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Concepts in this Chapter

* Propagation mechanisms
* Analytical Models

— Free-Space propagation

— Ground-Effect. Reflection.

— Diffraction. Fresnel's zones

— Auttenuation: gases, rain, vegetation
* Empirical Models

- ITU-R

— Okumura-Hata

— Cost 231

Theory classes: 2.5 sessions (5 hours)
Problems resolution: 0.5 session (1 hours)
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Mobile Channels Characterization

*  When Tx signal propagates through wireless channels (may
be mobile)

— The received signal suffers a large variety of perturbation that
require a somehow complex mathematical model to describe them

— Quality of the received signal y quite worse than its counterpart in
guided transmission (cable, fiber optic, etc.)

— There are multitude of adverse effects: reflection, multipath, noise

interference, inter-symbol interference, ...

* Such complexity of the radio channel affects: L

O
— Design of the receivers to cope with variability of the quality of theu ® _
received signal

— Maximum distance (coverage) for a transmitter to a receiver 2 2 &

.

i
— The channel is shared among many users in the same frequency and
location

— The design and signaling of the network that has to cope with
“unreliable” signal

* The behavior of the channel can be modeled into two scales
— Large scale: to determine maximum range
— Small scale: to design both Tx and Rx and to decided on margin to
be left
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Mobile Channels Characterization

e Additionaly, if the Tx, Rx or both are moving, channel varies with tiem

e Blocking, multiple-rays (multipath), etc. May produce rapid variations
(red line)

* While you also have slow variations more in accordance with the
velocity of the terminals (blue line)

Received power at distance d [log scale]

Position -

Signal Amplitude
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Channel Model and Network Planning

e Channel Model has an impact to
— Understand the capacity limits of the radio transmission over it
— To design both Tx and Rx to overcome channel degradation

. Design and
Channel Capacit g
Channel ‘ pactty ‘ Implementation of the
Model Receiver Design Radio Network

* Two types of models
— Narrow band
e Valid up to 100KHz of bandwidth
* It only considers space variations
— Broadband
* Considers also frequency distortion (time distortion) of the signal
¢ It requires some kind of equalization at the receiver
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Channel Model and Network Planning

¢ Narrow Band Model

— It models only the attenuation at a given location (not time
variations)
— Large Scale
* Areas around 50 — 100 wavelengths
¢ Provides average value for attenuation between Tx and Rx
 Used for radio-planning of networks
— Small Scale

* Faster (with location) variations of signal around Large Scale average
value

* Used for Margin calculus in radio-planning and receiver design

Signal Amplitude
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Analytical Propagation Models

* General Propagation concepts

e Terrain influence (Reflection Coefficient)
* Flat Earth model

* Curve Earth model

* Refraction

* Attenuation
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Analytical Propagation Models. General Concepts

* Analytical propagation models
— They are Large Scale Models
— Based on Ray Tracing approach
— Useful for point-to-point planning
— The compute the attenuation including
* Refraction and reflection
* Diffraction
¢ Dispersion
* Guided-wave effect
¢ Characterized by
— Exactness of the results
— Need for detailed knowledge of the scenario
— High computational cost
* Not recommended for
— Mobile communications

— Broadcasting
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Reflection and Reflaction

¢ Reflection:

— When a wave hits an interface between two means, a
portion of the impinging power gets reflected and the
rest goes through

— Both incident and reflected waves in the same plane
— Reflection coefficient Snell: 8. =0

1 r
— It allows passive repeaters

¢ Refraction:

— When a wave hits an interface between two means,
portion of the power that goes into the second mean
travels through it with different propataion speed

— Both incident and refracted waves in the same plane
— Reflection coefficient

Snell: n;sen@; = n,sen6,
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Electromagnetic Wave Propagation

+ Different approaches to estimate the behavior of the
electromagnetic propagation

— Maxwell Equation: nice math model but quite complex to solve
for specific contour conditions. Some scenarios have not
closed form solution

— Approach based on optical model

— Empirical curve fit to measurement campaigns
RECOMENDACIONES

U =R
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Electromagnetic Wave Propagation

* Electromagnetic propagation characteristics depend on

— Conditions of the trajectory between Tx and Rx — obstacles (hills,
buildings, vegetation, ...)

Electrical characterization of the terrain (type of soil, smoothness,

)

Physical properties of the mean (humidity, gasses and vapors, ...)

— Frequency of Tx

— Polarization

* Generally speaking, the quantity to be estimated is the
attenuation
— Basic methods to predict attenuation
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Frequency Bands

