Technical Drawing

Lecture 4. Distances and angles

- Definition: is the length of the segment that joins both points.
- Aim: find the true length of the segment that joins both points.

- Definition: is the length of the segment that joins both points.
- Aim: find the true length of the segment that joins both points.

- Definition: is the length of the segment that joins both points.
- Aim: find the true length of the segment that joins both points.

- Definition: is the length of the segment that joins both points.
- Aim: find the true length of the segment that joins both points.

- Definition: is the length of the segment that joins both points.
- Aim: find the true length of the segment that joins both points.

- Definition: is the length of the segment that joins both points.
- Aim: find the true length of the segment that joins both points.

Difference in heights

Difference in depth

Difference in depth

Difference in depth

Distance between entities I

- Definition: is the minimum distance between the points of both elements.
 - Distance between a point and a line.
 - Distance between two parallel planes.
 - Distance between two parallel lines.
 - Distance between two crossing lines.

1. Plane $\alpha \perp$ to r and contains A

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane $\boldsymbol{\alpha}$

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane α

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane α

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane $\boldsymbol{\alpha}$

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane $\boldsymbol{\alpha}$

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane $\boldsymbol{\alpha}$

Lecture 4. Distances and angles

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane $\boldsymbol{\alpha}$

Lecture 4. Distances and angles

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane $\boldsymbol{\alpha}$

Lecture 4. Distances and angles

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane $\boldsymbol{\alpha}$

Lecture 4. Distances and angles

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane $\boldsymbol{\alpha}$

Lecture 4. Distances and angles

- 1. Plane $\alpha \perp$ to r and contains A
- 2. Intersection of line r with plane $\boldsymbol{\alpha}$

Lecture 4. Distances and angles

1. line r \bot to planes α and β

- 1. line $r \perp$ to planes α and β
- 2. Intersection between line r and planes α and β

- 1. line $r \perp$ to planes α and β
- 2. Intersection between line r and planes α and β

- 1. line $r \perp$ to planes α and β
- 2. Intersection between line r and planes α and β

- 1. line r \perp to planes α and β
- 2. Intersection between line r and planes α and β

- 1. line r \perp to planes α and β
- 2. Intersection between line r and planes α and β

- 1. line r \perp to planes α and β
- 2. Intersection between line r and planes α and β

- 1. line r \perp to planes α and β
- 2. Intersection between line r and planes α and β

- 1. line r \perp to planes α and β
- 2. Intersection between line r and planes α and β

- 1. line r \perp to planes α and β
- 2. Intersection between line r and planes α and β

Lecture 4. Distances and angles

- 1. line r \perp to planes α and β
- 2. Intersection between line r and planes α and β

Lecture 4. Distances and angles

1. Plane $\alpha \perp$ to lines r and s

- 1. Plane $\alpha \perp$ to lines r and s
- 2. Intersection between plane α and lines r and s

- 1. Plane $\alpha \perp$ to lines r and s
- 2. Intersection between plane α and lines r and s

Lecture 4. Distances and angles

- Draw line t//r passing through a point C that belongs to s
- 2. Find plane α that contains s & t and // to r

- Draw line t//r passing through a point C that belongs to s
- 2. Find plane α that contains s & t and // to r

Lecture 4. Distances and angles

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find $n \cap \alpha = E$
- 5. Draw a line p//r and passes through E

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E
- 5. Draw a line p//r and passes through E

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E
- 5. Draw a line p//r and passes through E

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E
- 5. Draw a line p//r and passes through E
- 6. Calculate p∩s =A

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find $n \cap \alpha = E$
- 5. Draw a line p//r and passes through E
- 6. Calculate p∩s =A

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E
- 5. Draw a line p//r and passes through E
- 6. Calculate p∩s =A

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find $n \cap \alpha = E$
- 5. Draw a line p//r and passes through E
- 6. Calculate p∩s =A
- 7. Draw m $\perp \alpha$ through A and find m \cap r =B

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E
- 5. Draw a line p//r and passes through E
- 6. Calculate p∩s =A
- 7. Draw m $\perp \alpha$ through A and find m \cap r =B

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E
- 5. Draw a line p//r and passes through E
- 6. Calculate p∩s =A
- 7. Draw m $\perp \alpha$ through A and find m \cap r =B

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E
- 5. Draw a line p//r and passes through E
- 6. Calculate p∩s =A
- 7. Draw m $\perp \alpha$ through A and find m \cap r =B

Lecture 4. Distances and angles

- 2. Find plane α that contains s & t and // to r
- 3. Draw n $\perp \alpha$ and cuts r at point D
- 4. Find n∩ α =E
- 5. Draw a line p//r and passes through E
- 6. Calculate p∩s =A
- 7. Draw m $\perp \alpha$ through A and find m \cap r =B

Lecture 4. Distances and angles

First method

- 1. Draw plane $\alpha \perp r$ and plane $\beta \perp s$.
- 2. Find the intersection of α and $\beta \Rightarrow$ line i.
- 3. Find plane γ defined by line r and line i'.
- 4. Find the traces of line s with plane $\gamma \Rightarrow$ point A.
- 5. Draw line // i' that passes through A.
- 6. Find intersection with $r \Rightarrow point B$.

- 1. Draw plane $\alpha \perp$ to line r and passes through point C.
- 2. Find orthogonal projection s_1 of the line s over plane α .
- 3. Draw a line \perp to s_1 and passes through C.
- 4. Find point D (intersection of the line with s_1).
- 5. Draw a line // to line r and passes through D.
- 6. Find the point of intersection A.

Third method

- 1. Draw line r' // to line r and passes through a point on line s.
- 2. Find plane α that contains line r' and line s.
- 3. Find the orthogonal projection of r over the plane $\alpha \Rightarrow r_1$.
- 4. Find the intersection of line r_1 with line $s \Rightarrow A$.
- 5. Find the line \perp to plane α that passes through point A.
- 6. Find the intersection with line $r \Rightarrow B$.

Lecture 4. Distances and angles

Lecture 4. Distances and angles

Lecture 4. Distances and angles

Lecture 4. Distances and angles

Lecture 4. Distances and angles

Construction of angles I

- For the construction of geometric elements that have a certain angle with other elements that are already given, it is very useful to construct a regular cone.
- The generatrix lines of a regular cone have the same angle with respect to its base.

Construction of angles II

 $f \Box$ Construction of lines and planes that form a certain angle θ with the horizontal plane and passes through point V.

Construction of angles II

 $lue{}$ Construction of lines and planes that form a certain angle θ with the horizontal plane and passes through point V.

Lecture 4. Distances and angles

Lecture 4. Distances and angles

Lecture 4. Distances and angles

Lecture 4. Distances and angles