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Binomial Heaps

This chapter and Chapter 20 present data structures knowmeegeable heaps
which support the following five operations.

MAKE-HEAP() creates and returns a new heap containing no elements.

INSERT(H, x) inserts nodex, whosekey field has already been filled in, into
heapH.

MINIMUM (H) returns a pointer to the node in heBpwhose key is minimum.

EXTRACT-MIN (H) deletes the node from headp whose key is minimum, return-
ing a pointer to the node.

UNION(H3, Hy) creates and returns a new heap that contains all the nodegjp$ h
H; andH,. HeapsH; andH, are “destroyed” by this operation.

In addition, the data structures in these chapters alsoosufipe following two
operations.

DECREASEKEY (H, x, k) assigns to nod& within heapH the new key valu,
which is assumed to be no greater than its current key Value.

DELETE(H, x) deletes node& from heapH.

As the table in Figure 19.1 shows, if we don’t need threi@N operation, ordi-
nary binary heaps, as used in heapsort (Chapter 6), work viglkerations other
than WNION run in worst-case timeD(Ign) on a binary heap. If the NiON
operation must be supported, however, binary heaps perfaronly. By con-
catenating the two arrays that hold the binary heaps to bgedeand then run-
ning MIN-HEAPIFY (see Exercise 6.2-2), theNWON operation take® (n) time in
the worst case.

1As mentioned in the introduction to Part V, our default meaitge heaps are mergeable min-
heaps, and so the operationaNWMuUM, EXTRACT-MIN, and DECREASEKEY apply. Alterna-
tively, we could define anergeable max-heapvith the operations MxiMum, EXTRACT-MAX,
and INCREASEKEY.
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Binary heap Binomial heap Fibonacci heap

Procedure (worst-case) (worst-case) (amortized)
MAKE-HEAP 01 01 01
INSERT O(gn) O(gn) 001
MINIMUM 01 O(gn) 001
EXTRACT-MIN O(gn) O(gn) O(gn)
UNION e(n) O(gn) 01
DECREASEKEY O(gn) O(gn) 0Q1)
DELETE O(gn) O(gn) O(gn)

Figure 19.1 Running times for operations on three implementations ofgew@ble heaps. The
number of items in the heap(s) at the time of an operationnsi@s byn.

In this chapter, we examine “binomial heaps,” whose woestedime bounds are
also shown in Figure 19.1. In particular, theNldN operation takes onl(lg n)
time to merge two binomial heaps with a totalroélements.

In Chapter 20, we shall explore Fibonacci heaps, which hzee better time
bounds for some operations. Note, however, that the runimimgs for Fibonacci
heaps in Figure 19.1 are amortized time bounds, not woest-par-operation time
bounds.

This chapter ignores issues of allocating nodes prior tertien and freeing
nodes following deletion. We assume that the code that talfieap procedures
deals with these details.

Binary heaps, binomial heaps, and Fibonacci heaps areeddfldient in their
support of the operationE3ARCH; it can take a while to find a node with a given
key. For this reason, operations such asCREASEKEY and DELETE that refer
to a given node require a pointer to that node as part of tiinti As in our
discussion of priority queues in Section 6.5, when we use ay@able heap in
an application, we often store a handle to the correspondppication object
in each mergeable-heap element, as well as a handle to pongiag mergeable-
heap element in each application object. The exact natureesé handles depends
on the application and its implementation.

Section 19.1 defines binomial heaps after first defining ttwistituent binomial
trees. It also introduces a particular representationmdinial heaps. Section 19.2
shows how we can implement operations on binomial heapseiritiie bounds
given in Figure 19.1.
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19.1 Binomial trees and binomial heaps

A binomial heap is a collection of binomial trees, so thistieecstarts by defining
binomial trees and proving some key properties. We then edfinomial heaps
and show how they can be represented.

19.1.1 Binomial trees

The binomial tree By is an ordered tree (see Section B.5.2) defined recursively.
As shown in Figure 19.2(a), the binomial tr& consists of a single node. The
binomial treeBy consists of two binomial treeBy_; that arelinked together: the
root of one is the leftmost child of the root of the other. Fg19.2(b) shows the
binomial treesBq throughB,.