Table of ITU Radio Bands
Card,,  [omools |Fomeres ielrar
4 VLF 3t0 30 kHz | 10to 100 km
5 LF Ry |1o10km
6 ME 288 (;okHz :n 00 to 1000
7 HF 3t0 30 MHz | 10to 100 m
8 VHF o, |1ro10m
9 UHF Sy | 1010100 cm
10 SHF 3t030GHz |[1to10cm
1 EHF o, |11010mm
12 THF R sy |0-1t01mm
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Frequency Bands
Band Name Min. Freq. Max. Freq. Max. A Min. A
ELF  Extremely Low Frequency - 3 kHz - 100 km
VLF  Very Low Frequency 3 kHZ 30kHz 100 km 10 km
LF Low Frequency 30 kHz 300 kHz 10 km 1 km
MF Medium Frequency 300 kHz 3 MHz 1 km 100 m
HF High Frequency 3 MHz 30 MHz 100 m 10 m
VHF Very High Frequency 30 MHz 300 MHz 10 m 1m
UHF Ultra High Frequency 300 MHz 3 GHz 1m 10 cm
SHF Super High Frequency 3 GHz 30 GHz 10 ecm 1em
EHF Extremely High Frequency 30 Ghz 300 GHz 1cm 1 mm
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Frequency Bands - Microwaves

Band Name Min. Freq. Max. Freq. Max. A Min. A
L 1 GHz 2 GHz 30 cm 15 cm

S 2 GHZ 4 GHz 15¢ecm 7.5cm

C 4 GHz 8 GHz 7.5cm 3.75cm

X 8 GHz 12.4 GHz 3.75 cm 2.42 cm

Ku 12.4 GHz 18 GHz 2.42 cm 1.66 cm

K 18 GHz 26.5 GHz 1.66 cm 1.11 cm

Ka 26.5 GHz 40 GHz 111 mm 7.5 mm
mm 40 GHz 300 GHz 7.5 mm 1 mm
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Preferred Services for each Frequency Band

— From 10 KHz to 520 KHz. Naval (and aeronautical) Geo-location systems

— From 520 KHz to 1605 KHz. Audio Broadcasting — Amplitude Modulation

— From 1605 to 5850 KHz Radiotelephony

— From 5950 KHz to 26,1 MHz. Amateur Radio..

— From 26,2 to 41 MHz . lonospheric Radio propagation. Military communications
— From 41 MHz to 68 MHz. VHF Television

— From 88 MHz to 108 MHz. Audio Broadcasting. Frequency Modulation

— From 162 MHz to 216 MHz. VHF Television

— From 216 to 470 MHz. RadioBeacons, Radiotelephony,

— From 470 MHz to 890 MHz. UHF Television

— From 890 MHz to 940 MHz. Mobile Communications

— From 960 to 1350 MHz. Radiotelephony, Radar, telecommand and telemetry
— From 1350 to 2700 MHz. Radioprobes, meteorology

— From 3GHz to 35 GHz satellite communications

Telecommunication Systems Fundamentals




VLF Propagation
* Guided Wave effect Earth-Ionosphere

— Ionosphere is a highly ionized layer of the atmosphere that reflects a
high ratio of the VLF power. Its height is 60 — 400 km above Earth
surface

— At VLF (3kHz - 30kHz) both earth ground and ionosphere behave as
good conductors

— Distance between the two conductors (60-100Km) is comparable
with the wavelength (100Km-10Km), thus the propagation model
corresponds to the one in a spherical guided-wave without losses.

— Even using physically large antennas, they are “electrically” small
(comparing it against the wavelength)

— Global coverage
— Naval and submarine communication and navigation aids are main

applications for this band. Formerly telegraphy was also an

application.

- IS A A i
RN _ VL Troposphere
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LF, MF and HF Propagation

e Earth / Surface Wave

— LF, MF and HF (10 — 150MHz) propagation follows a model where
the earth-air discontinuity guides the wave propagation

— Antennas usually used for these bands are monopoles of 50 to 200
meters height.

— Radio range depends on the transmitted power and it varies
e LF: from 1000 to 5000Km
* MF: from 100 to 1000Km
* HF: less than 100Km

— Usuall applications: naval communications and audio broadcasting
{ ’ | Troposphere
\G—/
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MF and HF Propagation

* Jonospheric propagation

Tonosphere layer of the atmosphere causes refaction of the MF and
HF bands (0.3 — 30MHz) so the signal is perceived as “bouncing” on
it

On HF band linear (horizontal and vertical) polarizations are used
Range with only “one-hop” can reach up to

e MF: 0 to 2000Km

e HF: 50 to 4000Km

Applications of narrow-band transmissions over long range such as
naval communications, aeronautical communications both point-to-

point and broadcast
Troposphere

) |
—_
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VHF Propagation

* Tropospheric propagation

Telecommunication Systems Fundamentals

At this frequencies, above 30MHz, ionosphere becomes transparent,
so propagation look more like free-space, with bounces on ground
(reflections) and refraction, dispersion and attenuation at the
troposphere

Usage of directive antennas to obtain high gains and avoid reflection
on ground
Range varies

¢ From tens of Km’s to 40.000 Km on satellite links

* Even millions of Km in deep space communications

Application on audio and TV broadcast, cellular communications,
radar, satellite communications, fixed service links,...

