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Concepts in this Chapter

• Signal Classifications
• Band-Pass Signals and Systems
• Representations:

– Complex Envelope
– Base-Band Equivalent
– Discrete Base-Band Equivalent 
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Signal Classifications

! Continious Time / Discrete Time
" Analogue signals / Digital Signals (amplitude)

! Stochastic (random) / Deterministic signals
" For Deterrministic: finite energy / power defined. 

" Por Power Defined: periodic / non-Periodic

! Time Limited / Time Unlimited
" For Time Unlimited: Periodic / Non-Periodic

! Other Classifications:
" Real valued / Complex valued

" Even / Odd

" Hermitian / Anti-Hermitian
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Continuous & Discrete-Time Signals

• Continuous-Time Signals
– Most signals in the real world are 

continuous time, as the scale is 
infinitesimally fine.

– Eg voltage, velocity, 

– Denote by x(t), where the time interval 
may be bounded (finite) or infinite

• Discrete-Time Signals

x(t)

t

• Discrete-Time Signals
– Some real world and many digital 

signals are discrete time, as they are 
sampled

– E.g. pixels, daily stock price (anything 
that a digital computer processes)

– Denote by x[n], where n is an integer 
value that varies discretely

• Sampled continuous signal 
x[n] =x(nk) – k is sample time

x[n]

n
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Signal Properties 

• Periodic signals: 
– a signal is periodic if it repeats itself after a fixed period T, i.e. x(t) = x(t+T) for 

all t.  A sin(t) signal is periodic.

• Even and odd signals: 
– a signal is even if x(-t) = x(t) (i.e. it can be reflected in the axis at zero).  A 

signal is odd if x(-t) = -x(t).  Examples are cos(t) and sin(t) signals, 
respectively.

• Exponential and sinusoidal signals: 
– a signal is (real) exponential if it can be represented as x(t) = Ceat.  A signal is – a signal is (real) exponential if it can be represented as x(t) = Ceat.  A signal is 

(complex) exponential if it can be represented in the same form but C and a
are complex numbers.

• Step and pulse signals: 
– A pulse signal is one which is nearly completely zero, apart from a short spike, 

δ(t).  A step signal is zero up to a certain time, and then a constant value after 
that time, u(t).

• These properties define a large class of tractable, useful signals 
and will be further considered in the coming lectures
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Stochastic & Deterministic Signals
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Band-Limited Signals

• We claim a signal is band-limited if its power/energy spectral 
density is non-zero on a limited frequency-range

( ) BffS x ≤=    if   ,0

Ex 1
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Band-Limited Signals (II)

• A band limited signal is considered band-pass if its power/energy 
spectral density is confined into a limited frequency range 
(bandwidth) around a give central frequency

( )    if   ,0






+≤

−≤
=

Bff
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• However there are many  other band limited signals which their 
non-zero sepectrum is around DC – we call them low-pass signals  
(ex. human voice).
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Bilateral and Unilateral Spectrum

• Real-valued signals are known to have hermitian spectrum, i.e. the 
positive values of the spectrum are equal to the complex conjugates of 
their negative counterparts – the spectrum is symmetric. So, if the signal 
is known to be real-valued, we can plot both positive and negative 
frequencies (bilateral spectrum) or we can only plot positive frequencies 
(unilateral spectrum)
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Bilateral and Unilateral Spectrum

! Both bilateral and unilateral spectrum for real-value signals 
are equivalente, and provide exactly the same information. 

! If we use unilateral spectrum and we want to mantain the 
same overal power of the signal, we have to multiply by two 
the amplitude of the unilateral spectrum respect to the 
biliateral one. biliateral one. 

! Unilateral spectrum for complex-value signals do not make 
sense
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Transmission at Low Frequencies

! Some of the problems encountered when transmitting at low 
frequencies are:

! Electromagnetic devices may have sizes comparable to the 
wavelength, so it size will increase for low frequencies

! The noise and distortion for low frequencies usually is larger

! It is not possible to simultaneously transmit several signals by ! It is not possible to simultaneously transmit several signals by 
differentiating their central frequency (FDMA)

! Many electromagnetic channels stop low frequencies
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Transmission at High Frequencies

! On the other hand, transmission at high frequencies exhibit 
the following advantages:

! Smaller devices

! Better channels for transmission

! Lower level of noise and interferences

! Allowing simultaneous transmission of multiple signals in differente ! Allowing simultaneous transmission of multiple signals in differente 
frequencies (FDMA)
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From Baseband to Passband

! Baseband singal = original signal without any processing. 
" Spectrum of the signal as “it is”. Bandwidth ocuppied depending of 

the nature of the signal

! How can we transform the Spectrum of the signal without 
changing the information contained in it

Telecommunication Systems Fundamentals

16

f0-f0



Example of Digital System working with Baseband 
singals
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Example of Digital System working with Bandpass
signals
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Filtering

! Filtering concept
! Every transmission system includes one or more “Filters” that 

contribute to reject all out-of-band undesired signals, clearing the 
desired signal

! Filters are defined by their starting and ending passband frequencies, 
or equivalently their bandwidth and central frequency. 