Some properties of binomial trees are given by the followargma.

Lemma 19.1 (Properties of binomial trees)
For the binomial tredy,

1. there are®nodes,

2. the height of the tree is,

3. there are exactl(}f) nodes at depthfori =0,1,...,k, and
4

. the root has degrde which is greater than that of any other node; moreover if
the children of the root are numbered from left to rightkoy 1,k — 2, ..., 0,
childi is the root of a subtre8;.

Proof The proofis by induction ok. For each property, the basis is the binomial
tree By. Verifying that each property holds fd, is trivial.
For the inductive step, we assume that the lemma holdBfoy.

1. Binomial treeBy consists of two copies d_1, and soBy has 21 2k-1 = 2k
nodes.

2. Because of the way in which the two copiesBpf ; are linked to formBy, the
maximum depth of a node By is one greater than the maximum depttBin. ;.
By the inductive hypothesis, this maximum depttiks- 1) + 1 = k.

3. LetD(k, 1) be the number of nodes at deptlof binomial treeBy. Since By
is composed of two copies @_; linked together, a node at depthn By_;
appears inByx once at depth and once at depth+ 1. In other words, the
number of nodes at depthin By is the number of nodes at deptin By_; plus
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Figure 19.2 (a)The recursive definition of the binomial tré&®. Triangles represent rooted sub-
trees. (b) The binomial treesBy through B4. Node depths iB4 are shown.(c) Another way of
looking at the binomial tre®y.

the number of nodes at defth- 1 in Bc_;. Thus,

Dk,i) = Dk—-1i)+Dk—-1i-1)
k—1 k—1 _ _ .
= : + ) (by the inductive hypothesis)
= (t() (by Exercise C.1-7) .

4. The only node with greater degree Bx than in By_; is the root, which
has one more child than iBx_;. Since the root ofB¢_; has degre& — 1,
the root of By has degredk. Now, by the inductive hypothesis, and as Fig-
ure 19.2(c) shows, from left to right, the children of thetrob By_; are roots
of Bx_5, Bx_3, ..., Bg. WhenBy_ is linked toBy_1, therefore, the children of
the resulting root are roots @y_1, Bk_2, ..., Bo. ]
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Corollary 19.2
The maximum degree of any node inamode binomial tree is Ig.

Proof Immediate from properties 1 and 4 of Lemma 19.1. [

The term “binomial tree” comes from property 3 of Lemma 1%ihce the
terms('i‘) are the binomial coefficients. Exercise 19.1-3 gives furthstification
for the term.

19.1.2 Binomial heaps

A binomial heapH is a set of binomial trees that satisfies the followbigomial-
heap properties

1. Each binomial tree irH obeys themin-heap property the key of a node is
greater than or equal to the key of its parent. We say that sach tree is
min-heap-ordered

2. For any nonnegative integkr there is at most one binomial tree h whose
root has degrek.

The first property tells us that the root of a min-heap-orderee contains the
smallest key in the tree.

The second property implies that amode binomial heapl consists of at most
llgn] + 1 binomial trees. To see why, observe that the binary reptasen ofn
has|[lgn] + 1 bits, say(bygnj, bugnj-1, - - - » bo), S0 thatn = Zi“:gO”J b2'. By
property 1 of Lemma 19.1, therefore, binomial ti8eappears irH if and only if
bit by = 1. Thus, binomial heapl contains at mostlg n] + 1 binomial trees.

Figure 19.3(a) shows a binomial hegpwith 13 nodes. The binary represen-
tation of 13 is(1101), andH consists of min-heap-ordered binomial trd&s B.,
and By, having 8, 4, and 1 nodes respectively, for a total of 13 nodes

Representing binomial heaps

As shown in Figure 19.3(b), each binomial tree within a biredrheap is stored
in the left-child, right-sibling representation of Secti®0.4. Each node haskay
field and any other satellite information required by thelaagion. In addition,
each node contains pointerg[x] to its parentchild[x] to its leftmost child, and
sibling[x] to the sibling ofx immediately to its right. If node is a root, then
p[x] = NiL. If node x has no children, thechild[x] = NiIL, and if x is the
rightmost child of its parent, thesibling[x] = NIL. Each node& also contains the
field degreéx], which is the number of children of.

