

GRADO EN MATEMÁTICAS

PROBABILIDAD

TEMA 1

EXPERIMENTOS ALEATORIOS

Sonia Hernández Alonso Área de Estadística e Investigación Operativa (URJC)

URJC

Introducción

- El azar está muy presente en nuestras vidas, y el lenguaje cotidiano incluye expresiones como *como probable*, *muy verosimil* o *bastante incierto*, que responden a tales preguntas de una forma cualitativa.
- Sin embargo, en muchas ocasiones, este tipo de respuestas resultan insuficientes, necesitamos cuantificar tales juicios.
- La teoría de la probabilidad es la disciplina científica que estudia los fenómenos que están sujetos a algún grado de incertidumbre, es decir, cualquier situación en la que interviene el azar.
- Constituye la base sobre la que se contruye la estadística, ya que proporciona herramientas para modelizar poblaciones, experimentos, y en general cualquier fenómeno en el que intervenga el azar.

Esquema

- Experimentos aleatorios y espacios muestrales.
- Sucesos aleatorios.
- Operaciones con sucesos aleatorios.
- Breve repaso de combinatoria.
- Extensión de unión e intersección a una cantidad infinita de sucesos.
- \bullet σ -álgebras: definición y propiedades.
- lacktriangle Mínima σ -álgebra sobre una colección de sucesos.
- ¿Qué es la probabilidad? Diferentes enfoques para interpretarla.
- Definición axiomática de probabilidad (Kolmogorov, 1933).
- Propiedades de la probabilidad.

Experimentos aleatorios,

y espacios muestrales

Experimentos aleatorios

- El objetivo de la probabilidad es es extraer conclusiones sobre experimentos en los que **interviene el azar**.
- Definición: Un experimento aleatorio es cualquier fenómeno para el cual, aunque todos sus posibles resultados sean conocidos a priori, no es posible predecir con antelación cúal de ellos va a ocurrir.
- Es común contraponer los experimentos aleatorios a los fenómenos deterministas, que son aquellos en los que de antemano se conoce con certeza cuál va a ser su resultado
- Al repetir bajo las mismas condiciones un experimento determinista, el resultado que se obtiene es siempre es el mismo.
 - Sin embargo, distintas repeticiones de un experimento aleatorio pueden tener diferentes resultados.

URJC

Espacio muestral

- El primer paso para estudiar un experimento aleatorio es registrar los resultados que pueden aparecer.
- Definición: El espacio muestral de un experimento aleatorio es el conjunto de todos sus posible resultados.
- **Notación:** Denotaremos el espacio muestral mediante la letra Ω .

Las letras S y E también se utilizan con frecuencia para denotar el espacio muestral.

Espacios muestrales: ejercicio

Ejercicio 1: Determinar el espacio muestral de los siguientes experimentos aleatorios, e indicar el cardinal de cada uno de ellos:

- 1. Ganador del gordo de la lotería de navidad de este año
- 2. Lanzamiento de una moneda
- 3. Lanzamiento de una moneda dos (/tres/n) veces consecutivas
- 4. Lanzamiento simultáneo de dos monedas iguales
- 5. Lanzamiento simultáneo de n monedas iguales
- 6. Extracción de n cartas de una baraja española
- 7. Lanzamiento de una moneda hasta obtener una cara
- 8. Proporción de votantes de *Podemos* en un municipio escogido al azar
- 9. Tiempo que transcurre entre la llegada de dos e-mails a un servidor

Cardinal de los espacios muestrales

- En el ejercicio anterior puede apreciarse que hay experimentos aleatorios que tienen espacios muestrales con un número de elementos **finito** (apartados 1 a 6) y otros en los que el cardinal e Ω es infinito (apartados 7, 8 y 9).
- Pero además observamos que hay una diferencia evidente entre el cardinal del espacio muestral de apartado 7 con respecto al de los apartados 8 y 9.

En el primer caso (apartado 7) el número de elementos de Ω es **infinto numerable**, mientras que en los dos últimos casos (apartados 8 y 9) es **no numerable**.

