsinto a hashfunction,
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we were ableto achieve single memay aacesslookup with almast O(1) amatizedinser
tion time.

In our implemertatiors, we have beenusing several hash functions. Onegroup of func-
tions corsistsof non-parameric functions, eachone utilizing several cheap processr in-
strudionsto acheve datascmambing. Switching betweenthesefunctionsis achieved by
changng to aconmpletely new seart function, either by charging a function pointer or by
overwriting the existing function with the new ore.

The othergroup consids of asinge functionwhich canbeconfiguredby asinde param
eter using f (Key x Scambe) « BudketCount, where f is afunction retuming thefractional
pat, Key is thekey to behashedScramibe € (0... 1] isacorfigurabe scranbling param
eter and BucketCouwnt is the number of availade hashbuckets This function does not
require floating point andcanbe implemerted asfixedpoint arithmetic using integer oper-
atiors. Since multipli cationis geneally faston modernprocessass, calcuation of the hash
function can be hidden behind other operations. Knuth [Knuth 1998] recommends the
scranbling fador to be closeto the conjugated golden ratio ((v/5 — 1)/2). This function
itself givesa good tradeoff betweenthe collision rate and the additional allocatian space
needed

It is possble to put all the hashertries of all prefix lengths into one big hashtable, by
using just one more hit for the addressand settingthe first bit below the prefix length to
1. This reducesthe cdlision rate evenfurtherwith the sane total menory consunption.
Sincemultipli cationis considered costly in hardwvare,we alsoprovide a comparisonwith
a 32-bit Cyclic Redundarcy Check code (CRC-32, as usedin the ISO 3309 standrd,
in ITU recanmendation V.42, and the GZIP conpression program [Deusch 199]. In
Figure 26(b), a soft lowpass filter hasbeenapplied to increase readahility of the graph
eliminating sinde peaksof +1. Since only primesin steys of abaut 1000 apart are used
for the table sizes,thereis dways a prime hashtale sizeavailade neaby which fulfills
thelimit.

Dependng on the width of the available data path, it might thus be more efficient to
allow for more collisions, thus saving menory. Memory recquirementsare still modest.
A single hashtable entry for 32 bit lookups (IPv4) can be staed in aslittle as6 or 8
bytes,for the basicscremesor rope searchrespectively. All owing for five entriesper hash
bucket, the largestdatalase(MaeEast)will fit into 1.8to 2.4 megabytes. Allowing for six
cadlisions,it will fit into 0.9to 1.2 MB.

7.1 Causal Collision Resolution

As canbeseerfrom Figure 26, only very few entiies createcdlisions. If we could rediwce
cdlisionsfurther, epecially atthese few “hot spds”, we could optimize menory usag or
reduce the numberof operatiors or the datapathwidth. In this section we presenta tech
nigquecalled”Causd Collision Resoldion” (CCR), which allows usto reducecadllisions by
adapting the marker placenentandby relocating hash talle ertriesinto differert buckets.
We have seenthatthere areseveral degrees of freedan availablewhen defining the binary
search(sub-)trees for Asymmetric and Rope Seach (Section5.2.1), which help to move
makers.

Moving prefixesis also possibleby turning one prefix cdliding with other hashtable
ertries into two. Figure 27(a) illustratesthe expansion of a prefix from lengh [ to two
prefixesat! + 1, covering the sameset of addresses.This well-known operatian is possible
wheneverthel is not amarkerlevel for [+ 1 (otherwise,amarkerwith the same hashkey as
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the original prefix would beinsertedat, nullifying our efforts). Whenexpansiondoesnt
work, it is possibleto “contract” the prefix (Figure 27(b)). It is thenmovedto lengh ! — 1,
thus covering too large a range. By adding a prefix C' at [, complemerting the original
prefix within the exces$ve range at [ — 1, the rarge canbe correctal. C' storesthe original

BMP as®ciatedwith thatrangg.

The two binary searchtrees shown in Figure 27 are only for illu strative purposes. Ex-
pansionandcortraction alsowork with other treestructures. Whenother prefixesalread
exist at the newly createdentries, precalerce is natually given to the enties originat-
ing from longer prefix lengths. Expansionand cortraction canalso be gereralizedin a
straichtforward way to work on more than +1 prefix lengths.

o ©
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Fig. 27. CausaCollisonResoluion

In Figure 28 the number of bucketscorntaining the most collisions andthose cortaining
just oneentlty less are shavn. As can be seen for the vastmajority of hashtable config-
uratiors, only less thana handful of ertries definethe maximum bucket size. In almaost
hdf of the cass, it is a sinde entry. Even for the bucketswith one entry lessthanthe
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maximum size (Figure 28(b)), a nggligible amount of buckets(lessthanl per thousand for
most corfigurations) require that capacity.