As Figure 19.3 also shows, the roots of the binomial treefiwia binomial
heap are organized in a linked list, which we refer to asrtiwd list. The degrees
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Figure 19.3 A binomial heapH with n = 13 nodes(a) The heap consists of binomial treBg, Bo,
and B3, which have 1, 4, and 8 nodes respectively, totaling 13 nodes. Since each binomial tree
is min-heap-ordered, the key of any node is no less than theflies parent. Also shown is the root
list, which is a linked list of roots in order of increasinggiee. (b) A more detailed representation
of binomial heapH. Each binomial tree is stored in the left-child, right-gilgl representation, and
each node stores its degree.

of the roots strictly increase as we traverse the root list.th® second binomial-
heap property, in am-node binomial heap the degrees of the roots are a subset
of {0,1,...,|lgn]}. Thesibling field has a different meaning for roots than for
nonroots. Ifx is a root, thersibling[x] points to the next root in the root list. (As
usual,sibling[x] = NIL if x is the last root in the root list.)

A given binomial heafH is accessed by the fieliead H], which is simply a
pointer to the first root in the root list dfl. If binomial heapH has no elements,
thenhead H] = NIL.
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Figure 19.4 The binomial treeB,4 with nodes labeled in binary by a postorder walk.

Exercises

19.1-1

Suppose thak is a node in a binomial tree within a binomial heap, and assume
thatsibling[x] # NIL. If X is not a root, how doedegregsibling[x]] compare to
degre¢x]? How about ifx is a root?

19.1-2
If xis a nonroot node in a binomial tree within a binomial heapy Hoesdegre¢x]
compare tadegre¢ p[x]]?

19.1-3

Suppose we label the nodes of binomial tE&ein binary by a postorder walk, as
in Figure 19.4. Consider a nodelabeled| at depthi, and letj = k —i. Show
thatx hasj 1's in its binary representation. How many bindnstrings are there
that contain exactly 1's? Show that the degree »fis equal to the number of 1's
to the right of the rightmost 0 in the binary representatidh. o

19.2 Operations on binomial heaps

In this section, we show how to perform operations on binbiméaps in the time
bounds shown in Figure 19.1. We shall only show the upper tisuthe lower
bounds are left as Exercise 19.2-10.

Creating a new binomial heap

To make an empty binomial heap, theakE-BINOMIAL -HEAP procedure sim-
ply allocates and returns an objadt, whereheadH] = NiL. The running time
isO(1).
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Finding the minimum key

The procedure BIOMIAL -HEAP-MINIMUM returns a pointer to the node with the
minimum key in ann-node binomial heapd. This implementation assumes that
there are no keys with valu. (See Exercise 19.2-5.)

BINOMIAL -HEAP-MINIMUM (H)

1 y<NIL

2 X <« headH]

3 min<« oo

4 while x # NIL

5 do if keyfx] < min
6 then min < key[x]
7 Yy < X

8 X < sibling[X]

9 return y

Since a binomial heap is min-heap-ordered, the minimum kagtmeside in a
root node. The BNOMIAL -HEAP-MINIMUM procedure checks all roots, which
number at mostign] + 1, saving the current minimum imin and a pointer to
the current minimum iny. When called on the binomial heap of Figure 19.3,
BINOMIAL -HEAP-MINIMUM returns a pointer to the node with key 1.

Because there are at molHggn| + 1 roots to check, the running time of
BINOMIAL -HEAP-MINIMUM is O(lg n).

Uniting two binomial heaps

The operation of uniting two binomial heaps is used as a siioi® by most of the
remaining operations. ThelBoMIAL -HEAP-UNION procedure repeatedly links
binomial trees whose roots have the same degree. The falippriocedure links
the Bx_1 tree rooted at nodg to the Bx_; tree rooted at nodg; that is, it makexz
the parent ofy. Nodez thus becomes the root ofB tree.