Troposphere
Earth
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Ground Effect on Radio Propagation
» Existence of both Direct Ray and Reflected Ray

General model for propagation
E=E(1+R- ¢/ +(-R)-4-c7)
RD

y PR "

— T
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Ground Effect on Radio Propagation

[ 1

Additional attenuation: L, =20log— =20log

e 1+[R+(1-R)- Alexp(- jA
Angle: A= %
Al : Difference between RR and DR length
A :Wavelength
Complex Reflection Coefficient: R= ‘R‘e‘jﬂ

Both |R| and p are function of:

* Frequency

* Polarization

* FElectrical characteristics of the ground

* Angle
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Ground Effect on Radio Propagation

 Particular case:
Large distance + low antenna height
¥ —0 —— f=7m y R=-1

IDR|=|RR| —— Al=A=0

— RD and RR cancel each other

— Ground propagation useful for:
* Low height antennas (compared to A)
* Frequency: f< 10MHz
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Ground Effect on Radio Propagation

e Complex Permittivity of the ground:
g, =&, — j60oA

— From this parameter, it is defined the z as a function of
polarization and incidence angle .

— Ground impedance (z):

* Vertical polarization: .
2 2
_ley-cosy ]
g=t0 =P 71
€
* Horizontal polarization:

]
2=l —cos*y]?
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Ground Effect on Radio Propagation.
Reflection Coefficient

* The Reflection Coefficient, R, of a plane surface is:

_seny —z
seny +z

R

— Vertical Polarization:

R,

_Eyseny —4/&, —cos’y

— Horizontal Polarization:

R, =

gyseny +1 €, —cos> Y

seny —4/&,—cos’
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Ground Effect on Radio Propagation.
Reflection Coefficient

ITK [
MHz
08 08 AMHz
. \ 1P MHz
06 06
e o - 100 MHz
04 041
02 02
0 0
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7] ¥
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Ground moderately Dry |&,=15, 6=12-10"3
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« fl 61 | Minima get softer and move leftwards

1. ] If perfect conductor)

wl R—-1(R,
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Flat Earth Model

» Applicable only for short Tx-Rx distance and flat terrain

Path Difference:

Angle of incidence:
= arctan[ hth, j
v d
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Azhh,
Ad

Phase Difference: A =

A =TPR-TR=|a* + (1, +h, P} ~[a® + (-1, } |2 :%
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Flat Earth Model

2
b+ (d+0y) =(h—h ) +d® = ny =TS
tany = - A,220 ¥
/ 2
A = 2 gt p =)
w= arcran(%) (d+A)"=(h+h.) +a’A?; OAI By
b 2d 2d d
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Flat Earth Model

General equation for propagation is:

e=eff 1 + [R|(1-A)-expl- j(A+B)+A-exp(- ja)l}

Calculus for A (Bullington):

_ -1
A= 1+ j(%ksem//+z)2

A<0.1
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Flat Earth Model

If we neglect the Surface Wave:
1
e= eo|{ 1 + |R| -expl- j(A+ ,6’)]}‘ =¢, [1 + |R|2 + 2|R| -cos(A + ,B)]/2
Thus the basic loss of propagation becomes:

7

" 14 |RE +2lR[cos(A+ B)

L,=L,+L, = 2010g(4;rdj - ZOlog(l + \R\z + 2\R\ cos(A + ,B))
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Flat Earth Model

* In the particular case of

d>>h.,h, >y —0, |R>1 y fox
‘e‘ ~47Z"h['hr

A 27th,h
= 21— A)=2 —1=2 L — =
= e2l=cosh) = deyjsen | =eyjsen =2 e  Ad
an | 0T
2 R TR R Ry
e TN T N
i Eolll NV 4 p
= A o U | In I
’ (475-h, h jz (h-hY 1o 1WA ] )
A Tigura Planz
M 220 | 1 hb,
y 7 — |
Flat Earth 10 10 L 104
1
d=12hh. /i
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Flat Earth Model

For frequencies bellow 150MHz the surface wave has to be considered

L]
— This wave can be included in the flat earth model by substituting antenna heights, /,

and h,, by the new ones &,” y h,” defined as
1
h'= (h,z +h} )% hy = Zi [(6‘, —1) +(6001) TA horizontal polar.
T

B= (2 + )

1
hy = 21 [(é‘, +1) + (600'/1)2% vertical polar.
T
The parameter A, is non-negligible only for vertical polarization and

frequencies bellow 150MHz

Otherwise it can be set to zero
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Flat Earth Model

hy values for different types of grounds and
frequencies. Vertical Polarizationvertical

Type of Ground Frequency (MHz)
30 60 100 150
A: Sea Watter 87 31 14 8
B: Wet Soil 9 4 3 2
D: Dry Soil 6 3 2 1
E: Very Dry Soil 3 2 1 -

Telecommunication Systems Fundamentals
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Flat Earth Model

Accordingly, propagation losses are

d4

* ExpressedondBs | L, =40 logd (km)— 2010g(ht “h, )+120

— Frequency independent

— Proportional to the distance to the 4th power

Telecommunication Systems Fundamentals
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Curved Earth Model

e When link length is larger than the Radioelectric In-Sight Distance (d,):

— d, = sum of the distances to the horizont

(kR,+h, ) =d> +(kR,) = d}. = 2kRh,
e '

d,, (km) =3.57[kh, (m)
d,, (km) =3.57.[kh, (m)

This in-sight distance incresaes with \/E

. :
d, =3.57(Jkh, +Jkn,)