- A los conjuntos numerables se les llama también conjuntos **contables**. Su cardinal, que coincide, por ejemplo, con el cardinal de \mathbb{N} , de \mathbb{Z} o de \mathbb{Q} , se denota \aleph_0 , que es el
- El cardinal de los conjuntos no numerables es superior a \aleph_0 . El número de elementos de $\mathbb R$ se denota \aleph_1 , y coincide, por ejemplo, con el cardinal de cualquier intervalo (a,b) con a < b.

Espacios muestrales: ejercicio

■ **Ejercicio 2:** En una fábrica se inspeccionan las probetas producidas y se clasifican como "defectuosas" (D) o "no defectuosas" (N).

La inspección de probetas continúa hasta llegar a la primera que es defectuosa.

- 1. ¿Cuál es el espacio muestral para este experimento? ¿Cuántos elementos tiene?
- 2. Escribir los elementos del suceso A=" la primera probeta defectuosa aparece antes de la sexta inspección"
- 3. Sea B=" la primera probeta defectuosa aparece en una inspección cuyo orden de numeración es par".

Escribir los elementos del suceso $A \cap B$.

resolución:.....pizarra

Sucesos aleatorios

URJC

Sucesos aleatorios

■ Un suceso aleatorio o evento aleatorio es cualquier subconjunto del espacio muestral Ω , es decir, cualquiera de las cosas que puede suceder (o no suceder) al realizar un experimento aleatorio:

A es un suceso aleatorio $\equiv A \subset \Omega$ (definición provisional).

- Nótese que, los sucesos aleatorios, como conjuntos que son, se denotan con letras mayúsculas.
- Un suceso A ocurre si el resultado del experimento aleatorio es alguno de los elementos de A.

Algunos tipos de sucesos aleatorios

- Los sucesos aleatorios pueden contener uno o varios de los resultados posibles del experimento.
- A los sucesos que tienen un único elemento se les da el nombre de sucesos elementales.
- El **suceso seguro** es el suceso que siempre ocurre.
 - Puesto que, por definición de suceso, el suceso seguro debe estar incluido en el espacio muestral, el suceso seguro coincide con Ω .
- El **suceso imposible** es aquel que nunca se verifica como resultado del experimento.
 - Dado que, de nuevo por la definición de suceso, el suceso imposible debe estar incluido en el espacio muestral, el suceso imposible coincide con el conjunto vacio, \emptyset .

Operaciones con sucesos aleatorios

Complementario de un suceso aleatorio

■ Dado un evento $A \subset \Omega$, el suceso no ocurre A está formado por los resultados que no pertenecen a A, y recibe el nombre de **suceso complementario** o suceso contrario de A.

Se denota por A^c o por \overline{A} :

$$A^c = \{ \omega \in \Omega : \omega \notin A \}.$$

■ Ejercicio 3: Demostrar que $(A^c)^c = A$.

<u>resolución</u>:.....pizarra

■ Ejercicio 4: Consideremos el espacio muestral $\Omega = \mathbb{R}^+$, y los sucesos

$$A = (7, 10],$$

 $B = [8, 15],$
 $C = \{7, 9, 11, 13\}.$

Determinar A^c, B^c y C^c .

resolución:.....pizarra

Operaciones básicas con sucesos aleatorios

- Dados dos eventos $A, B \subset \Omega$:
 - La **unión** de A y B, $A \cup B$, es el suceso A **o** B es decir, el evento que se verifica cuando ocurre al menos uno de los dos sucesos:

$$A \cup B = \{ \omega \in \Omega : \omega \in A \ ó\omega \in B \}.$$

Si ocurre $A \cup B$, o bien ocurre A o bien ocurre B, incluyendo la posibilidad de que ocurran ambos.

• La **intersección** A y B, $A \cap B$, es el suceso A y B es decir, el evento que se verifica cuando ocurren ambos sucesos al mismo tiempo:

$$A \cap B = \{ \omega \in \Omega : \omega \in A \text{ y además } \omega \in B \}.$$

Si ocurre $A \cap B$, ocurren tanto A como B.