Using causalcdllision resolution, it is possible to move one of the “surplus” ertriesin
the biggesthucketsto other buckets. This makesit possibleto shrink the bucket sizesby
one or two, redicing the existing modestmenory requrementsby up to afactorof two.

8. PERFORMANCE EVALUATION

Recolleting some of the datamentioned earlier we shav measued and expectedperfor-
mancefor our scheme

8.1 Marker Requirements

Although we have seenthataddng markers coud extend the number of entiies recuired
by afactorlog, W. In the typical case mary prefixeswill sharemarkers(Talde 6), redwc-
ing the marker storaye further Noticethe differerce between‘Max Markers’, the number
of makers requestedby the entiies, and “Effective Markers’, how many markers really
neededto beinserted, tharks to marker sharing In our sampe routing datalasestheadd-
tional storage requireddueto makerswasonly afractionof the databaseize. However, it
is eay to give aworst caseexampe where the storageneedsrequire O(log, W) markers
pe prefix. (Corsider N prefixeswhosefirst log, N bits areall distinctand whoseremain
ing hits areall 1’s). The numbers listed below are taking from “Plain Basic” scheme but
theamaunt of shaing is compamablewith otherschenes.

8.2 Complexity Comparison

Tale7 collectsthe (worst case) conplexity necesary for thedifferent scremesmertioned
here. Be aware tha thesecomplexity numbers do not sayarnything about theabsdute speed
or memoty usage.SeeSection2 for a comparisonbetweenthe schenes. For Radix Tries,
Badc Schene, Asymmetric Binary Searchand Rope SearchW is the number of distinct
lengths.Memary complexity is givenin W bit words.
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Table6. MarkerOverheadfor BackboneForwardng Tables

Total Basic Request for Max | Effective
Entries 0 1 2 3 | 4 | Markers | Markers
AADS 24218 | 2787 | 14767 | 4628 | 2036 | O 30131 9392
Mae-East 3803L | 1728 | 25363 | 7312 | 362 | 6 50877 13584
Mae-West 238®B | 3205 | 14303 | 4366 | 204 | O 29107 9151
PAIX 5924 823 3294 | 1266 541 | O 7449 3225
PacBdl 228%) | 2664 | 14154 | 4143 | 188 | O 28107 8806
Mae-Eastl996 | 331® | 4742 | 22505 | 3562 | 238 | 1 36800 8342
Table7. Spee andMemory Usage Complexity
[ Algorithm | Build | Seach | Memory | Updde
Binary Seach O(NlogN) | O(logN) O(N) O(N)
Trie O(NW) O(W) O(NW) O(W)
Radx Trie® O(NW) o(Ww) O(N) oWw)
Bast Schene O(NlogW) | O(logW) O(Nlog W) O(N)
or O(a + log W) O(a YNW log W)
AsymmeticBS | O(NlogW) | O(log W) O(N log W) O(N)
or O(a + log W) O(a YNW log W)
RopeSearch O(NW3) O(log W) O(NlogW)" | O(N)
or O(a + log W) O(a Y/NW log W)
Ternay CAMs | O(N) O(1)8 O(N) O(N)

8.3 Measurements for IPv4

Many measuemerts on realworld datahave alreadybeenincludedealier in thispgper. To
sunmaitize, we have shown thatwith modestmenory requirementsof lessthanamegabyte
ard simple hardware or software, it is possble to achieve fastbestmatchng prefix lookups
with at mast four menory aceses sane of themmayevenberesohedfrom cacte.

8.4 Projections for IP Version 6

Although thereoriginally were several proposalsfor IPv6 address assignnert principles,
theaggregatable global unicastaddressforma [Hindenetal. 1998] is atthevergeof beirg
deployed. All theseschemes helpto reducerouting information In the optimal case of a
strictly hierarchical ervironmert, it cango down to a handul of ertries. But with massve
growth of the Internettogether with theincreaing forcesfor connectivity to multiple ISPs
(“multi-homing”) and meshiry between the ISPs,we expect the routing tades to grow.
Anothe new featue of IPv6, AnycastaddessegHindenard Deering 1998; Deerirg ard
Hinden1998], may (depending on how paopular they will becorre) add avery largenumber
of hostroutesand other routeswith very long prefixes.

So most siteswill still have to cope with alarge number of routing entiies at different
prefix lenghs. There is likely to be more distinct prefix lengths, so the improvemerts
achievedby binary searchwill be similar or betterthanthoseachevedon IPv4.

For the array accessmprovemert shawvn in Section4.3.1, the improvement may not be
asdramatic asfor IPv4. Although it will improve performarce for IPv6, after length 16
(which hgppensto be a“magiclength” for theaggregatableglobd unicastaddressformat),
only asmallerpercenageof the addessspacewill have beencavered Only time will tell
whetherthis initial stepwil | be of advantagp. All otheroptimizations are expeded to yield
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similarimprovements.