BINOMIAL -LINK (Y, 2)

1 ply] <z

2 siblingly] <« child[Z]

3 child[z] <y

4 degre¢z] < degredz] + 1

The BINOMIAL -LINK procedure makes nodg the new head of the linked list
of nodez's children in O(1) time. It works because the left-child, right-sibling
representation of each binomial tree matches the orderiogepty of the tree: in
a By tree, the leftmost child of the root is the root oBg_; tree.
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The following procedure unites binomial heaps and H,, returning the re-
sulting heap. It destroys the representationsHgfand H, in the process. Be-
sides BNOMIAL -LINK, the procedure uses an auxiliary procedunai@mIAL -
HeAP-MERGEthat merges the root lists ¢i; andH, into a single linked list that
is sorted by degree into monotonically increasing ordere BINOMIAL -HEAP-
MERGE procedure, whose pseudocode we leave as Exercise 19.3ifpilar to
the MERGE procedure in Section 2.3.1.

BINOMIAL -HEAP-UNION (H1, Hy)

1 H <« MAKE-BINOMIAL -HEAP()

2 headH] < BINOMIAL -HEAP-MERGE(H1, H))

3 free the object#d; and H, but not the lists they point to

4 if headH] = NIL

5 then return H

6 prewvx < NIL

7 X <« headH]

8 nextx < sibling[X]

9 while nextx # NIL
10 do if (degre¢x] # degre¢nextx]) or

(sibling[nextx] # NIL anddegregsibling[nextx]] = degre¢x])

11 then prewx < x > Cases 1 and 2
12 X < nextx > Cases 1 and 2
13 else ifkeyfx] < keynextx]
14 then sibling[x] <« sibling[nextx] > Case 3
15 BINOMIAL -LINK (nextx, X) > Case 3
16 else ifprevx = NIL > Case 4
17 thenheadH] < nextx > Case 4
18 else sibling[prewvx] <« nextx > Case 4
19 BINOMIAL -LINK (X, nextx) > Case 4
20 X < nextx > Case 4
21 nextx < sibling[x]
22 return H

Figure 19.5 shows an example oN®MIAL -HEAP-UNION in which all four cases
given in the pseudocode occur.

The BINOMIAL -HEAP-UNION procedure has two phases. The first phase, per-
formed by the call of BNOMIAL -HEAP-MERGE, merges the root lists of binomial
heapsH; andH; into a single linked lisH that is sorted by degree into monotoni-
cally increasing order. There might be as many as two roatsr(b more) of each
degree, however, so the second phase links roots of equadedegtil at most one
root remains of each degree. Because the linkedHis sorted by degree, we can
perform all the link operations quickly.
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BiINOMIAL -HEAP-MERGE

next-x

Case 3

X next-x

Figure 19.5 The execution of BNOMIAL -HEAP-UNION. (a) Binomial heapsH; and H,. (b) Bi-
nomial heapH is the output of BNOMIAL -HEAP-MERGHH1, H»). Initially, x is the first root on
the root list ofH. Because botk andnextx have degree 0 arley[x] < keynextx], case 3 applies.
(c) After the link occursx is the first of three roots with the same degree, so case 2egpful) After
all the pointers move down one position in the root list, casspplies, since is the first of two
roots of equal degrede) After the link occurs, case 3 applied) After another link, case 1 applies,
because has degree 3 antextx has degree 4. This iteration of thénile loop is the last, because
after the pointers move down one position in the root histxtx = NiL.

In detail, the procedure works as follows. Lines 1-3 starti®rging the root
lists of binomial heapdi; and H, into a single root listH. The root lists ofH;
andH, are sorted by strictly increasing degree, and®vIAL -HEAP-MERGETre-
turns aroot listH that is sorted by monotonically increasing degree. If thu lists
of H; and H, havem roots altogether, BIOMIAL -HEAP-MERGE runs in O(m)
time by repeatedly examining the roots at the heads of thervablists and ap-
pending the root with the lower degree to the output roof testnoving it from its
input root list in the process.
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prev-x X next-x
(d) headH] %% >(7)—>(3
o @
Case 4
prev-x X next-x
(e) headH] %% >(3 >(15
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Case 3
prev-x X
(f) headH] %%
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The BINOMIAL -HEAP-UNION procedure next initializes some pointers into the
root list of H. First, it simply returns in lines 4-5 if it happens to be umgttwo
empty binomial heaps. From line 6 on, therefore, we know Hhditas at least one
root. Throughout the procedure, we maintain three pointecsthe root list:

« X points to the root currently being examined,

« prewvx points to the root precedingon the root list:sibling[prevx] = x (since
initially x has no predecessor, we start witle\-x set toNiL), and

+ nextx points to the root following on the root list:sibling[x] = nextx.

