
DIJKSTRA'S ALGORITHM

By Laksman Veeravagu and Luis Barrera

THE AUTHOR: EDSGER WYBE DIJKSTRA

"Computer Science is no more about computers than
astronomy is about telescopes."

http://www.cs.utexas.edu/~EWD/

EDSGER WYBE DIJKSTRA

- May 11, 1930 – August 6, 2002

- Received the 1972 A. M. Turing Award, widely considered the
most prestigious award in computer science.

- The Schlumberger Centennial Chair of Computer Sciences at
The University of Texas at Austin from 1984 until 2000

- Made a strong case against use of the GOTO statement in
programming languages and helped lead to its deprecation.

- Known for his many essays on programming.

SINGLE-SOURCE SHORTEST PATH PROBLEM

Single-Source Shortest Path Problem - The problem of
finding shortest paths from a source vertex v to all other
vertices in the graph.

DIJKSTRA'S ALGORITHM

Dijkstra's algorithm - is a solution to the single-source
shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all
edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph G={E,V} and source vertex v∈V, such
that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths
themselves) from a given source vertex v∈V to all other
vertices

DIJKSTRA'S ALGORITHM - PSEUDOCODE

dist[s] ←0 (distance to source vertex is zero)
for all v ∈ V–{s}
 do dist[v] ←∞ (set all other distances to infinity)
S←∅ (S, the set of visited vertices is initially empty)
Q←V (Q, the queue initially contains all vertices)
while Q ≠∅ (while the queue is not empty)
do u ← mindistance(Q,dist) (select the element of Q with the min. distance)
 S←S∪{u} (add u to list of visited vertices)
 for all v ∈ neighbors[u]
 do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
 then d[v] ←d[u] + w(u, v) (set new value of shortest path)
 (if desired, add traceback code)
return dist

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

DIJKSTRA ANIMATED EXAMPLE

IMPLEMENTATIONS AND RUNNING TIMES

The simplest implementation is to store vertices in an array
or linked list. This will produce a running time of

O(|V|^2 + |E|)

For sparse graphs, or graphs with very few edges and many
nodes, it can be implemented more efficiently storing the
graph in an adjacency list using a binary heap or priority
queue. This will produce a running time of

O((|E|+|V|) log |V|)

DIJKSTRA'S ALGORITHM - WHY IT WORKS

 As with all greedy algorithms, we need to make sure that it
is a correct algorithm (e.g., it always returns the right solution
if it is given correct input).

 A formal proof would take longer than this presentation, but
we can understand how the argument works intuitively.

 If you can’t sleep unless you see a proof, see the second
reference or ask us where you can find it.

 To understand how it works, we’ll go over the
previous example again. However, we need two
mathematical results first:

 Lemma 1: Triangle inequality
If δ(u,v) is the shortest path length between u and v,
 δ(u,v) ≤ δ(u,x) + δ(x,v)

 Lemma 2:
The subpath of any shortest path is itself a shortest
path.

 The key is to understand why we can claim that anytime we
put a new vertex in S, we can say that we already know the
shortest path to it.

 Now, back to the example…

DIJKSTRA'S ALGORITHM - WHY IT WORKS

 As mentioned, Dijkstra’s algorithm calculates

the shortest path to every vertex.

 However, it is about as computationally

expensive to calculate the shortest path from

vertex u to every vertex using Dijkstra’s as it is

to calculate the shortest path to some particular

vertex v.

 Therefore, anytime we want to know the optimal

path to some other vertex from a determined

origin, we can use Dijkstra’s algorithm.

DIJKSTRA'S ALGORITHM - WHY USE IT?

APPLICATIONS OF DIJKSTRA'S ALGORITHM

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

APPLICATIONS OF DIJKSTRA'S
ALGORITHM
 One particularly relevant this
week: epidemiology

 Prof. Lauren Meyers (Biology
Dept.) uses networks to model the
spread of infectious diseases and
design prevention and response
strategies.

 Vertices represent individuals,
and edges their possible contacts.
It is useful to calculate how a
particular individual is connected
to others.

 Knowing the shortest path
lengths to other individuals can be
a relevant indicator of the
potential of a particular individual
to infect others.

 Dijkstra’s original paper:

E. W. Dijkstra. (1959) A Note on Two Problems in Connection with

Graphs. Numerische Mathematik, 1. 269-271.

 MIT OpenCourseware, 6.046J Introduction to Algorithms.

< http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-

Computer-Science/6-046JFall-2005/CourseHome/> Accessed

4/25/09

 Meyers, L.A. (2007) Contact network epidemiology: Bond

percolation applied to infectious disease prediction and control.

Bulletin of the American Mathematical Society 44: 63-86.

 Department of Mathematics, University of Melbourne. Dijkstra’s

Algorithm.

<http://www.ms.unimelb.edu.au/~moshe/620-

261/dijkstra/dijkstra.html > Accessed 4/25/09

REFERENCES

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/CourseHome/
http://www.ms.unimelb.edu.au/~moshe/620-261/dijkstra/dijkstra.html
http://www.ms.unimelb.edu.au/~moshe/620-261/dijkstra/dijkstra.html
http://www.ms.unimelb.edu.au/~moshe/620-261/dijkstra/dijkstra.html

