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searching for a value in the tree is one plus the number of nodes examined 
when the value was first inserted into the tree. 

13.3-3 
We can sort a given set of n numbers by first building a binary search 
tree containing these numbers (using TREE-INsERT repeatedly to insert the 
numbers one by one) and then printing the numbers by an inorder tree 
walk. What are the worst-case and best-case running times for this sorting 
algorithm? 

13.3-4 
Show that if a node in a binary search tree has two children, then its 
successor has no left child and its predecessor has no right child. 

13.3-5 
Suppose that another data structure contains a pointer to a node y in a 
binary search tree, and suppose that y's predecessor z is deleted from the 
tree by the procedure TREE-DELETE. What problem can arise? How can 
TREE-DELETE be rewritten to solve this problem? 

13.3-6 
Is the operation of deletion "commutative" in the sense that deleting x 
and then y from a binary search tree leaves the same tree as deleting y and 
then x? Argue why it is or give a counterexample. 

13.3-7 
When node z in TREE-DELETE has two children, we could splice out its 
predecessor rather than its successor. Sorne have argued that a fair strategy, 
giving equal priority to predecessor and successor, yields better empirical 
performance. How might TREE-DELETE be changed to implement such a 
faír strategy? 

* 13.4 Randomly built binary search trees 

We have shown that all the basic operations on a binary search tree run in 
O(h) time, where h is the height of the tree. The height of a binary search 
tree varies, however, as items are inserted and deleted. In order to analyze 
the behavior of binary search trees in practice, it is reasonable to make 
statistical assumptions about the distribution of keys and the sequence of 
insertions and deletions. 

Unfortunately, little is known about the average height of a binary search 
tree when both insertion and deletion are used to create it. When the tree 
is created by insertion alone, the analysis becomes more tractable. Let us 
therefore define a randomly b"ilt binary search tree on n distinct keys as 
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one that arises from inserting the keys in random order into an initially 
empty tree, where each of the n! permutations of the input keys is equally 
likely. (Exercise 13.4-2 asks you to show that this notion is different from 
assuming that every binary search tree on n keys is equally likely.) The 
goal of this section is to show that the expected height of a randomly built 
binary search tree on n keys is D(lg n). 

We begin by investigating the structure of binary search trees that are 
built by insertion alone. 

Lemm1l13.3 
Let T be the tree that results from inserting n distinct keys k l , k2, ... , kn 

(in order) into an initially empty binary search tree. Then k¡ is an ancestor 
of kj in T, for 1 :5 i < j :5 n, if and only if 

k¡ = min {k, : 1 :5 1 :5 i and k, > kj} 

or 

k¡ = max {k, : I :5 1 :5 i and k, < kj} 

Prool =>.: Suppose that k¡ is an ancestor of kj. Consider the tree T¡ that 
results after the keys k" k2, ... ,k¡ have been inserted. The path in T¡ from 
the root to k¡ is the same as the path in T from the root to k¡. Thus, 
if k j were inserted into T¡, it would become either the left or the right 

. child of k¡. Consequently (see Exercise 13.2-6), k¡ is either the smallest 
key among k" k2, ... ,k¡ that is larger than kj or the largest key among 
k" k2, ... , k¡ that is smaller than kj . 

*=: Suppose that k¡ is the smallest key among k¡, k2, .. . , k¡ that is larger 
than kj. (The case in which k¡ is the largest key among k¡, k2, ... ,k¡ that is 
smaller than kj is handled symmetrically.) CompaÍing kj to any of the keys 
on the path in T from the root to k¡ yields the same results as comparing 
k¡ to the keys. Hence, when kj is inserted, it follows a path through k¡ and 
is inserted as a descendant of k j • • 

As a corollary of Lemma 13.3, we can precisely characterize the depth 
of a key based on the input permutation. 