■ Ejercicio 5: Consideremos el espacio muestral $\Omega = \mathbb{R}^+$, y los sucesos

$$A = (7, 10],$$
 $B = [8, 15],$ $C = \{7, 9, 11, 13\}.$

 $\text{Determinar } A \cup B, A \cup C, B \cup C, A \cap B, A \cap C, B \cap C, A^c \cup B, A^c \cap B \text{ y } C^c \cap C.$

resolución:.....pizarra

URJC

Sucesos incompatibles

■ **Definición**: Dados $A, B \subset \Omega$, se dice que son **sucesos incompatibles** si no tienen ningun elemento en común, es decir, si son conjuntos **disjuntos** (o mutuamente excluyentes).

$$A, B$$
 incompatibles $\equiv A \cap B = \emptyset$

Si dos sucesos son incompatibles, no pueden suceder ambos al mismo tiempo.

Propiedades de las operaciones con sucesos

- Dados los sucesos $A, B, C \subset \Omega$, se verifican las siguientes propiedades:
 - Conmutativas:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Asociativas:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

• Distributivas:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Leyes de Morgan

■ Dados sos sucesos $A, B \subset \Omega$, se verifica

1)
$$(A \cup B)^c = A^c \cap B^c$$

$$2) (A \cap B)^c = A^c \cup B^c$$

<u>demostración</u>:.....pizarra

Otras operaciones con sucesos aleatorios

■ La **diferencia** de A y B, que se denota A - B o $A \setminus B$, es el evento que se verifica cuando ocurre A pero no ocurre B:

$$A \setminus B = A - B = \{ \omega \in \Omega : \omega \in A \text{ y además } \omega \notin B \} = A \cap B^c.$$

■ La **diferencia simétrica** de A y B, que se denota $A \triangle B$, es el suceso que se verifica cuando o bien ocurre solamente A, o bien ocurre sólamente B.

$$A\triangle B=(A\backslash B)\cup (B\backslash A)=(A\cup B)\setminus (B\cap A)$$
.

■ Ejercicio 6: Consideremos el espacio muestral $\Omega = \mathbb{R}^+$, y los sucesos

$$A = (7, 10],$$

 $B = [8, 15],$
 $C = \{7, 9, 11, 13\}.$

Determinar $A \setminus B$, $B \setminus A$, $B \setminus C$ y $B \triangle C$.

resolución:.....pizarra

Operaciones con sucesos: ejercicio

- **Ejercicio 7:** Dados tres sucesos A, B y C, escribir expresiones conjuntistas para los siguientes eventos:
 - 1. Sólo ocurre A.
 - 2. Al menos dos sucesos entre A, B y C ocurren.
 - 3. Sólo un suceso de los tres ocurre.
 - 4. Ninguno de los tres ocurre.

Breve repaso de combinatoria

Ejercicio 8: repasando un poco como se cuenta

- ¿Cuántos números capicúas de 5 dígitos existen?
- Con 3 mujeres y 5 varones:
 - 1. ¿Cuántos tríos que tengan dos personas del mismo sexo se pueden formar?
 - 2. ¿Cuántas filas de 8 personas se pueden formar si las mujeres no pueden ocupar ni el primer ni el último lugar?
 - 3. ¿Cuántas filas de 7 personas se pueden formar si personas del mismo sexo no pueden ocupar lugares consecutivos?
- El alfabeto español consta de 24 consonantes y 5 vocales.

Calcular la cantidad de palabras con cuatro consonantes distintas y tres vocales diferentes que es posible formar (admitiendo todas las palabras, aunque no tengan significado y/o sean impronunciables).

Ejercicio 8 (continuación)

- ¿Cuántas palabras diferentes se pueden construir utilizando **todas** las letras de la palabra '**statistics**'?
- ¿Cuántos caracteres se pueden formar con los puntos y rayas del alfabeto Morse, si en cada uno entran hasta 4 de tales elementos?
- ¿De cuántas maneras pueden alinearse 10 personas, si 3 de ellas deben estar juntas?

