UNIT 7.
SEARCH, SORT AND MERGE
ALGORITHMS

Programming
Year 2017-2018
Industrial Technology Engineering

Paula de Toledo

~® Universidad
§ Carlos Il de Madrid

o W 2
Rg® WWwuc3mes

Programming

Unit 7. Search, sort and merge

CONTENTS

7.1. SEARCH
7.2.SORT
7.3. MERGE

Programming F7 R Universidad
. Carlos III de Madrid
Unit 7. Search, sort and merge wrsucimes

SEARCH

Programming

Unit 7. Search, sort and merge

Search, sort and merge algorithms

* Search (search a value in a list)
* in sorted list.
* in unsorted list.
* Sort (a list of values)
* Bubble sort algorithm.
 Insertion sort algorithm.
 Selection sort algorithm.
* Merge (two lists of values)
« Merge two ordered lists into another

* Lists are represented as vectors
* In-place algorithms (use no extra memory space)

Programming

Unit 7. Search, sort and merge

Search algorithms

* Search = find the position of a given value in a list

» Search in sorted lists
Linear search (or simple sequential search)

* Examine each element starting from the firust until we find the
value sought or the end of the list is reached

Programming

Unit 7. Search, sort and merge

Linear search (sequential search) algorithm

int a[N] // vector containing the list
scanf ("%i", &valuetosearch); //value to search

//linear search
1 =0 ;
found = 0 ; // flag/marcador: values true/cierto (1)
// false/falso (0)
while ((1<N) && (! found)) {
1if (al[i]==valuetosearch)
found = 1 ;
else
i++;
}
// results - post check
if (found){ //if ali]==valuetosearch
printf ("Value to search found in position");
printf ("%$i", 1+1);
}

else

Programming

Unit 7. Search, sort and merge

Search in sorted lists T
.:?.':i

» Can be optimized =

* More efficient (as in a dictionary) ﬁ‘;{

* ... although requires previous sort i\\\
AN

* Two algorithms

* Optimized linear search

Search ends when the element is found or the search goes beyond the
position in the list where the value should be found

* Binary search
check the central element of the list.
* Ifit's the element sought the search ends

* If not, repeat using only the part of the list where the element
should be

* Until the sub-list is empty

Programming

Unit 7. Search, sort and merge

Optimized sequential (lineal) search

int list[N]
i=20;
found = @ ; // flag to control if the value is found @ (false) 1 (true)
end = 0; // flag to control search end @ (false) 1 (true)

scanf("%i",&valuetosearch);
while((!end) && (!found)){
if (list[i]==valuetosearch)
found = 1 ;
else {
if ((list[i]>valuetosearch) || (i==(N-1)))
// 1 beyond position where value shoud be or i= end of the list
end= 1 ; // end search
else
i++;
}
}
// results - post check

if (found){ //if a[i]==valuetosearch
printf ("Value to search found in position "%i", i+1);

¥

else
printf ("%s", " Value to search not found");

Programming

Unit 7. Search, sort and merge

Binary search - concept

valuetosearch = 37

5 | 11 | 14 22-37 43 | 56 | 59 | 70

37 | 43 - 59 | 70

valuetosearch = 38

Programming

Unit 7. Search, sort and merge

Binary search

valuetosearch =37

1st iteration 5 11 14 22 - 37 43 56 59 70
d 0 a[4] a 9
[0] middle= . 9]
left=0 (left+right)/2 = 4 right=9
a[middle] = 28 = smaller than value to
search, so search continues in upper half of
the list > move left to middle +1
2nd iteration 2 = - 2 7
a[middle] =56 = larger than value to search, | ?t[55] m?(%}e _ _ ?1&9] 9
eft= right =

so search continues in lower half of the list =2

move right to middle -1

(left+ right)/2 =7

a[middle] = valuetosearch ->

3rd iteration ﬁ
search ends
\ a[5]

a[6]