! Ideal filters:
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Filtering (II)

! Actual filters
! Ideal filters can not implemented within finite impulse response. 

Actual approximations are used to approximate ideal response

! Filter types:
" Low-Pass

" High-Pass

" Band-Pass

" Band-Stop
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Equivalent Bandwidth for Actual Systems

! Example:

Is BandWidth (BW) = ∞?

! BW to first null:
" Ej.: BW = 1/T = 10KHz

( ) ( ) ( ) ( )
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! Noise Equivalent BW:
" Same power than ideal filter of BW

" Ex.: BW = 1/(2T) = 5KHz

! 3dB BW:
" G(f3dB) = G(0) / 2

" Ex.: BW = 4.5KHz
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Signal Representation

! We look for simple models to describe signals

! Requirements for the models:
! It must include all the valueable information of the signal – no 

information loss

! It should be as simplest as possible

! Example: to represent a straight line -> duple(point, slope)! Example: to represent a straight line -> duple(point, slope)

Telecommunication Systems Fundamentals

23



Phasors

! Assuming a Sin waveform:
! We only need to know: amplitude, frequency and phse

! Recall the Euler’s theorem:
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Phasors (II)

! Phasor’s description of a tone:

! The term between brackets can be understood as a vector that is 
spinning aroundspinning around

! The projection of the phasor over the real axis is the Sine wave

! Convections for Phasors:
! The angle/phase is measured respect the cosine 

! The amplitude is always considered positive
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Low Pass Equivalent: Objetive

! Low Pass Equivalent intends to be a representation of an 
actual signal that:
! Be equivalent -> contains the same information

! Low Pass -> it Power/Energy Spectral Density is low pass, i.e. centered 
around f=0

! Graphically! Graphically

! We start with the original signal

! Is there redundant info – Analytical Signal

! Now, we shift the spectrum towards f=0
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Starting Point: Band-Pass Signals

! Any band-pass signal centered around f0 can be re-writen as:

)2sin()()2cos()(

)2sin())(sin()()2cos())(cos()(

))(2cos()()(

00

00

0

tftxtftx

tfttAtfttA

ttftAtx

qi
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ππ

πφπφ

φπ

−=

=−=

=+=

" Where we get two components that are orthogonal to each other

" So, we define two components:
" In-Phase xi(t): which is the result of projecting x(t) over cosine carrier

" Quadrature xq(t): projection of x(t) over sine carrier
! Note that for mathematical neatness quadrature component appears with 

a (-) minus sign
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Starting Point: Band-Pass Signals (II)

)2sin()()2cos()()( 00 tftxtftxtx qi ππ −=

)(tx

)2cos( 0tfπ

Low Pass 
Filter

)(txi
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In-Phase and Quadrature Components

! It can be defined the complex valued signal z(t) as              
z(t) = xi(t) + j xq(t)

" Graphically we can think of this signals as two components in a 
complex plane

z t( )

" The complex signal is regarded as “Low Pass Equivalent” or 
“Complex Envelope”
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In-Phase and Quadrature Components (II)

! The “Low-Pass-Equivalent” or “Complex Envelope” 
approach allows to easily to the carrier instantaneous 

envelope/amplitude and carrier instantaneous phase:

φ t( )= arctan
xq t( )
x t( )
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A t( )= xq
2 t( )+ xi

2 t( )

xi t( )= A t( )cos φ t( )( )
xq t( )= A t( )sin φ t( )( )



Analytical Signal

! The analytical Signal associated to a real-valued signal, x(t), 
is to satisfy the following properties:

" Complex valued (# two components: real and imaginary axis).

" Real axis should coincide with real-valued signal , x(t)

" Its spectrum is null for negative values of frequencies" Its spectrum is null for negative values of frequencies

! So, the quadrature component has to be computed, such that:

" The quadrature component is to be the Hilbert Transform of the real 
valued signal
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Hilbert Transform

! It can be proven that by defining the quadrature component 
as

all the restrictions on the analytical singal are satisfied

! This signal is obtained as the Hilbert Transform of x(t)

ˆ x t( )=
1

πt
∗ x t( )

" In other words, from a real valued singal, a different real valued 
signal can be obtained using the Hilbert Transform and combination 
of both signals gives the analytical signal
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Hilbert Transform (II)

! Consequently, Hilbert Transform is defined as:

and therefore, in frequency domain, it is defined through the 
following frequency response:
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following frequency response:
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Hilbert Transform (III)

! Properties of the HT:
" It changes phase of signal, but it does not alter its module

" Any signal and its HT are orthogonal

" ( ) ( )txtx −=ˆ̂
( ) ( )txtx ˆ⊥

( ) 1· =− fsignj

" If x(t) is a band-pass signal and m(t) a low-pass one, and their 
spectrums do not overlap

! Well known HT pairs
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Analytical Signal (II)

! Given a real valued signal, x(t), which Power/Energy 
Spectral Density is defined by Sx(f ), the corresponding 
Anaylytical Signal has an spectrum defined by:

Sz f( )= 2Sx f( )U f( )

where U(f ) is the Fourier Transform of:

satisfying:
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Analytical Signal (III)

! Intuitively, the plot of the Power Spectral Density are:

x(t)

z(t) = x(t) + jˆ x (t)

! Analytical signal and HT have been proposed on previous slides for 
real valued signal. However they can be generalized for complex 
signals. 