Extensión de unión e intersección

a una cantidad infinita de sucesos

Uniones e intersecciones de infinitos conjuntos

- Las operaciones de unión e intersección se pueden extender a una colección infinita de sucesos.
- lacktriangle Dada una sucesión de sub-conjuntos de Ω , $\{A_n\}_{n\in\mathbb{N}}$,

$$\bigcup_{n=1}^{\infty} A_n = \{x \in \Omega : x \in A_n \text{ para algún } n \in \mathbb{N}\}$$

$$\bigcap_{n=1}^{\infty} A_n = \{x \in \Omega : x \in A_n \text{ para todo } n \in \mathbb{N}\}$$

$$\bigcap_{n=1}^{\infty} A_n = \{x \in \Omega : x \in A_n \text{ para todo } n \in \mathbb{N}\}$$

■ Ejercicio 9: Sea $\Omega = \mathbb{R}$, y definamos, para cada $n \in \mathbb{N}$, el suceso

$$A_n = \left[\frac{1}{n}, 1\right]$$

Calcular
$$\bigcup_{n=1}^{\infty} A_n$$
 y $\bigcap_{n=1}^{\infty} A_n$.

resolución:.....pizarra

Ejercicio: uniones e intersecciones infinitas

■ **Ejercicio 9*:** Consideremos el espacio muestral $\Omega = [7, 10]$, y la sucesión de conjuntos

$$H_n = \left[7 + \frac{1}{n}, 9 + \frac{1}{n}\right],$$

para $n \in \mathbb{N}$.

Calcular

$$\bullet \bigcup_{n=1}^{\infty} H_n$$

$$\bullet \bigcap_{n=1}^{\infty} H_n$$

$$\bullet \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} H_k$$

Uniones e intersecciones no numerables

- La unión e intersección también pueden definirse para una cantidad no numerable de sucesos.
- Ejercicio 10: Sea $\Omega = \mathbb{R}$, y consideremos, para cada $a \in \mathbb{R}$, el intervalo

$$B_a = [0, a]$$

Calcular
$$\bigcup_{a \in \mathbb{R}^+} B_a$$
 y $\bigcap_{a \in \mathbb{R}^+} B_a$.

Ejercicio: uniones e intersecciones infinitas

■ **Ejercicio 11:** Consideremos un juego al que, al menos de forma teórica, es posible jugar infinitas veces, y llamemos τ a cualquiera de sus posibles resultados.

Para cada $i \in \mathbb{N}$ definimos el suceso

 $A_i =$ en la i-ésima jugada ocurre el resultado τ .

Definimos además el evento

B= el resultado au sólo ocurre en un número finito de jugadas.

Utilizando las operaciones básicas de conjuntos, (uniones, intersecciones y complemantaciones), expresar el suceso B en función de la sucesión de conjuntos $\{A_i\}_{i\in\mathbb{N}}$.

σ -álgebras: definición y propiedades

Definición de σ -álgebra (sigma-álgebra)

■ Definición: Sean Ω un espacio muestral y \mathscr{A} una colección de subconjuntos de Ω ($\mathscr{A} \subset \mathcal{P}(\Omega)$).

Se dice que \mathscr{A} es una sigma-álgebra sobre Ω si verifica las siguientes propiedades:

- i) $\Omega \in \mathscr{A}$
- ii) Si $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$

iii) Si
$$\{A_n\}_{n\in\mathbb{N}}\in\mathscr{A} \Rightarrow \bigcup_{n=1}^{\infty} A_n\in\mathscr{A}$$

- Es decir, una σ -álgebra es una colección de subconjuntos de Ω que contiene al suceso seguro y es cerrada bajo complementación y uniones numerables.
- Sobre un mismo espacio muestral Ω pueden definirse diferentes σ -álgebras.