9. CONCLUSIONS AND FUTURE WORK

We have desigred a new algaithm for best matching seach. The bestmatching prefix
problem has been around for twerty yearsin thearetical computer science; to the best
of our knowledge, the beg thearetical algorithms are basedon tries. While inefficient
algorithms basedon hashirg [Sklower 1993] were known, we have discorered anefficient
algorithm that scaleswith thelogarithm of the add-esssizeand sois closeto thetheaetical
limit of O(loglog N).

Our algorithm contairs bath intellectualand practicalcontributions. On the intell ectual
side, after the basic notion of binary seaching on hashtabes we found that we hadto
add markers andusepre-conputation to ensure logarithmic time in the worst-case.Algo-
rithmsthatonly usebinary seach of hashtades are unlikely to provide logarithmic time
in the worst case. Among our optimizations, we single out mutating binary treesas an
aesthécally pleasingidea that leveragesoff the extra structure inherentin our particuar
form of binary seart.

Ontheprectical side,we have a fast,scdable sdution for IP lookupsthat canbe imple-
mentedin either softwareor hardware reducing thenumberof expensive memay accesss
required considerbly. We expect most of the chaactersticsof this addressstructure to
strergthen in the future, espedlly with the transition to IPv6. Evenif our predictions,
based on the little evidence availabe today, shauld prove to be wrong, the overall per
formancecan easily be restrictedto that of the basic algorithm which aread/ performs
well.

We have dso shovn that updatesto our datastructure can be very simple, with a tight
bound araund the expecteal updateefforts. Furthernore, we have introduced causal colli-
sionresdution which exploits domainknowledge to simplify cadlision resoldion.

With algorithms suchasours andthatof others,we believe thatthere is no more reason
for router throughputs to be limited by the speedof their lookup ergine. We alsodo not
bdieve that hadware lookup engines are required becauseour algorithm canbe imple-
mentedin softwareandstill peform well. If processoispeels do not keepup with these
expedatiors, extremely affordablehardware(around US$100) enaltesforwardng speeds
of araund 250 Ghit/s, much fasterthanary singe transmittercancurrertly aclieve evenin
theresearchHabarataies. Therdore, we do naot believe thatthereis a compelling need for
protocol changesto avoid lookupsasproposedin Tagand IP Switching. Evenif thesepro-
tocol chargeswere aacepted fastlookup algarithms such asours arelikely to be needed
atseverd places throughout the network.

Our algaithm hasalrealy beensucces$ully included into the BBN multi-gigahit per
secom router[Partridgeetal. 1998], which can do the requred Interret paclet procesing
and forwarding dedsionsfor 10... 13 million packetsper secord using a sinde off-the-
shelf microprocessor Besides perfformancefor IPv6, our algarithm wasalsochosenasit
could naturdly and efficiently hande 64 bit wide prefixes(which occu while concaterat-
ing deginationand saurce addresseswhenforwardng IP multicastpackets).

A more chdlenging topic beyond prefix lookups is packet classification where multi-
dimensia prefix matctes have to be peformed, often combined with exact and rarge
maches.Many of the one-dimensioral lookup techiques(including the one descibedin
this paper) have beenused aslookups on individual fields,whoseresultsarethencombined
later [Gupta and McKeawn 1999; Srinivasanet al. 1998]. The main ideaof this paper
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namely working nontlinearly in the prefix lengh space,hasbeen directly genealizedto
multi-dimensioal padket classification schemes suchas tuple space seach [Srinivasan
etal. 1999] and line seach [Waldvogel 2000].

We believe thattrie-based and CAM-basedsctemeswill cortinue to dominatein IPv4-
basedproducts.However, the slow, but ongoing, trerd towards IPv6 will giveastrong edye
to schenesscalalte in terms of prefix lengths. Excep for tades whete path compresson
is very effective®, we believe that our algorithm will be betterthan trie-based algorithms
for IPv6 routers. Pehaps our algorithm wasadgotedin the BBN routerin anticipation of
suchatrend

For futurework, we areattenpting to fine-tune the algarithm andarelooking for other
applications. Thus we areworking to improve the update behavior of the hashfunctions
evenfurther, ard are studying the effectsof internal cachirg. We are alsotrying to optimize
the building and madification process. Our algorithm belangs to a classof agorithms
that speedup searchat the experse of insertion; besdes packet classfication, we believe
that our algarithm and its improvemerts may be apgdicablein other domairs besidesinter
net padet forwarding. Poteria apgications we are invedigating include memay man
agemen usingvatiable sizepages, accesgrotectionin object-oriented operating systems,
ard accesspemisson manayenentfor websenersand distributed file systerrs.
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