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"Computer Science is no more about computers than 
astronomy is about telescopes." 
  
http://www.cs.utexas.edu/~EWD/  



EDSGER WYBE DIJKSTRA 

- May 11, 1930 – August 6, 2002 
  
- Received the 1972 A. M. Turing Award, widely considered the 
most prestigious award in computer science.   
 
- The Schlumberger Centennial Chair of Computer Sciences at 
The University of Texas at Austin from 1984 until 2000 
  
- Made a strong case against use of the GOTO statement in 
programming languages and helped lead to its deprecation. 
  
- Known for his many essays on programming. 
 
 
 
 



SINGLE-SOURCE SHORTEST PATH PROBLEM  

Single-Source Shortest Path Problem - The problem of 
finding shortest paths from a source vertex v to all other 
vertices in the graph. 



DIJKSTRA'S ALGORITHM  

Dijkstra's algorithm - is a solution to the single-source 
shortest path problem in graph theory.  
  
Works on both directed and undirected graphs. However, all 
edges must have nonnegative weights. 
 
Approach: Greedy 
 
Input: Weighted graph G={E,V} and source vertex v∈V, such 
that all edge weights are nonnegative 
  
Output: Lengths of shortest paths (or the shortest paths 
themselves) from a given source vertex v∈V  to all other 
vertices 
 
 



DIJKSTRA'S ALGORITHM - PSEUDOCODE 

dist[s] ←0           (distance to source vertex is zero) 
for  all v ∈ V–{s} 
        do  dist[v] ←∞   (set all other distances to infinity)  
S←∅     (S, the set of visited vertices is initially empty)  
Q←V      (Q, the queue initially contains all vertices)                
while Q ≠∅    (while the queue is not empty)  
do   u ← mindistance(Q,dist) (select the element of Q with the min. distance)  
      S←S∪{u}    (add u to list of visited vertices)  
       for all v ∈ neighbors[u]    
              do  if   dist[v] > dist[u] + w(u, v)   (if new shortest path found) 
                         then      d[v] ←d[u] + w(u, v) (set new value of shortest path) 
  (if desired, add traceback code) 
return dist 
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IMPLEMENTATIONS AND RUNNING TIMES     

The simplest implementation is to store vertices in an array 
or linked list. This will produce a running time of  
  
O(|V|^2 + |E|) 
 
For sparse graphs, or graphs with very few edges and many 
nodes, it can be implemented more efficiently storing the 
graph in an adjacency list using a binary heap or priority 
queue. This will produce a running time of 
 
O((|E|+|V|) log |V|) 



DIJKSTRA'S ALGORITHM - WHY IT WORKS 

 As with all greedy algorithms, we need to make sure that it 
is a correct algorithm (e.g., it always returns the right solution 
if it is given correct input). 

 
 A formal proof would take longer than this presentation, but 
we can understand how the argument works intuitively.  

 
 If you can’t sleep unless you see a proof, see the second 
reference or ask us where you can find it. 



 To understand how it works, we’ll go over the 
previous example again. However, we need two 
mathematical results first: 

 

 Lemma 1: Triangle inequality 
If δ(u,v) is the shortest path length between u and v, 
 δ(u,v) ≤ δ(u,x) + δ(x,v)  

 Lemma 2:  
The subpath of any shortest path is itself a shortest 
path. 

 

 The key is to understand why we can claim that anytime we 
put a new vertex in S, we can say that we already know the 
shortest path to it. 

 Now, back to the example… 

 

 

 

 

 

DIJKSTRA'S ALGORITHM - WHY IT WORKS 



 As mentioned, Dijkstra’s algorithm calculates 

the shortest path to every vertex.  

 However, it is about as computationally 

expensive to calculate the shortest path from 

vertex u to every vertex using Dijkstra’s as it is 

to calculate the shortest path to some particular 

vertex v. 

 Therefore, anytime we want to know the optimal 

path to some other vertex from a determined 

origin, we can use Dijkstra’s algorithm. 

DIJKSTRA'S ALGORITHM - WHY USE IT? 



APPLICATIONS OF DIJKSTRA'S ALGORITHM 

- Traffic Information Systems are most prominent use   
- Mapping (Map Quest, Google Maps)  
- Routing Systems 



APPLICATIONS OF DIJKSTRA'S 
ALGORITHM 
 One particularly relevant this 
week: epidemiology 

 
 Prof. Lauren Meyers (Biology 
Dept.) uses networks to model the 
spread of infectious diseases and 
design prevention and response 
strategies. 

 
 Vertices represent individuals, 
and edges their possible contacts. 
It is useful to calculate how a 
particular individual is connected 
to others. 
 
 Knowing the shortest path 
lengths to other individuals can be 
a relevant indicator of the 
potential of a particular individual 
to infect others. 

 
 

 
 



 Dijkstra’s original paper: 

E. W. Dijkstra. (1959) A Note on Two Problems in Connection with 

Graphs. Numerische Mathematik, 1. 269-271.  

 MIT OpenCourseware, 6.046J Introduction to Algorithms. 

< http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-

Computer-Science/6-046JFall-2005/CourseHome/> Accessed 

4/25/09 

 Meyers, L.A. (2007) Contact network epidemiology: Bond 

percolation applied to infectious disease prediction and control. 

Bulletin of the American Mathematical Society 44: 63-86. 

 Department of Mathematics, University of Melbourne. Dijkstra’s 

Algorithm. 

<http://www.ms.unimelb.edu.au/~moshe/620-

261/dijkstra/dijkstra.html > Accessed 4/25/09 
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