Ej: d,(k=4/3)=4.1(/n, +/h,)
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Curved Earth Model

* Objective = compute propagation losses assuming:
— Straight trajectory
— Earth radios modify to become kR,

* Map the curved earth model to the flat one:
L, = I, ~10log|i +|R[ +2/R|cos(5+A)]

* To do that:
— 1. Heights h,” and h,’, and the phase difference A are computed
— 2. Check that earth does not block the link
— 3. Update the reflection coefficient R:
» Using divergence
» Using terrain roughness.
— 4. Compute propagation losses

Telecommunication Systems Fundamentals
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Curved Earth Model

¢ Reflection model:
— Direct Ray + Reflected Ray

e Data:

— Link length d(km), absolute antenna height (%,, #,) and k factor for

the earth radios
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Curved Earth Model

* Four equation with four unknowns let us to find the
reflection point

2 dY
p=—=|63Tk(h + h,)+(—) }
d, :%+p00s[”T+¢) ﬁ{ 2
4e Cos{lz.wc(h —h, )d}

1
3

p

2
W=ty
2kR,
dz
B o=h -2 2
"7 2kR, 2d13—3dd12—{kR0(h,+hr)—d}dﬁkROh,d:O
2 2
W _d
W d,
1
d=d +d, 2
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Curved Earth Model

* Once distances d; and d, (km) are computed, antenna heights

are to be calculated

2 2
h;:h[_ﬂ; h;:hr—4d2
Slk Slk

h+h

* And the incidence angle ¥(mrad)=

e Reflection theory is valid if ¥ >, (mrad) =(5400/ f)""

¢ Path difference is Al(m) :%-10‘3
* And therefore the phase difference is A(rad) = 7['1]; (')Al
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Curved Earth Model

* The reflection over a spherical surface produces a

divergence that reduces the effective reflection coefficient

=>» Efficient Reflection Coefficient

5 -1/2
R =R-D D:[H(%j%} (D<1)

¢ In addition to the correction of the Reflection Coefficient, it
can be included an addition attenuation due to the roughness

of the terrain

terrain irregularities

Telecommunication Systems Fundamentals
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r A
R =R-D-e ? and o, is the standard deviation of the
e
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Curved Earth Model

* Using all the above factors

‘e‘ = ‘eo‘ : [1+ ‘Re g 2R, cos(,B+ A)]m

— Where A is computed from /2, /.
— and R, is accordingly updated

e Thus the basic propagation loss

L=1L, —IOIOgll +‘R€‘2 +2R, cos(SB+ A)_
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Tropospheric Propagation: Refraction

* Atmospheric layers are not uniform
=> Refraction (refraction index varies with height)
=>» Non-straight trajectory — but curved

— On satellite links: it affects to the pointing of the antenna to the
satellite

On earth links: it affects to the potential blocking of obstacles

f> 10GHz gases and vapors (oxigen and water vapor mainly)

=> Electromagnetic energy absortion

— Atmospheric attenuation and rain produce additionaly an increase of
the noise temperature of the Rx antenna, and some de-polarization of
the signal

Telecommunication Systems Fundamentals
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Tropospheric Propagation: Refraction

» To simplify the analysis, the Earth radius is changed
and straight propagation is assumed
+ It has to be computed

— How much the trajectory is curved = computing the new
equivalent Earth radius

— How to apply the flat earth model

Modeled ‘ ‘
. —_— & T S by -
4 ‘ R v R

Telecommunication Systems Fundamentals

43

Tropospheric Propagation

Refraction Index: Ray Trajectory

T \L The ray suffers sucesive diffractions that curve it away form the
h=ln straight line propagation
n < J,/ﬂ/

; @ nsen@, = n,sene, =...= const
z ’ =y L o Tseng =mseng,
nj m @
i D

ez ]

W n, >n, = sen@, >sen® = The ray gets curved

14
.
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Tropospheric Propagation

* Refraction Index for February

Valores medios mensuales de Ny: febrere
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Diffraction

* What happens when the ray hits an obstacle?

— If an optical propagation approach were used, the transmission woulb

be totaly blocked
.y

—

— Itis observed that there is still energy received even in the non-lin-
of-sight scenario

Telecommunication Systems Fundamentals
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Diffraction

» Diffraction is the effect (dispersion and curvature) on the
propagation of a plane-wave due to an obstacle which
dimensions are comparable to the wavelength

* When the dimensions of the obstacle are larger than the
wavelength propagation keeps on straight line

Telecommunication Systems Fundamentals
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Diffraction

* Huygens’ principle generalization: “Each spatial point of an
electromagnetic field becomes a secondary source of
radiation”.

I -
=100
o a0 100 180 200
Longitud onda 10 Anchurarendija 23 M. fuentes '

[ . BB (] >
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Diffraction

* Fresnel’s Zones:

— Maximum succession (constructive interference) y minimum
(destructive interference)

Trajectories with oposed phases
define the different zones

1st Fresnel’s Zone:
Constructive
(phase diff. < m)

2nd Fresnel’s Zone:
Destructive
(m < phase diff. < 2x)
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Diffraction

¢ Fresnel’s Zones

— What is the attenuation cayed b obstacle?