Coro1lllry 13.4 
Let T be the tree that results from inserting n distinct keys k¡, k2, ... ,kn 
(in order) into an initialIy empty binary search tree. For a given key kj, 
where 1 :5 j :5 n, define 

Gj = {k¡ : 1 :5 i < j and k, > k¡ > kj for alll < i such that k, > kj } 

and 

Lj = {k¡ : 1 :5 i < j and k, < k¡ < kj for alll < i such that k¡ < kj} . 

Then the keys on the path from the root to k j are exactly the keys in 
Gj U Lb and the depth in T of any key kj is 
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• 
Figure 13.5 illustrates the two sets Gj and Lj. The set Gj contains any 

key k¡ inserted before kj such that k¡ is the smallest key among k l ,k2, ... , k¡ 
that is larger than kj. (The strocture of Lj is symmetric.) To better un­
derstand the set Gj. let us explore a method by which we can enumerate 
its elements. Among the keys k l , k2, .. . ,kj - 1, consider in order those that 
are larger than kj. These keys are shown as Gj in the figure. As each key 
is considered in tum, keep a ronning account of the minimum. The set Gj 

consists of those elements that update the ronning minimum. 
Let us simplify this scenario somewhat for the purpose of analysis. Sup­

pose that n distinct numbers are inserted one at a time into a dynamic seto 
If a11 permutations of the numbers are equally likely, how many times on 
average does the mínimum of the set change? To answer this question, 
suppose that the ¡th number inserted is k¡, for i = 1, 2, ... , n. The proba­
bility is 1/ i that k¡ is the minimum of the first i numbers, since the rank 
of k¡ among the first i numbers is equally likely to be any of the i possibIe 
ranks. ConsequentIy, the expected number of changes to the minimum of 
the set is 

n 1 
~7 Hn , 
1=1 

where Hn = Inn + 0(1) is the nth harmonic number (see equation (3.5) 
and Problem 6-2). 

We therefore expect the number of changes to the minimum to be ap­
proximateIy In n, and the following lemma shows that the probability that 
it is much greater is very small. 

Lemma 13.5 
Let k l , k2, ... ,kn be a random permutation of n distinct numbers, and let 
ISI be the random variable that is the cardinality of the set 

S = {k¡ : 1 :5 i :5 n and k, > k¡ for all 1< i} . (13.1 ) 

Then Pr{ISI ::::: (P + l)Hn} :5 1/n2 , where Hn is the nth harmonic number 
and P~ 4.32 satisfies the equation (lnp - l)P =2. 

Proof We can view the cardinality of the set S as being determined 
by n Bemoulli tríals, where a success occurs in the ith trial when k¡ is 
sma11er than the eIements k1,k2, ... ,k¡-I' Success in the ith trial occurs 
with probability l/i. The triaIs are independent, since the probability that 
k¡ is the minimum of k¡, k2, ... ,k¡ is independent of the relative ordering 
ofk¡,k2, ... ,k¡_I. 

We can use Theorem 6.6 to bound the probability that ISI ::::: (P + l)Hn• 

The expectation of ISI is JI. = Hn ::::: Inn. Since p > 1, Theorem 6.6 yields 
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Figure 13.5 Illustrating the two sets Gj and Lj that comprise the keys on a path 
from the root of a binary search tree to a key kj = 17. (a) The nodes with keys in Gj 
are black, and the nodes with keys in Lj are white. AH other nodes are shaded. The 
path from the root down to the node with key kj is shaded. Keys to the left of the 
dashed line are Iess than kj, and keys to the right are greater. The tree is constructed 
by inserting the keys shown in the topmost list in (b). The set Gj = {21, 25,19, 29} 
consists of those elements that are inserted before 1 7 and are greater than I 7. The 
set Gj = {2I,19} consists of those elements that update a running minimum of 
the elements in Gi.Thus, the key 21 is in Gj, since it is the first eIement. The 
key 25 is not in Gj, since it is larger than the running mínimum 21. The key 19 is 
in Gh since it is smaller than the running minimum 21. The key 29 is not in Gj, 
since it is larger than the. running mínimum 19. The structures of Lj and Lj are 
symmetric. 
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Pr{ISI2: (P + I)Hn} = Pr {lSI- p.. 2: PHn} 

(eHn )PHn:::; 
PHn 

e( I-In P)PH.= 
e-(lnp-1lPlnn:::; 
n-(lnp-I)p= 

= l/n2 
, 

which follows from the definition of p. • 
We now have the tools to bound the height of a randomly built binary 

search tree. 