" Generaly speaking, HT provides a 90º phase shifted version of the 
original signal
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Low-Pass Equivalent Signal

! From the Analytical Signal, what is missing to get the Low-
Pass Equivalent Signal?

" Frequency shift by f0 to the left

" In frequency domain that is to convolve the spectrum with                     

or, equivalently, to multiply by                  in the time domain 
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Recall of Complex Exponential Signal

• Euler’s rule:

– So, cosine and sine can be seen as the in-phase and 
quadrature components of the complex exponential

e j ωt +φ( ) = cos ωt + φ( )+ j sin ωt + φ( )

– Neat separation between amplitude and phase

Telecommunication Systems Fundamentals

38

cos ωt + φ( )

e j ωt +φ( )

sin ωt + φ( )



Recall of Complex Exponential Signal (II)

! The Power Spectral Density of the Complex Exponential 
signal has only a positive frequency contribution

e j 2πf0t +φ( )
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Recall of Complex Exponential Signal (III)

• Summarizing:
– A real valued sine signal can be seen as one of the 

components of a complex exponential signal

– A complex exponential is the natural extension of sine and 
cosine waves into the complex plane

– Complex exponentials allows us to easily separate phase and – Complex exponentials allows us to easily separate phase and 
amplitude in communication signals

– Positive Spectrum of a sine (pass-band) signal and complex 
exponential (analytical) match each other. 

– Complex exponential (analytical) has not power at negative 
frequencies, while sine signals (real valued) do
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Low-Pass Equivalent

• Band-Pass (Real Valued)

• Analytical Signal

)2sin()()2cos()()( 00 tftxtftxtx qi ππ −=

=+= txjtxtz )(ˆ)()(

• Low-Pass Equivalent
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In-Phase and Quadrature Modulation

• In a Band-Pass modulation, both components (In-Phase and 
Quadrature) can be modulated with independent information
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In-Phase and Quadrature Modulation (II)

ωo

s

)2sin()()2cos()()(ˆ
0102 tftmtftmtx ππ +=

$ The transmitted signal, x(t)
$ Is band-pass

$ Is real-valued

$ Transmits double information while 
it occupies the same bandwidth
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Channel’s Model

• We know that transmitted signals arrive to the receiver 
suffering some kinds of degradation
– Attenuation

– Delay

L

tx
ty

)(
)( =

)()( τ−= txty

– Noise

• From different sources

• Sometimes it can be modeled as Gaussian

– Time dispersion

• General concept of linear convolution
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Channel’s Model

• We have a general model for the channel :

( ) ( )tnthtxty +∗= )()(
CHANELTRANSMITER RECEIVER

)(tx )(th

)(tn

)(ty

• We can further simplify it by:
– Working with Base Band Equivalent

– Working on Discrete Time Equivalent by sampling signals 
and channel response, Ts.

# We get the Low-Pass Discrete Equivalent model

Telecommunication Systems Fundamentals

45



Low-Pass Discrete Equivalent Channel

• Assuming the signal and the channel response are 
band-pass 
– Signals can be expressed by their Low-Pass Equivalent 
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Low-Pass Discrete Equivalent Channel

• A Low-Pass Equivalent model for the overall 
transmitter-channel-receiver can be defined as in 
previous slide

CHANNEL
equivalent

RECEIVER

equivalent

TRANSMITTER
equivalent

• Where hb(t) is the low-pass equivalent of h(t)

– All these signals are band-limited, therefore they can be 
sampled following the Nyquist rule and there is not loss of 
information
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Low-Pass Discrete Equivalent Channel
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Low-Pass Discrete Equivalent Channel

• A model for the noise has to be added too
– The signals are complex and discrete # noise should be complex and 

discrete, with the same characteristics than a AWGN sampled process

• So, the Low-Pass Discrete Equivalent signal at the 

[ ] ( ) ( ) ( )000 ,02/,0·2/,0 NGNGjNGnw Comp→+→

• So, the Low-Pass Discrete Equivalent signal at the 
receiver is
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Summary of Concepts in this Chapter

• Any Band-Pass signal can be decomposed into its In-Phase 
and Quadrature components
– So, any Band-Pass signal can be decomposed into two 

orthogonal signals

– That can be easily separated at the receiver

– And they can be modulated independently (different info)

• The Low-Pass Equivalent of a real value signal is a complex 
signal:signal:
– Low-Pass equivalent does not provide information about the 

carrier frequency. It is supposed to be known

• All the above signal representation are of great value when 
analyzing communication signals and systems.

• A whole communications link can be analyzed using their 
Low-Pass Discrete Equivalent models for the transmitted 
signal, the channel, noise and for receiver. 
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