left=5 right =6

middle =

(left+ right)/2 =5

Programming

Unit 7. Search, sort and merge

Binary search

1st iteration

valuetosearch =7
(not in the list)

a3 EIERERERE

a[0] al4] al9]
middle= o
left=0 (left+ right)/2=4 right=3

2nd iteration3 14 22

al0] a[1] a[3]
left=0 middle = right =3

a[middle] = 28 = larger than value to search,
so search continues in lower half of the list

a[middle] = 11 - larger than value to

(izg+ right)/2 =1

3rd iteration - middle = (left+ right)/2 =
0

search, so search continues in lower half of
the list 2 move right to middle -1

a[middle] =5 = smaller than value to
search, so search continues in upper half of

a[0] '
left=0 right =0

left=1 right= 0
-2 empty list

Ilteracion 4:

the list 2 move left to middle + 1

4 —left > right > the value is not in the
list, search ends

Programming
Unit 7. Search, sort and merge

Binary search

define N 10 //vector size
int a[N]; //vector

int left, right, middle; // indexes for leftmost and righthmost
elements in the sublist

int valuetosearch ;
int found; //flag true(l) or false(0)

int position=-1; //position of the sought value in the vector,
intialized to -1

//initialization
left = 9; // lower limit (left) of sublist
right = N-1; //upper limit (right) of sublist
found = ©;
middle=(left+right)/2;

Programming

Unit 7. Search, sort and merge

Binary search

scanf("%1i",&valuetosearch);

while ((left<=right) && (!found)){
if (a[middle] == valuetosearch){
found=1;
position= middle;
} else {
//if a[middle] is smaller, move left to m+l
if (a[middle] < valuetosearch)
left = middle + 1;
//if a[middle] is larger, move the left to m-1
else
right = middle - 1;
// get new middle
middle = (left+ right)/2;
Y // if
} // while

Programming

Unit 7. Search, sort and merge

Binary search

// post check and results

if (found) {
printf ("value %i found in position %i" ,valuetosearch,
position);
telse{
printf (value %i not found", valuetosearch);

Programming F7 R Universidad
. Carlos III de Madrid
Unit 7. Search, sort and merge wrsucimes

SORT

Programming

Unit 7. Search, sort and merge

Sorting algorithms

» Basic sorting algorithms (http://www.sorting-algorithms.com/)

* Exchange (Bubble) sort:

* Compare adjacent values and swap them until list is ordered

* Direct selection sort

 Select the smaller value of the list and move it to the first
position; then select second smallest element and put it in second
position, Until the last element is sorted

 Directinsertion sort

* Work with a sublist that is sorted, and insert the remaining
elements in the corresponding position of the list. Initially the

orered sublist is only one element, and it grows until all elements
are sorted

http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/

Programming

Unit 7. Search, sort and merge

Bubble algorithm

* Example: four elements, ascending order

* Firstiteration:
Compare each element (except the last) to the element after it
If order is wrong, sort them
* Ifm(j) >m (j+1), swap
The larger element will move to the end, it's sorted
* Second iteration:
Compare each element (except the two last) to the element after it
If order is wrong, swap
The second larger moves to the penultimate postion
Two last elements are sorted

* Third iteration:
Compare each element (except the three last) to the element after it
Three last elements are sorted, therefore full list is sorted

Programming

Unit 7. Search, sort and merge

Bubble sort
Sort vector a[] of five elements (N = 5) in increasing order
7|2|8|5|4 27548 2/ 54|78 2 4 5|78
)< Y ¥ Y ¥ Y ¥
217|8|5|4 217|548 2/5|4|7|8 214|578
Y ¥
2]7]8]5]4 2][5]7]4]8 2]4]5]7]8 (end)
X 4th iteration:
(i=4)
2|7|15/8|4 2[5]4|7]8 3rd iteration : The four largest
)< (i=3) elements are sorted
217151418 The three largest -> all are sorted
: . elements are sorted 1 comparison
2nd |(t_er§§|on - (N-i) comparisons
. . 1= .
1st iteration: 2 comparisons
() o toneg PR
The largest element is 3 comparisons
sorted