Theorem 13.6 
The average height of a randomly built binary search tree on n distinct 
keys is O(lg n). 

Proof Let k¡, k2 ,. •• ,kn be a random permutation on the n keys, and let 
T be the binary search tree that results from inserting the keys in order 
¡nto an initially empty tree. We first consider the probability that the 
depth d(kj, T) of a given key kj is at least t, for an arbitrary value t. By 
the characterization of d(kj , T) in Corollary 13.4, if the depth of k j is at 
least 1, then the cardinality of one of the two sets Gj and Lj must be at 
least t/2. Thus, 

Pr{d(kj, T) 2: t}:::; Pr{lGjl2: t/2} + Pr{IL j l2: 1/2} ( 13.2) 

Let us examine Pr{IGjl2: t/2} first. We have 

Pr{IGjl 2: t/2} 

Pr{l{k¡: 1 :::; i < j and k, > k¡ > kj for alll < i}l2: t/2} 

:::; Pr{l{k¡: i:::; n and k, > k¡ for alll < i}l2: t/2} 

= Pr{ISI 2: t/2} , 

where S is defined as in equation (13.1). To justify this argument, note 
that the probability does not decrease if we extend the range of i from 
i < j to i :::; n, since more elements are added to the set. Likewise, the 
probability does not decrease if we remove the condition that k¡ > kj, 
since we are substituting a random permutation on possibly fewer than n 
elements (those k¡ thatare greater than kj) for a random permutation on 
n elements. 

Using a symmetric argument, we can prove that 
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Pr{ILj l2': t/2} ::; Pr{ISI 2': t/2} , 

and thus, by inequality (13.2), we obtain 

Pr{d(kj , T) 2': t} ::; 2Pr{ISI 2': t/2} . 

If we choose t = 2(P + I)Hn, where Hn is the nth harmonic number and 
p ¡::; 4.32 satisfies (lnp - I)P =2, we can apply Lemma 13.5 to conc1ude 
that 

Pr{d(kj , T) 2': 2(P + l)Hn} 	 ::; 2Pr{ISI 2': (P + l)Hn} 

::; 2/n2. 

Since there are at most n nodes in a randomly built binary search tree, 
the probability that any node's depth is at least 2(P + 1)Hn is therefore, by 
Boole's inequality (6.22), at most n(2/n2) = 2/n. Thus, at least 1 - 2/n 
of the time, the height of a randomly built binary search tree is less than 
2(P + l)Hn, and at most 2/n of the time, it is at most n. The expected 
height is therefore at most (2(P + l)Hn)(l - 2/n) + n(2/n) = O(lgn). _ 

Exercises 

13.4-1 

Describe a binary search tree on n nodes such that the average depth of a 

node in the tree is 9(lg n) but the height of the tree is w(lg n). How large 

can the height of an n-node binary search tree be if the average depth of 

a node is 9(lgn)? 


13.4-1 

Show that the notion of a randomly chosen binary search tree on n keys, 

where each binary search tree of n keys is equally likely to be chosen, is 

different from the notion of a randomly built binary search tree given in 

this section. (Hint: List the possibilities when n = 3.) 


13.4-3 * 

Given a constant r 2': 1, determine t such that the probability is less than 

l/n' that the height of a randomly built binary search tree is at least tHn. 


13.4-4 * 

Consider RANDOMIZED-QUICKSORT operating on a sequence of n input 

numbers. Prove that for any constant k > 0, all but O(l/nk) of the n! 

input permutations yield an O(n Ig n) running time. 


Problems 

13-1 Binary searc" tren wit" elJual keys 
Equal keys pose a problem for the implementation of binary search trees. 