‘ Positive Effect: elimination of the destructive contribution |

| Negative Effect: feasible link |

‘ Very Negative Effect |

Telecommunication Systems Fundamentals
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Diffraction

* Computation of the Fresnel’s Zones:

< (R,?
- - A7
e vl lR" <
v Tx v Rx
d, d,

A
— Phase Difference T.CR,—-T R =nzm=n 5

R = nidd,
" d
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Diffraction

 If the first Fresnel’s zone is free of obstacles there is no need
to compute the influence of terrain on the propagation losses

Mle

R, = J

* When the direct ray goes near an obstacle or it is block by it,
there is an additional propagation loss

— We define height margin, A, as the distance between the ray and the
obstacle

T R h>0 R

"N\
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Diffraction

* An accurate model for the propagation loss due to obstacles
is quite complex
* In practice, approximate methods are employed with a
enought accuracy respect actual losses
* These methods depend on the terrain type between Tx and
Rx
— Terrain with low undulation: low irregularities, curved Earth model
— Isolated obstacles: one or few aisolated obstacles

— Undulated terrain: small hills where there is no one clearly higher
than the rest
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Diffraction

» Sharp object

._4'-:\
l \ | ﬁh * Normalized margin
4
6 2(1 1
=h|=|—+—
5 lm
10; T
_p | 2dd,
Md, +d,)
* Losses

() (dB)

N 14

16]
187

N N

14

12
IL,(v)=6.9+ 2010g(\/(v—0.1)2 +1 +v—0‘1) siv>—0.78

24
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Diffraction

* Rounded obstacle: one object is considered “rounded”
if its area is smaller than

A=0.04(r22)"

A=L,(v)+T(m,n)
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Diffraction

+ |f two obstacles in the path

T » A R

| A
z | | 'z
1: :Z2 'Z3 E 4
H v v H

0 X, X,

* Three different situations
— Empirical model (EMP)
— Epstein-Peterson model
— Recommendation UIT-R P.526 model

Telecommunication Systems Fundamentals
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Diffraction

» Two obstacles isolated: empirical model

— None obstacle blocks the direct ray, but the margin is not enough (-
0.7<v <0)

L,=L,(v,)+L,(V,)
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Diffraction

» Two obstacles isolated: Epstein-Peterson model
— The two obstacles block the direct ray, but they have similar heights

~
~ -
- ‘~,_—‘ S o
- - ~a ~
z - =~ ~
- ~
- ~
T .-7f-- h\~-"<_R
z=-- 2 -~
T T
'

S

S
I

0 / 71 X, d
— ! ! _ (51+52)(52+S3)
L,=L,v,)+L,(vV,)+L.| Lc=10log

s,(s,+5,+5,)
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Diffraction

+ Two obstacles isolated: UIT-R P.526 model
— One of the obstacles is clearly higher than the other

2y,
L = 12—2010g( 2 j Vs
1-alx )| v,

172
o= tg_]|:sz (s] +s5,+ 53):|

5153

R

L, =L,(TO,R)+L,(TO,0,R)+L,
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Attenuation due to Vegetation

e If there is a forestall zone in between the Tx and Rx, there is
an additional loss due to the energy absorption of the
vegetation when the ray goes through it

Atenuacion especifica y en Zona boscosa

~ 10
3 Vertical
1 -

2 e na Horizontal
5 T A HH Polarization
5 . !
[=9
A | L
- 2
2
g .
=4
3} =2 ]
< 10 :‘

.1

107
10 MHz 100 MHz 1 GHz 10 GHz 100 GHz

- Frecuencia
Telecommunicati.n oy vuanio » wsiassicsiiuns
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Attenuation due to Vegetation

¢ If non the Tx nor the Rx are in forestal zones, but
— Part of the trajectory crosses forestal areas (lveg) s
— And the frequency is bellow 1GHz.

L,,=1,.7

veg

* When either the Tx or the Rx are in forestal area:
— And part of the trajectory crosses forestal area d,
— if L, is the loss without any forestation along the ray

_dy

— Llfl
Lveg - Lm l-e

* When the attenuation is high (i.e. high frequencies)
diffraction should be considered

— f> 1GHz = diffraction, dispersion, reflections, ...
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Attenuation Due to Gases and Atmospheric Vapors

* Due to absorption of energy by 0, and H,O molecules
— High impact for f> 10 GHz.

— For low inclination paths, near to ground, for a distance d:

A =y,d

e where is the specific attenuation (dB/m), that can be
computed as

7a:70+7\/w

R

Oxigen Water Vapor
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Attenuation Due to Gases and Atmospheric Vapors

- Specific Attenuation 7.