Initially, there are at most two roots on the root li$tof a given degree: because
H, andH, were binomial heaps, they each had at most one root of a gegired.
Moreover, BNOMIAL -HEAP-MERGE guarantees us that if two roots K have
the same degree, they are adjacent in the root list.

In fact, during the execution of IROMIAL -HEAP-UNION, there may be three
roots of a given degree appearing on the root st some time. We shall see
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in a moment how this situation could occur. At each iteratibthe while loop of
lines 9-21, therefore, we decide whether to linkndnextx based on their degrees
and possibly the degree sibling[nextx]. An invariant of the loop is that each time
we start the body of the loop, bothandnextx are nonNIL. (See Exercise 19.2-4
for a precise loop invariant.)

Case 1, shown in Figure 19.6(a), occurs whlegre¢x] # degreg¢nextx], that
is, whenx is the root of aBy-tree anchextx is the root of aB,-tree for somé > k.
Lines 11-12 handle this case. We don't linlandnextx, so we simply march the
pointers one position farther down the list. Updatimgxtx to point to the node
following the new node is handled in line 21, which is common to every case.

Case 2, shown in Figure 19.6(b), occurs whés the first of three roots of equal
degree, that is, when

degreé¢x] = degre¢nextx] = degregsibling[nextx]] .

We handle this case in the same manner as case 1. we just rharphifters one
position farther down the list. The next iteration will exte either case 3 or case 4
to combine the second and third of the three equal-degrds.rbme 10 tests for
both cases 1 and 2, and lines 11-12 handle both cases.

Cases 3 and 4 occur wheris the first of two roots of equal degree, that is, when

degreé¢x] = degre¢nextx] # degregsibling[nextx]] .

These cases may occur in any iteration, but one of them ale@otg's immediately
following case 2. In cases 3 and 4, we likkand nextx. The two cases are
distinguished by whethex or nextx has the smaller key, which determines the
node that will be the root after the two are linked.

In case 3, shown in Figure 19.6(&g\[x] < key[nextx], sonextx is linked tox.
Line 14 removesiextx from the root list, and line 15 make®extx the leftmost
child of x.

In case 4, shown in Figure 19.6(djextx has the smaller key, sois linked to
nextx. Lines 16-18 remove from the root list; there are two cases depending
on whetherx is the first root on the list (line 17) or is not (line 18). Lin® then
makesx the leftmost child ohextx, and line 20 updates for the next iteration.

Following either case 3 or case 4, the setup for the nexttiteraf thewhile
loop is the same. We have just linked tBp-trees to form aBy, ;-tree, whichx
now points to. There were already zero, one, or two ofBer;-trees on the root
list resulting from BNOMIAL -HEAP-MERGE, sox is how the first of either one,
two, or threeBy ;-trees on the root list. Ik is the only one, then we enter case 1
in the next iterationdegreéx] # degreg¢nextx]. If x is the first of two, then we
enter either case 3 or case 4 in the next iteration. It is whanthe first of three
that we enter case 2 in the next iteration.

The running time of BNOMIAL -HEAP-UNION is O(lg n), wheren is the total
number of nodes in binomial heapk andH,. We can see this as follows. Lel
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prev-x X next-x sibling[next-% prev-x X next-x
@ () © @ @ () © @
Case‘ll
Bx B Bx B
prev-x X next-x sibling[next-% prev-x X next-x
@ () d @ () © @
Case‘lz
Bx Bx Bx Bx Bx Bx
prev-x X next-x sibling[next-%