Ejemplos de σ -álgebras para lanzamiento dado

- Consideremos el experimento aleatorio consistente en lanzar un dado, cuyo espacio muestral es $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- Sobre este espacio muestral podemos definir varias σ -álgebras, como por ejemplo:
 - 1. $\mathscr{A}_1 = \{\emptyset, \Omega\}$ (σ -álgebra trivial)
 - 2. $\mathscr{A}_2 = \{\emptyset, \{1,2\}, \{3,4,5,6\}, \Omega\}$
 - 3. $\mathscr{A}_3 = \mathcal{P}(\Omega)$ (mayor σ -álgebra sobre Ω)

■ **Ejercicio 12:** Comprobar que \mathscr{A}_1 , \mathscr{A}_2 y \mathscr{A}_3 son, efectivamente, σ -álgebras sobre Ω , y proponer otra σ -álgebra sobre este mismo espacio muestral.

resolución:.....pizarra

Propiedades de las σ -álgebras

■ Proposición 1: Sean Ω un espacio muestral, y \mathscr{A} una σ -álgebra sobre Ω .

Entonces:

1.
$$\emptyset \in \mathscr{A}$$

2. Si
$$\{A_n\}_{n\in\mathbb{N}}\in\mathscr{A}\Rightarrow\bigcap_{n=1}^{\infty}A_n\in\mathscr{A}$$

demostración:.....pizarra

■ Nótese que el segundo apartado de esta proposición establece que las σ -álgebras también son cerradas bajo intersecciones numerables.

Más propiedades de las σ -álgebras

■ Proposición 2: Sean Ω un espacio muestral, y \mathscr{A} una σ -álgebra sobre Ω .

Entonces:

1. Si
$$A, B \in \mathscr{A} \Rightarrow A \setminus B \in \mathscr{A}$$
.

2. Si
$$A, B \in \mathscr{A} \Rightarrow A \triangle B \in \mathscr{A}$$
.

demostración:.....pizarra

■ Esta proposición establece que las σ -álgebras también son cerradas bajo diferencias y diferencias simétricas.

Intersección de σ -álgebras

■ Proposición 3: Sean \mathscr{A} y \mathscr{A}^* dos σ -álgebras de conjuntos sobre un mismo espacio muestral Ω .

Entonces $\mathscr{A} \cap \mathscr{A}^*$ es también una σ -álgebra sobre Ω .

<u>demostración</u>:.....pizarra

Mínima σ -álgebra

sobre una colección de sucesos

σ -álgebra generada por una colección de sucesos $\mathscr C$

 \blacksquare Consideremos un espacio muestral Ω y una colección de subconjuntos del mismo, $\mathscr{C} \subset \mathcal{P}(\Omega)$.

Definición:

La σ -álgebra generada por \mathscr{C} es la colección de sucesos

$$\sigma(\mathscr{C}) = \bigcap \{ \mathscr{A} : \mathscr{A} \text{ es } \sigma\text{-\'algebra y } \mathscr{C} \subset \mathscr{A} \}$$

- A $\sigma(\mathscr{C})$ también se le da el nombre de **mínima** σ -álgebra sobre \mathscr{C} .
- **Ejercicio 13:** Dado un espacio muestral Ω , consideremos dos sucesos incompatibles, $A, B \subset \Omega$ con $A \cap B = \emptyset$, y sea $\mathscr{C} = \{A, B\}$.

Determinar cuál es la σ -álgebra generada por \mathscr{C} , es decir, $\sigma(\mathscr{C})$.

resolución:.....pizarra

Algunas propiedades de la mínima σ -álgebra

■ Ejercicio 13*: Dado el espacio muestral $\Omega = \{x, y, z, t\}$ consideremos la colección de subconjuntos $\mathscr{C} = \{\{x\}, \{x, z\}\}.$

Determinar cuál es la σ -álgebra generada por \mathscr{C} , es decir, $\sigma(\mathscr{C})$.