N-i comparisons You need 4 (N-1) iterations=

4 comparisons

N-i comparisons _
Every round you need less comparisons,

starting from N-1, down to 1

Programming
Unit 7. Search, sort and merge

Bubble sort - code

For (i=1; i<=N-1; i++) { // N-1 iterations
for(j=0; j < N-i; j++) { // for N-1i elements, compare each
element to the next
// if they are not ordered, swap using auxiliary variable
if(a[j]>a[j+1]) {
aux=al[j];
a[jl=a[j+1];
al[j+1]=aux;

Programming

Unit 7. Search, sort and merge

Selection sort algorithm

 Select the smallest element, put it in the first position
* Among the remaining elements find the smallest and put it second
Sorted list grows, unsorted list shrinks

* Continue until they are all sorted

* Given an N - element vector
 Find the smallest in the range 0 to N-1
Exchange (swap) it with the element in position 0
Find the smallest in the range 1 to N-1
Swap it with the element in position 1
Find the smallest in the range 2 to N-1
Swap it with the element in position 2
Find the smallest in the range 3 to N-1
Swap it with the element in position 3

Continue until sorted list size is N

Programming

Unit 7. Search, sort and merge

. E le, N=5
Selection sort xampie

i denotes the first element in the unsorted list
j is the index used to
search the minimum

in the sublist 7 First iteration

First element in unsorted list i=0;
posMin =1;

j from 1 to N-1 T><T T T
Second iteration,

N
00)
Ul

#_h

217|18|54 First element in unsorted list i=1;
T posMin =4;
j from 2 hasta N-1
Third iteration,
214(8|5|7 First element in unsorted list i=2;
T T posMin =3;
j from 3 hasta N-1
214(5|8|7 Fourth iteration
i=3;
j from 4 hasta N-1 T>< posMin =4
214|578 END

4 (N-1)
Iterations needed

Programming

Unit 7. Search, sort and merge

Selection sort - code

for(i=0;i<N-1;i++){ //N-1 iterations
// find the minimum in the sublist and it's position
min = a[i]; // initialize min to first element in sublist
posMin = i; // initialize position
// search in the unsorted list, starting in i to N_1

for(j=1; j<=N-1; j++){ min stores the
if (ald1 < min smallest value in
([J]) { the sublist

min = a[j];

posMin= j; posMin is the index
of the smallest

} value in the sublist

}
//swap the first element of the unsorted list a[i]

// with the minimum
a[posMin] = a[i];
al[i] = min;

Programming

Unit 7. Search, sort and merge

Insertion sort

 Start with an ordered sublist, take next element and putitin
its position in the list
* The sorted sublist grows, and at the end the list is sorted

» Starting point is a sorted sublist with only one element, the
first one in the list

Programming

Unit 7. Search, sort and merge

: E le, N=5
[nsertion sort xampie

Ejemplo con N=5 i is the element to put in place

First iteration =1
712|854 Sorted sublist has one element
Work with the first element of the unsorted list a[1]=2
T Move it until the sublist is sorted

5[4 Second iteration i=2
Sorted sublist has two elements
the first element of the unsorted list a[2]=8

Third iteration i=3
2171854 Sorted sublist has three elements

#m

T the first element of the unsorted list a[3]=5
21571814 Fourth iteration i=4
Sorted sublist has four elements
T the first element of the unsorted list a[4]=4

214|578 END

Programming

Unit 7. Search, sort and merge

Insertion sort - shifting values to position new element

2|5|718[4| Fourth iteration (i=4),

The ordered sublist contains 4 elements
T The element a[4]=4 has to be inserted in place

element = [4

8>4 /\,

N
Ul
N
00
n
N
Ul
N
00
00]

All the elements
higher than the a[4]