@ () © @

prev-x X next-x sibling[next-%

Bx Bx B
key[X] < key[next-}

@ () © @

Bx Bx B
keyx] > keynext-%

Figure 19.6 The four cases that occur iniBoMIAL -HEAP-UNION. Labelsa, b, ¢, andd serve
only to identify the roots involved; they do not indicate ttlegrees or keys of these roots. In
each casex is the root of aBy-tree andl > k. (a) Case 1:degre¢x] # degreg¢nextx]. The
pointers move one position farther down the root ligh) Case 2:degre¢x] = degreg¢nextx] =
degregsibling[nextx]]. Again, the pointers move one position farther down th&, liand the
next iteration executes either case 3 or case (4) Case 3: degre¢x] = degreg¢nextx] #
degregsibling[nextx]] and key[x] < keynextx]. We removenextx from the root list and link it
to x, creating aBy1-tree. (d) Case 4:degre¢x] = degregnextx] # degregsiblinglnextx]] and
keyinextx] < key[x]. We removex from the root list and link it tsmextx, again creating 8y 1-tree.

containn; nodes andH, containn, nodes, so that = n;+n,. ThenH; contains at
most|lg ny | +1 roots andH, contains at mostig n, | +1 roots, and séd contains at
mostllgn;]+1lgn,]+2 < 2|lgn]+2 = O(Ig n) roots immediately after the call

of BINOMIAL -HEAP-MERGE The time to perform BNOMIAL -HEAP-MERGE IS

thus O(Ign). Each iteration of thavhile loop takesO(21) time, and there are at
most [Ign.] + [lgn,| + 2 iterations because each iteration either advances the
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pointers one position down the root list bf or removes a root from the root list.
The total time is thu©(Ig n).

Inserting a node

The following procedure inserts noadnto binomial heafH, assuming that has
already been allocated akdyx] has already been filled in.

BINOMIAL -HEAP-INSERT(H, X)

H' < MAKE-BINOMIAL -HEAP()

p[x] <« NIL

child[x] <« NIL

sibling[x] < NIL

degreg¢x] < 0

headH'] < x

H <« BINOMIAL -HEAP-UNION(H, H’)

No ok, wdNBE

The procedure simply makes a one-node binomial heap O(1) time and unites
it with the n-node binomial heapi in O(Ig n) time. The call to BNOMIAL -HEAP-
UNION takes care of freeing the temporary binomial héHp (A direct implemen-
tation that does not call RoMIAL -HEAP-UNION is given as Exercise 19.2-8.)

Extracting the node with minimum key

The following procedure extracts the node with the minimusy kom binomial
heapH and returns a pointer to the extracted node.

BINOMIAL -HEAP-EXTRACT-MIN (H)

1 find the rootx with the minimum key in the root list oA,
and removex from the root list ofH
H' < MAKE-BINOMIAL -HEAP()
3 reverse the order of the linked list & children, setting the field of each
child toNiIL, and sehead H’] to point to the head of the resulting list
H <« BINOMIAL -HEAP-UNION(H, H’)
return X

N

o1 b~

This procedure works as shown in Figure 19.7. The input biabheapH is
shown in Figure 19.7(a). Figure 19.7(b) shows the situaditber line 1: the rook
with the minimum key has been removed from the root listof If x is the root
of a By-tree, then by property 4 of Lemma 19X's children, from left to right,
are roots ofBy_1-, Bxk_o-, . .., Bo-trees. Figure 19.7(c) shows that by reversing the
list of x’s children in line 3, we have a binomial he&f that contains every node
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Figure 19.7 The action of BNOMIAL -HEAP-EXTRACT-MIN. (a) A binomial heapH. (b) The
root x with minimum key is removed from the root list ¢1. (c) The linked list ofx’s children is
reversed, giving another binomial hebid. (d) The result of unitingH andH’.

in X’s tree except fok itself. Becaus«'’s tree was removed froril in line 1, the
binomial heap that results from unitirtdgandH’ in line 4, shown in Figure 19.7(d),
contains all the nodes originally iH except forx. Finally, line 5 return.

Since each of lines 1-4 tak€XIg n) time if H hasn nodes, BNOMIAL -HEAP-
EXTRACT-MIN runs inO(Ig n) time.
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Decreasing a key

The following procedure decreases the key of a nodte a binomial heafH to a
new valuek. It signals an error ik is greater tharx’s current key.