2

10

th

(=]

[
=]

2 th

-
n

Atenuacion especifica (dB/km)

S
ZZT!ﬂ'*

[*]

5 10 2 §
Frecuencia, [ (GHz)
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Temperature: 15°C
Pressure: 1023 hPa
Water Vapor: 7.5 g/m3

Spectral Window

63

Rain Attenuation and Depolarization

* Rain attenuation is a factor to consider on Fixed Service
(terrestrial) links and Satellite links

— High impact at f> 6 GHz.
— Rain attenuation exceeded during a time percentage p%

A(R’ p) = 7(R9P) ’ Lef

Specific Attenuation: (dB/km)

Efective Length:

- Rain intensity Rp(mm/h)

- Time percentage p(%)

polarization

k
—k-R% Depends on f and
kg L

* De-polarization loss factor
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Empirical Models for Propagation Losses

+ Outdoor
— UIT-R P.1546 Recommendation
— Okumura-Hata Model
— COST-231 Model
— Propagation through an heterogeneous mean
— Longley-Rice Model
— Other models

Telecommunication Systems Fundamentals

Empirical Models. Introduction

* Previous methods to compute the propagation losses
— Require knowledge of the terrain — hills, houses, forest, ...
— They may be appropriate to fixed point-to-point links

‘ Distance

‘ Obstacles, diffraction

i IE! = ‘ Reflections
e ==
JiE

—

Prediction of the Propagation Losses |
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Empirical Models. Introduction

* But, what if we want to predict the attenuation for a region,
not for a specific point?

— Prediction for each radial: 12 minimum
— Long process with high computational cost

— In urban environment: modeling of obstacles quite complex, and
usually not enough information, and changing

Telecommunication Systems Fundamentals
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Empirical Models. Introduction

Model Fitting Model Utilization

Math Model

Fitting
Measurments Measurements
N of the L
Campaings Environment [ osse.s
Parameters Calculation

Extraction of

Parameters of

the Model
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Outdoor Empirical Models

» Initially, several decades ago, they were presented by tables and graphs

* Because the usage of software to semi-automatic radio planning, it is
more convenient to fit a closed form mathematical model

* Basic Properties

— Fitting of closed form equations to multiple (large number of)
measurements

— Easy and fast estimation, but with large error margin

¢ Most used models
— UIT-R P.1546 (Rural)
— Okumura-Hata
— COST 231

Telecommunication Systems Fundamentals
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UIT-R P.1546 Recommendation

* Presentation as normalized graphs
* Prediction of the electrical field intensity (V/m)
* Designed for fixed service point-to-point links in rural areas

* International standard used by public administrations all over
the world — especific usage on cross-borders interference
calculations

e Limits

— Frequency from 30 to 3.000 MHz
— Distance form 1 to 1.000 Km

Telecommunication Systems Fundamentals
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UIT-R P.1546 Recommendation

* Curves
— Electrical field as function of the distance (dBuV/m)
— Normalized frequencies (100, 600 and 2000 MHz)
— Different propagation scenarios: land, warm ocean, cold ocean
— Tx antenna height: from 10 to 1200 m
— Rx antenna height: 10 m.
— Value of intensity exceeded 50% of locations for 1%, 10% and 50%
of the time

* Methodology includes a specification to convert it into a
numerical value (software)
— Interpolation
— Extrapolation
— Correction terms

Telecommunication Systems Fundamentals
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UIT-R P.1546 Recommendation
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UIT-R P.1546 Recommendation

» Graphs usage

— When one or more parameters of the system under consideration do
not match the graphs =» Correction

— The obtained value never should be larger (lower attenuation) than
» Land: free space attenuation
» Sea, with distance d and T percentage of time:

E, =238 -[l—exp(—d /8.94)]-10g(50/T)

— Basic corrections
* Tx power
» Tx antenna height
» Tx frequency
* RX antenna height
» Short trajectory over urban/suburban terrain
» Height margin of the Rx
» Percentage of locations
» Percentage of time

Telecommunication Systems Fundamentals
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UIT-R P.1546 Recommendation

« Example of corrections
— Tx antenna height

* hyy is defined as: height of the antenna, expressed in meters, from the
radiation center of the antenna above the average level of the terrain at
distance between 3 and 15 Km from the Tx to the Rx

« If the antenna height does not match the one in the graph =» logarithmic
interpolation

E= Einf+ (Emp—Einf)-log(hm/hmf)-log(hmp/hw)

h\r:'f hinf<hTX<hsup

— Frequency

« If the frequency is different form 100, 600 or 2000 MHz, but it is in
between one the these values =¥ logarithmic interpolation
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UIT-R P.1546 Recommendation

» Example of corrections
— Location percentage
« Example: design objective is to guaranty 90% of locations

¢ A given statistical distribution of the received electrical field is assumed

— Statistical distribution depending on one, or several, parameter, provided on
tables by ITU-R. Example: log-normal distribution with parameter o;.

e The parameter o; is found in corresponding ITU-R table depending on
scenario (urban, rural, etc).

¢ The value of the electrical field exceeded L% of the location is

semmc Desviacién tipica o, (dB)
= — 100 MH: 600 MHz 2000 MHz
E(q)=E+0,G™(L/100) for 1<L<50 ]
Racgi‘odifnsién 83 | 95
_ . i
E(q)=E—0,G'(1-L/100) for 50<L<99 —
" 55 55 53
digital " "
Mévil urbano 53 62 | 7.5
 where [ mntanons 6 | e

— Eis the mean value of the field
— G'!is a specific function given in the recommendation
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UIT-R P.1546 Recommendation

« Example 1: Estimation of the intensity of the electrical
field at a distance d = 10 Km, antenna height hy = 20
m, and a frequency 450 MHz.