resolución:.....pizarra

- Observemos que:
 - Si \mathscr{C}_1 y \mathscr{C}_2 son dos colecciones de subconjuntos de Ω tales que

$$\mathscr{C}_1 \subset \mathscr{C}_2$$
,

entonces

$$\sigma(\mathscr{C}_1) \subset \sigma(\mathscr{C}_2).$$

• Si \mathscr{A} es una σ -álgebra entonces

$$\sigma(\mathscr{A}) = \mathscr{A}.$$

La σ -álgebra de Borel

URJC

- En el **Tema 3** analizaremos con detenimiento una σ -álbebra fundamental en cálculo de probabilidades: la denominada **sigma-álgebra de Borel**. Por el momento nos limirtaremos a definirla.
- Consideremos la colección de todos los intervalos abiertos (a,b) de \mathbb{R} con a < b.
- A la mínima σ -álgebra sobre esta colección de conjuntos se le da el nombre de σ -álgebra de Borel, y se denota por $\mathcal{B}(\mathbb{R})$, o simplemente por \mathcal{B} :

$$\mathcal{B} = \mathcal{B}(\mathbb{R}) = \sigma \{ (a, b) \subset \mathbb{R} : a \leq b \}$$

- lacktriangle A los elementos de $\mathcal B$ se les llama **borelianos**, conjuntos de Borel, o conjuntos Borel-medibles.
- Como veremos en el **Tema 3** hay formas equivalentes de deinir la sigma-álgebra de Borel.

¿Qué es la probabilidad?

Diferentes enfoques para interpretarla

Introducción a la definición de probabilidad

- Para estudiar los fenómenos aleatorios trataremos de dar valores numéricos la "posibilidad" de que ocurra cada suceso.
- Las probabilidades se miden en una escala de 0 a 1.
- Así, sucesos con probabilidad 0 serán sucesos imposibles, mientras que sucesos con probabilidad 1 serán sucesos seguros (que ocurrirán con certeza).
- Todos los eventos aleatorios tendrán una probabilidad entre 0 y 1, de manera que cuanto mayor es su posibilidad de ocurrencia, mayor es su probabilidad.
- Antes de definir formalmente la probabilidad, comentaremos diferentes formas de interpretarla.
- Existen distintas filosofías que, aunque no son relevantes para el cálculo de probabilidades propiamente dicho, sí lo son en inferencia estadística.

Interpretación clásica de las probabilidades

- En muchas ocasiones, por razones de simetría física o lógica, todos los posibles resultados de un experimento resultan ser igualmente verosímiles.
- lacktriangle En estos casos podemos calcular la probabilidad de cualquier suceso aleatorio A mediante la **regla de Laplace**:

$$P(A) = \frac{\text{número de casos favorables a } A}{\text{número de casos posibles}}$$

- Este enfoque es muy común en experimentos aleatorios que tienen que ver con juegos de azar.
- Limitaciones del enfoque clásico: en muchas ocasiones, los sucesos no son equiprobables, y este concepto de probabilidad no es aplicable.

Por ejemplo, este enfoque no sirve para calcular la probabilidad de que mi equipo gane la liga.

Interpretación frecuentista de las probabilidades

- Otra aproximación al concepto de probabilidad es el enfoque frecuentista, que resulta muy útil para experimentos que se pueden repetir indefinidamente bajo condiciones similares.
- En tales casos, se observa que, a medida que aumenta el número de repeticiones, las frecuencias relativas con las que un suceso A ocurre, tienden a estabilizarse alrededor de una cantidad.
- Este valor límite puede interpretarse como la probabilidad de que ocurra el suceso A.
- Más concretamente: supongamos que un suceso A ocurre n_A veces en n repeticiones del experimento. Entonces puede definirse:

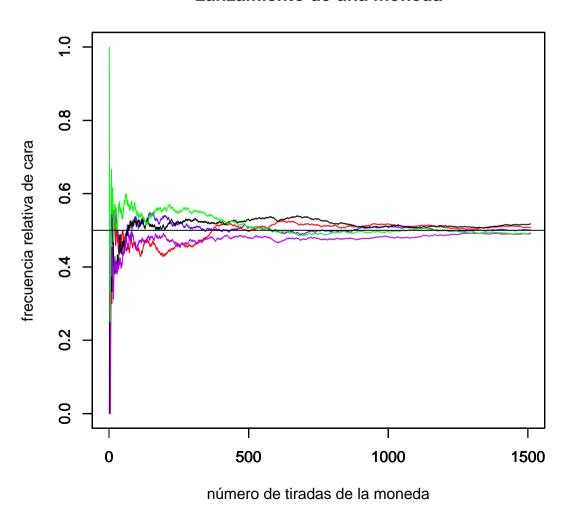
$$P(A) = \lim_{n \to \infty} \frac{n_A}{n},$$

siempre y cuando dicho límite exista.

Ejemplo: interpretación frecuentista

■ El siguiente gráfico representa la evolución de la frecuencia relativa de las caras obtenidas en lanzamientos sucesivos de una moneda:

Lanzamiento de una moneda



Limitaciones de la interpretación frecuentista

- En la práctica no puede repetirse un experimento un número infinito de veces, sino que, en el mejor de los casos, se pueden realizar un número grande de repeticiones.
- Por ejemplo, si se lanza un dado 10000 veces y se obtiene 1510 veces el 6, tiene sentido decir que la probabilidad de obtener 6 al lanzar ese dado es aproximadamente 0,151.
- Sin embargo, cuando el número de repeticiones es pequeño, carece de sentido emplear este razonamiento.
- Así por ejemplo, si se lanza un dado en cinco ocasiones y no aparece ningún 4, no debe concluirse que la probabilidad de que aparezca un 4 en la próxima tirada es 0/5 = 0.
- Y además, en muchos casos, no es posible repetir el experimento muchas veces (o no es recomendable).
- Por ejemplo, no se puede (o **no se debe**) estimar la probabilidad de morir jugando a la ruleta rusa repitiendo muchas veces el experimento.

Interpretación subjetiva de las probabilidades

- Según este enfoque, conocido como bayesiano, la probabilidad es una medida del grado de creencia que tiene una persona sobre la ocurrencia de un suceso en un momento concreto.
- Una de las principales ventajas de este planteamiento es que permite que las probabilidades se vayan actualizando al recibirse nueva información.
- De acuerdo a este planteamiento, la probabilidad de un suceso se define como una medida del grado de creencia que tiene una persona, en un momento dado, sobre la ocurrencia del suceso.
- El principal inconveniente de este enfoque es su falta de objetividad.

Pero, ¿cómo se define formalmente la probabilidad?

- Al margen de estos tres enfoques o interpretaciones, desde un punto de vista matemático, se precisa una definición formal de probabilidad.
- La definición que se utiliza hoy en día está basada en tres axiomas que fueron propuestos por el matemático ruso Andréi Kolmogórov en el año 1933.

Definición axiomática de probabilidad

(Kolmogorov, 1933)

URJC

Espacios probabilizables

lacktriangle Sea Ω un espacio muestral y $\mathscr A$ una σ -álgebra sobre Ω .

Definición:

El par (Ω, \mathscr{A}) recibe el mombre de **espacio probabilizable**.

URJC

Definición axiomática de probabilidad

- Sea (Ω, \mathscr{A}) un espacio probabilizable.
- Definición: (axiómatica de Kolmogorov)

Se dice que una función $P: \mathscr{A} \to \mathbb{R}$ es una **probabilidad** sobre (Ω, \mathscr{A}) si verifica las siguientes propiedades:

- i) $P(A) \geq 0$ para cualquier suceso $A \in \mathcal{A}$.
- ii) $P(\Omega) = 1$
- iii) Si $\{A_n\}_{n\in\mathbb{N}}\subset\Omega$ son sucesos incompatibles dos a dos, es decir, si

$$A_i \cap A_j = \emptyset$$
 para cualquier $i \neq j$,

entonces

$$P\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}P(A_n).$$

■ La terna (Ω, \mathcal{A}, P) recibe el nombre de **espacio probabilístico**.