_3 =4 are shifted to
) 7>4 AN the right.
2[5[7[8]4] =) [2]s][7]7]8
j=2 | ~
2[5[7[8]4]) [2]5[5]7]8
j=1 1

2<4 > FI

Ul
N
0]
N

2|4]5]7]8 END

The element is placed at position j

Programming
Unit 7. Search, sort and merge

Insertion sort - code

int a[N] = {7,2,8,5,4}; //vector N elements
int i,j, valuetosearch ; //i is the iteration

//J the index to use in the unsorted list
for (i=1; i<N; i++){
// for each iteration i, the sorted sublist has i elements

// we need to sort the i-th element, valuetosearch
valuetosearch =a[i];

// shift all elements of the sorted sublist to "make room

for
valuetosearch

// starting from the end of the sorted list i-1
j=i-1;
//keep shifting elements while the position is not reached
// a[j]>valuetosearch and the beginning of the list is not found
(3>0)
while ((j>=0) && (a[j]>valuetosearch)){
a[j+1]=a[]l;
J= J-1;
}
// put value to search in place
a[j+1l]=valuetosearch ;

Programming

Unit 7. Search, sort and merge

Comparing sorting algorithms

* How long does it take to sort an array of n elements?

 Algoritm performance is measured according to the number of
comparisons and swapping operations that are required to obtain
the solution

Performance strongly depends on the starting situation: sorted array,
unsorted, nearly sorted, reversed, etc.

* What algorithm will profit from a nearly sorted start?

* In general, basic sorting algorithms (bubble, selection, insertion)
are not suitable for large lists

the differences for small arrays are not significant

* There are more efficient (and complex) sorting algorithms: shell,
heap, merge, quicksort, etc.

Programming

Unit 7. Search, sort and merge

Shell sort

* Shell = insertion in decreasing increments

Generalization of insertion sort where the elements to insert are
not next to each other

The method starts by sorting pairs of elements far apart from
each other, then progressively reducing the gap between elements
to be compared
First iteration gap is half the size of the vector

If N=100 gap= 50
Last passgapis 1

Yﬂll T
Every paSS gap decreas eS (2 5, 1 2) 6’ 3, 1) Shell Sort (Algoritmo ordenacién de Shell)

Example
http: //www.youtube.com /watch?v=QTtHQVRiD04

http://www.youtube.com/watch?v=QTtHQVRiD04

Programming

Unit 7. Search, sort and merge

Quicksort

* Quick Sort (http: //www.youtube.com /watch?v=cNB5]JCG3vts)
* Pick an element, called a pivot, from the array

* Partitioning: reorder the array so that all elements with values
less than the pivot come before the pivot, while all elements with
values greater than the pivot come after it (equal values can go
either way). After this partitioning, the pivot is in its final position.

* Recursively apply the above steps to the sub-array of elements
with smaller values and separately to the sub-array of elements
with greater values

Stop where size of the group is zero or one

If size is two just compare elements and swap if needed

http://www.youtube.com/watch?v=cNB5JCG3vts

Programming

Unit 7. Search, sort and merge

Quicksort. example

12 15 | 24 7 31 | 21 3 19 8
6 3 8 12 15 | 24 31 21 19
3 7 8 12 | 15 | 24 | 31 | 21 | 19
3 7 8 12 | 15 | 21 | 19 | 24 | 31
3 7 12 | 15 | 19 | 21 | 24 | 31

» http://en.wikipedia.org/wiki/Quicksort

Is the number of comparisons and swaps much smaller than in bubble

sort?