- From the ITU-R graphs, we can read the field intensity at
100 and 600 MHz:

Ens = 58 dBu. E,,, = 55 dBu.
- Interpolation:

E = 58 + (55-58) log(450/100)/10g(600/100) = 55.5 dBu.
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UIT-R P.1546 Recommendation

« Example 2:
Given a cellular system
- Inan urban area
- working at f = 450 MHz
- Mean value of the field intensity is Em = 30 dBu.

It is needed the value of the field intensity that is
exceeded at 90% of the locations

For this service:
0,=12+13/og 450 = 4,6 dB.
Additionally: 61(1-0.9) = 1,28.

Therefore,
E=30-46128 =24 dBu.
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Okumura-Hata Model

* Objective: define simple closed-form mathematical model
for the propagation attenuation applicable to the radio
planning of cellular networks, specially for urban areas

* Starting point: a quite large measurement campaing done in
Japan

* Okumura: graphs providing mean values for electromagnetic
filed in urban areas, for

— Several antenna heights

— Frequency bands of 150 MHz, 450 MHz and 900 MHz.
— EIRP=1KW.

— Rx antenna height: 1,5 m.
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Okumura-Hata Model

e The previous graphs, were complemented by
correction factors for:
— Undulation of the terrain
— Heterogeneity of the terrain
— Rx antenna height
— Tx EIRP
— Streets orientation
— Buildings density
* Hata: development of closed-form mathematical
expressions for the normalized Okumura graphs
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Okumura-Hata Model

» Okumra graphs for the frequency variation
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Okumura-Hata Model

» Okumura graph for the received field intensity
(f=900MHz)
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Okumura-Hata Model

* (Closed-Form model: logaritmic fitting of the graphs
* Losses for urban environment:

L, =A+Blog(d)+C

A4=69.55+26.161l0g( [, )~ 13.8210g(h,)~a(h,) B=44.9-6.55log(h,)

| a(hm): " ('=

Metropolitan || 8.29(loz (1544, ) -11  for f,<200 MHz

) 0
areas 3.2(log(11.754,)) —=4.97 for f, =400 MHz
Small/medium
size cities (11108 (fys )~0.7) 0

.1log o R U I By
Suburban ¢ (o )~07)

N _ r /s, 27{”’
environments || (156102 (fouz ) -08) 2[log(foue /28)] ~5.4

Rural areas 78 log (fisge )| +18.33108 ( figge )~ 40.94
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Okumura-Hata Model

* Where
— f=frequency MHz

e Limits: 150 < f< 1500MHz

h, = Effective Tx Antenna Height (m)
e Limits: 30 < i, < 200m

— h,= Effective Rx Antenna Height (m)
e Limits: 1 </, < 10m

d = Distance (Km)

* Note: model valid only up to 1500 MHz

» Adaptation Hata-COST231:
— Extension of the model for upper band in cellular networks (between
1800 and 2000 MHz)
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Okumura-Hata Model

* Results

Perdidas segin el modelo de OkumuraHata pam diferentes frecuencias
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Okumura-Hata Model

* Results

Perdidas del modzlo de Okumuma-Hata pam diferentes alturas de la estasidn base
145
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Okumura-Hata Model

* Results
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COST-231 Model

e Okumura-Hata model does not include any parameter about
the terrain.
* To achieve more precision, models considering next
parameters have been considered
— Streets structure
— Buildings dimension
— Al the parameters in the Okumura-Hata model
* The most updated model is the COST231, which was
adopted as UIT-R recommendation

* Valid for non-line-of-sight scenarios
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COST-231 Model

» Parameters
— BS antenna height
— MS antenna height
— Average height of buildings
— Broadness of the street where the MS is located
— Distance between center of buildings
— BS-MS distance
— Angle of incidence

ESTACION BASE

1= ==__Ja MOVIL

ang| || TTe—a

[0 0 0T e

he

7.
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COST-231 Model

+ Parameters:
— Angle with respect the street axis
— BS height above the average building height
— Auverage buildings height above MS antenna height

Edificios

L=I,+L

Free space Building Roof-top
multiscreen to street

Telecommunication Systems Fundamentals
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COST-231 Model

* Closed form math model
—  Ly=32.45+ 20 log(f) + 20 log(d)

— L4 =-82-10Ilog(w) + 10 log(f) + 20 log(Ahg) + L,

where L_,; depends on the angle between the ray and the street axis

e L, = estimation of the diffraction produced by multiple

'mds
obstacles Applicability limits:
L=L,+L ,+L,
R 800 < f < 2.000 MHz
Free space Building Roof-top 4< hB <50m
multiscreen to street
1<h,<3m
0.02<d<5km
Telecommunication Systems Fundamentals
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Models Comparison

*  An estimation of propagation losses is to be done for a big city for the
radio planning of a cellular network at 900 MHz.

- Base Station height is 35m while the mobile stations have an antenna at 1,5m
hight.
- The averge height of the buildings is 5 floors

- The average broadness of the streets corresponds to a 2 lines each direction,
plus 3 meters for the sidewalk each side. Two parking lines are also considered

- Average distance between building is 45m.