BINOMIAL -HEAP-DECREASEKEY (H, X, K)
if kK > keyx]
then error “new key is greater than current key”
keyx] < k
Yy < X
z < ply]
while z # NIL andkeyfy] < keyZ]
do exchangeeyy] < key[Z]
> If y andz have satellite fields, exchange them, too.
Yy« 12
z < ply]

As shown in Figure 19.8, this procedure decreases a key isahee manner
as in a binary min-heap: by “bubbling up” the key in the heagdte”Aensuring
that the new key is in fact no greater than the current key bad &ssigning the
new key tox, the procedure goes up the tree, wjtlinitially pointing to nodex.

In each iteration of thevhile loop of lines 6—-10keyfy] is checked against the
key of y’s parentz. If y is the root orkeyfy] > ke){Zz], the binomial tree is now
min-heap-ordered. Otherwise, nogdeiolates min-heap ordering, and so its key is
exchanged with the key of its parentalong with any other satellite information.
The procedure then seysto z, going up one level in the tree, and continues with
the next iteration.

The BINOMIAL -HEAP-DECREASEKEY procedure take€(lgn) time. By
property 2 of Lemma 19.1, the maximum depthxdé |Ig n], so thewhile loop of
lines 6-10 iterates at mogig n] times.

CQOWoO~NOUITA WNPF
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Deleting a key

It is easy to delete a nodes key and satellite information from binomial he&p
in O(Ign) time. The following implementation assumes that no nodeectly in
the binomial heap has a key efo.

BINOMIAL -HEAP-DELETE(H, X)

1 BINOMIAL-HEAP-DECREASEKEY (H, X, —00)
2 BINOMIAL -HEAP-EXTRACT-MIN(H)

The BINOMIAL -HEAP-DELETE procedure makes node have the unique mini-
mum key in the entire binomial heap by giving it a key-efo. (Exercise 19.2-6
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(@) headH]—>@§ >

(b) headH]

©) heaqH]H.—ﬁ >%6 z
y

Figure 19.8 The action of BNOMIAL -HEAP-DECREASEKEY. (a) The situation just before line 6

of the first iteration of thevhile loop. Nodey has had its key decreased to 7, which is less than the
key of y's parentz. (b) The keys of the two nodes are exchanged, and the situatibbgiwre line 6

of the second iteration is shown. Pointgrandz have moved up one level in the tree, but min-heap
order is still violated(c) After another exchange and moving pointgrandz up one more level, we
find that min-heap order is satisfied, so thieile loop terminates.

deals with the situation in whickh oo cannot appear as a key, even temporarily.) It
then bubbles this key and the associated satellite infeomap to a root by calling
BiINOMIAL -HEAP-DECREASEKEY. This root is then removed frorHl by a call
of BINOMIAL -HEAP-EXTRACT-MIN.

The BINOMIAL -HEAP-DELETE procedure take®(lg n) time.

Exercises

19.2-1
Write pseudocode for BIOMIAL -HEAP-MERGE
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19.2-2
Show the binomial heap that results when a node with key 2dsisried into the
binomial heap shown in Figure 19.7(d).

19.2-3
Show the binomial heap that results when the node with keg 2@leted from the
binomial heap shown in Figure 19.8(c).

19.2-4
Argue the correctness ofIBOMIAL -HEAP-UNION using the following loop in-
variant:

At the start of each iteration of thehile loop of lines 9—21x points to a
root that is one of the following:

« the only root of its degree,
« the first of the only two roots of its degree, or
« the first or second of the only three roots of its degree.

Moreover, all roots preceding’s predecessor on the root list have unique
degrees on the root list, andfs predecessor has a degree different from
that of x, its degree on the root list is unique, too. Finally, noderdeg
monotonically increase as we traverse the root list.

19.2-5

Explain why the BNOMIAL -HEAP-MINIMUM procedure might not work correctly
if keys can have the valuso. Rewrite the pseudocode to make it work correctly in
such cases.

19.2-6

Suppose there is no way to represent the keg. Rewrite the BNOMIAL -HEAP-
DELETE procedure to work correctly in this situation. It shouldlgtike O(Ig n)
time.

19.2-7

Discuss the relationship between inserting into a binoméalp and incrementing a
binary number and the relationship between uniting two tiiab heaps and adding
two binary numbers.