http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Quicksort

Programming
Unit 7. Search, sort and merge

Comparing sorting algorithms

* http://www.sorting-algorithms.com/

ing Algorithm Animations - Windows Internet Explorer

-2 x|
@@v [EE 25 . sorting-algortthms.com EIEEERR s 2l-
| Archivo Edicién Yer Faworitos Herramientss Ayuda
J x Google | Rousear = @ WW WSS e | B ey massres - | % comestor snopio - 3| Tracen - | ursconpletar - €+ @ pavlad..,~
J .7 Favorios J 55 48 roticias.htm @ sitios sugeridos + @] Galeria de web Slice ~
K= sorting Algorithm Animstions | | | Fijmio - G Fusies (0 -+ Uleerconeo = imprir < Pigina = Sequridad ~ Herrarientas - @) Ayuda - >
Google Estapagina esta escrita en inglés. ¢ Quieres traduciria con la barra Google? s informacién Traducir |
Sorting Algorithm Animations

O SHARE w0 27

Problem Size: 20 - 30 - 40 - 50 Magnification: 1x - 2x - 3x

Algorithm: Insertion - Selection - Bubble - Shell - Merge - Heap + Quick - Quick3
Initial Condition: Random - Nearly Sorted - Reversed - Few Unique

@ e e © e e e e ©
Insertion

Selection Bubble Shell Merge Heap Quick Quick3

Nearly Sorted

e

Reversed

e

Few Unique

Discussion Directions

These pages shovy § diferent sortng algorithuns on 4 different infial u Click on © above to restart the animations in a row. a column, or
conditions. These visualizations are intended to:

the entire table
u Show how each algorithm operates.

u Click directly on an animation image to start or restart it
» Show that there is no best sorting algorithm

u Click on a problem size number to reset all animations
u Show the advantages and disadvantages of cach algorithm.

Wnicio| | 2 & &2 | & Eudora - [1n]

| [prcrosoft word

3 Gib_ConcursoTUiPr... |) 2009 11 05 PauiaE. .. | [5] Microscft Excel - ... |[2 sorting algorithm... % Jasc Paint shop Pro ... | [« @ 3, 1550

Source: http://www.sorting-algorithms.com/ [link]

http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/

Programming F7 R Universidad
. Carlos III de Madrid
Unit 7. Search, sort and merge wrsucimes

MERGE

Programming

Unit 7. Search, sort and merge

Merging

* Merging
* combining sorted sequences of values into a single sorted
sequence

* Some advanced sorting algorithms use merging

* The list is divided in smaller pieces to be ordered and, finally, the
parts are merged

E.g.: Mergesort

 'Divide & Conquer' strategy: a problem can be solved by splitting
it into parts, solving the parts, and joining the partial solutions

* Merging is also necessary if the number of values to sortis
larger than the memory size

* Divide in sublist, sort, and merge

Programming

Unit 7. Search, sort and merge

Merging

* Idea:

* Define two indices i,j to traverse all the elements of list1,list2
respectively

* Determine the value to add to the merged array by comparing
list1[i] and list2]j]

* Copy the remaining elements of the list that has not been
completely traversed to list

* Input:
listl « {2, 4, 5, 7, 8}
Tl « 5
list2 « {1, 3, 8}
T2 « 3

* Output:
list « {1, 2, 3, 4, 5, 7, 8, 8}

Programming
Unit 7. Search, sort and merge

const int T1=100, T2=50; // list size

int 1listl1[T1],1ist2[T2],1ist3[T1+T2];

//two sorted lists (listl and list2) and a final list
int i1,i2,i, k; //indexes

1i1=0; i2=0; 1=0;

while((i1<T1)&&(12<T2)){
if (listl[il]<list2[i2]){
list3[i]= listl[il];
il =il1+1;

else{
list3[i]= 1list2[i2];
i2=12+1;

Programming
Unit 7. Search, sort and merge

//final part of the longest list is pending
if (11<T1)
// list 1 was longer, copy the remainder
for (k=1il; k<T1l; k++){
list3[i] = listl[k];
i=1+1;

else
// list 2 was longer, copy the remainder
for (k=i2; k<T2; k++){
list3[i] = list2[k];
i=1+1;

UNIT 7.
SEARCH, SORT AND MERGE
ALGORITHMS

7% Universidad
§ Carlos III de Madrid

%) i &
Rg® WWwuc3mes