Hito 1: Comparacion entre modelos

pérdidas [dB]

— Okumura-Hata
—cost231
0 0.1 0.2 0.3 04 0.5

distancia [Km]
Figure: comparison between Okumura-Hata and Cost231 models
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Propagation over an Heterogeneous Mean

¢ Some scenarios are better considered as concatenation of different areas
with different electromagnetic properties

* Each section is better modeled by a different mathematical model

paencis p,

Lb = losses expressed on
natural units. \
_L.an | k=constant. i \
Lb(d) = k-d D = distance. ; 5
n = parameter depending of i \
the mean | P
e 4'" ——t— :J deanca,

* To add the effect of different models the following model can be used
(example for three sections)

p.(d=p,1)-d™ d<dl
p(d=p,(0)-d""™-d™ d <d<d,
p.(d=p,(0)-d"™ d)™ d™ d>d,
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Propagation over an Heterogeneous Mean

* The exponent on the previous model, n, takes a value from
1.4 and 5, as function of the environment

Environment Exponent, n
Free Space 2

Urban 2.7-3.5
Urban with large buildings 3-5

Indoor with LOS 1.6-1.8
Indoor without LOS 2-3
Suburban 2-3
Industrials areas 2.2
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Longley-Rice Model

* Also known as ITS Irregular Terrain Model

— Based on electromagnetic theory and statistical analysis of the terrain
characteristics and measurement campaign

— Outcome: average value for attenuation as function of the distance,
and a model for the variation with time and space

— It contains a point-to-point model and a area prediction model.

* System parameters: associated to the radio equipment and
independent of the environment
— Frequency between 20MHz and 40GHz
— Distance between 1Km and 2000Km
— Antenna height between 0.5m and 3000m above the terrain

— Polarization: horizontal and vertical
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Longley-Rice Model

» Parameters describing statistically the environment

— Average undulation of the terrain (Ah):

Forma del terreno Ah (m)
Plano o superficie del agua (1]
Llanura 30
Colinas %0
Montafias 200
Montafias escabrosas 500

Para un nivel promedio usar Ah =90 m
— Atmosphere refractivity: determines the “bending” or “curvature” of
the radio propagation
* Other models include this parameter in the effective curvature of the
Earth, typically 4/3 (1.333).
* Longley-Rice model includes directly the refractivity value

— Range from 250 to 400 Units of n (corresponding to effective Earth
curvature between 1.232 and 1.767).

— Effective curvature of the Earth of 4/3 (=1.333) corresponding to a
refractivity of 301 Units of n. (recommended value for average atmospheric

conditions) ) .
— Relation between parameters “k” and “n” : = . - Nh-=

¥, =1733 L”[omssss[l K]]
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Longley-Rice Model

* Environment parameters

lipo de svels Permitividad  Conductividad

. . . relativa (S'm)
— Dielectric constant of the terrain Tiem promedic 15 0.003
. . . . TI:FIT‘S e :1_ 0 0m
¢ Relative permittivity or dielectric constant — Tiem: tuena 5 0.020
Agua dulee B1 0.010
(e). Agun aalndn 81 5.000
L. Eu la tuayouis de 1os casws usins las constantes de e
¢ Conductivity: _promedio.
— Climate: 7 models for climate
. Clima s (N-nnidades)
* Equatorial (Ex. Congo) Ecuzroral 360
. A Centinente subiropical 320
 Subtropical Continental (Ex. Sudan) I];Iﬂr_Ilu.uo subtrapical ig
E31ETT0 )
1 1t 1 Cremtments] tanmeradn anl
¢ Subtropical Maritime (Ex. Africa shore) T o
e Desert (EX Saha_ra) Maritimo tewperado, sobrs el mar 350

DPara condiciones promedio usar el clima confinental
temperado y Ns = 301 Namidaces

¢ Warm Continental
¢ Warm Earth — Maritime (Ex. UK and EU)
¢ Warm Maritime Sea
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Longley-Rice Model

 Statistical Parameters
— Time variation: (of the atmospheric changes and other effects)
— Location variation
— Other variations or “hidden variables”
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Other Models

Walfish-Bertoni
Durkin
Sakagami-Kuboi
Ibrahim-Parsons
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Summary of Models

Model Out/ Frequency Applicability
Indoor Range
UIT-R P.1546 Outdoor | 3000MHz Broadcast
Okumura-Hata Outdoor 1500(2000)MHz | Urban
COST-231 Outdoor | 2000MHz Any
Heterogeneus Outdoor | Any Any
Mean
Longley-Rice Outdoor | 40GH< Any although it is quite complex
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Summary of Concepts in this Chapter

* We have seen different models to predict the radio

propagation loss

* First classification:
— Deterministic models, where you need to know accurately the

environment

— Empirical models: average estimation is fitted to a measurements
campaign previously done

Several useful Outdoor empirical models depending on

— Frequency

— Terrain

— Rural or Urban environment

— Distance

Models Trade-off between complexity and accuracy

Software tools include propagation models to greatly
simplify radio planning
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