19.2-8
In light of Exercise 19.2-7, rewrite IBIOMIAL -HEAP-INSERTto insert a node di-
rectly into a binomial heap without callingiBOMIAL -HEAP-UNION.
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19.2-9

Show that if root lists are kept in strictly decreasing orbgrdegree (instead of
strictly increasing order), each of the binomial heap ofi@na can be implemented
without changing its asymptotic running time.

19.2-10

Find inputs that cause IBOMIAL -HEAP-UNION, BINOMIAL -HEAP-EXTRACT-
MIN, BINOMIAL -HEAP-DECREASEKEY, and BNOMIAL -HEAP-DELETE to run
in Q(lg n) time. Explain why the worst-case running times aNBMIAL -HEAP-
INSERTand BNOMIAL -HEAP-MINIMUM aref’i(lg n) but notQ(Ig n). (See Prob-
lem 3-5.)

Problems

19-1 2-3-4 heaps

Chapter 18 introduced the 2-3-4 tree, in which every intemode (other than pos-
sibly the root) has two, three, or four children and all lealiave the same depth. In
this problem, we shall implemegt3-4 heapswhich support the mergeable-heap
operations.

The 2-3-4 heaps differ from 2-3-4 trees in the following ways 2-3-4 heaps,
only leaves store keys, and each laadtores exactly one key in the fiekayx].
There is no particular ordering of the keys in the leavest itharom left to right,
the keys may be in any order. Each internal nadmntains a valusmal[x] that
is equal to the smallest key stored in any leaf in the subtreted atx. The rootr
contains a fielcheigh{r] that is the height of the tree. Finally, 2-3-4 heaps are
intended to be kept in main memory, so that disk reads anésvaite not needed.

Implement the following 2-3-4 heap operations. Each of tperations in
parts (a)—(e) should run i®@(gn) time on a 2-3-4 heap with elements. The
UNION operation in part (f) should run i@ (Ig n) time, wheren is the number of
elements in the two input heaps.

a. MINIMUM, which returns a pointer to the leaf with the smallest key.

b. DECREASEKEY, which decreases the key of a given leafo a given value
k < keyx].

c. INSERT, which inserts leak with key k.
d. DELETE, which deletes a given leat

e. EXTRACT-MIN, which extracts the leaf with the smallest key.



474

Chapter 19 Binomial Heaps

f.  UNION, which unites two 2-3-4 heaps, returning a single 2-3-4 haagh de-
stroying the input heaps.

19-2 Minimum-spanning-tree algorithm using binomial heap
Chapter 23 presents two algorithms to solve the problem dirfgqha minimum
spanning tree of an undirected graph. Here, we shall see mmnial heaps can
be used to devise a different minimum-spanning-tree alyori

We are given a connected, undirected gr&k- (V, E) with a weight function
w : E - R. We callw(u, v) the weight of edgéu, v). We wish to find a minimum
spanning tree fofs: an acyclic subseT C E that connects all the vertices W
and whose total weight

w(T) = Z w(u,v)
(u,v)eT
is minimized.
The following pseudocode, which can be proven correct usobniques from
Section 23.1, constructs a minimum spanning fedt maintains a partitiorV;}
of the vertices oV and, with each se¥;, a set

Ei C{(u,v):ueVorv eV}

of edges incident on vertices .

MST(G)
1 T«
2 for each vertex; € V[G]
3 doV, < {v;}
4 Ei < {(vi,v) € E[G]}
5 while there is more than one sét
6 do choose any se;
7 extract the minimum-weight edda, ») from E;
8 assume without loss of generality that V; ando € V;
9 if i # |
10 thenT < T U {(u,v)}
11 Vi < V; UV, destroyingV;
12 Ei < E U Ej

Describe how to implement this algorithm using binomial pge# manage the
vertex and edge sets. Do you need to change the represantdt® binomial
heap? Do you need to add operations beyond the mergealgespeeations given
in Figure 19.1? Give the running time of your implementation
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Chapter notes

Binomial heaps were introduced in 1978 by Vuillemin [307tot&n [49, 50] stud-
ied their properties in detail.