Ejemplos de funciones de probabilidad

• Consideremos el experimento aleatorio consistente en lanzar una moneda al aire, con espacio muestral $\Omega = \{C, \mathcal{X}\}$, y $\mathscr{A} = \mathcal{P}(\Omega)$.

Ejercicio 14: Determinar cuáles son todas las posibles funciones de probabilidad sobre (Ω, \mathscr{A}) .

resolución:.....pizarra

■ Sea un experimento aleatorio con $\Omega = \mathbb{N}^+$ y $\mathscr{A} = \mathcal{P}(\Omega)$.

Ejercicio 15: Proponer un ejemplo de función de probabilidad sobre el espacio probabilizable (Ω, \mathscr{A}) .

<u>resolución</u>:.....pizarra

Propiedades de la probabilidad

Propiedades de la probabilidad

■ Proposición 4: Sean (Ω, \mathscr{A}) un espacio probabilizable y P una probabilidad sobre (Ω, \mathscr{A}) .

Entonces:

1) Para cualquier suceso $A \in \mathcal{A}$ se verifica $P(A^c) = 1 - P(A)$.

2)
$$P(\emptyset) = 0$$
.

demostración:.....pizarra

Otras propiedades de la probabilidad

■ Proposición 5: Sean (Ω, \mathcal{A}, P) un espacio probabilístico y $A, B \in \mathcal{A}$ dos sucesos cualesquiera.

Entonces:

1)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

2)
$$P(A \cup B) \le P(A) + P(B)$$
.

3) Si
$$A \subset B \Rightarrow P(B \setminus A) = P(B) - P(A)$$
.

4) Si
$$A \subset B \Rightarrow P(A) \leq P(B)$$
.

5)
$$0 \le P(A) \le 1$$
.

demostración:.....pizarra

Propiedades de la probabilidad: ejercicios

■ **Ejercicio 16:** Dado el espacio muestral $\Omega = \{a, b, c\}$, se sabe que $P(\{a, b\}) = 0.7$ y $P(\{b, c\}) = 0.6$. Calcular las probabilidades de cada uno de los sucesos elementales.

<u>resolución</u>:.....pizarra

■ Ejercicio 17: Supongamos que A y B son sucesos incompatibles con P(A) = 0.3 y P(B) = 0.5. Calcular $P(A^c \cap B^c)$.

<u>resolución</u>:.....pizarra

■ **Ejercicio 18:** En cierta universidad, el 65 % de los alumnos habla inglés, el 30 % habla francés y el 10 % habla ambos idiomas. ¿Cuál es la probabilidad de que un estudiante elegido al azar hable alguno de estos idiomas?

resolución:.....pizarra

Propiedades de la probabilidad: ejercicios

■ **Ejercicio 19:** Consideremos un dado cargado para el que las probabilidades de los posibles resultados del lanzamiento vienen dados por

$$P(\{1\}) = P(\{3\}) = P(\{5\}) = a,$$

 $P(\{2\}) = P(\{4\}) = P(\{6\}) = b.$

Se sabe además que la probabilidad de que el resultado del lanzamiento sea al menos 4, es 5/12.

Calcular la probabilidad de que al lanzar este dado se obtenga un resultado inferior a 3.

resolución:.....pizarra

■ Ejercicio 20: Sea (Ω, \mathcal{A}, P) un espacio probabilístico y sean $A, B \in \mathcal{A}$. Si P(A) = 1/3 y $P(B^c) = 1/4$, ¿pueden ser disjuntos A y B?

<u>resolución</u>:.....pizarra

Propiedades de la probabilidad: ejercicios

■ **Ejercicio 21:** Sean un espacio probabilístico (Ω, \mathcal{A}, P) , y dos sucesos aleatorios $A, B \in \mathcal{A}$.

Demostrar que

$$P(A \cap B) > 1 - P(A^c) - P(B^c)$$
.

<u>resolución</u>:.....pizarra