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C.6 Continuity

Problem 6.1
(a) The function g(x) = |x| is a continuous function and | f(x)| = (go f)(x) is continuous because
the composition of continuous functions is a continuous function.
As for the reciprocal, take

f(X)Z{l’ =0

-1, x<0.

It is clearly a discontinuous function, however |f(x)| = 1 everywhere, which is continuous.
This example illustrates that from the fact that | f(x)| is continuous one cannot conclude that
f(x) itself is continuous.

(b) We are talking here about a function f : R — Q that is continuous. One such function would
necessarily be constant. Let us see why. Suppose that f(x;) = ¢; and f(x2) = g2 # ¢1. Since
the function is continuous it must take all intermediate values between ¢, and g, within the
interval [x;,x;]. But between any two rational numbers there are infinitely many irrational
numbers, so there must exist x € (x1,x2) such that f(x) is irrational. This is a contradiction
and therefore g, # ¢ is not possible.

Problem 6.2

(a) The information that the function is surjective means that xo and x; in [0, 1] such that
f(x0) =0and f(x;) = 1. Now, consider the interval [xo,x;] (or [x1,xo], depending on which
one is bigger). The function g(x) = f(x) —x is continuous (the sum of two continuous
functions) and satisfies

g(xo0) = —xo, g(x1) =1—xi.

If xo = 0 then ¢ = 0 is the point we are looking for. If x; = 1 then ¢ =1 is that point. If
none of these two things happen then g(xp) < 0 and g(x;) > 0 and we can apply Bolzano’s
theorem: there must exist ¢ € (0, 1) such that g(c) = 0 —which is equivalent to f(c) = c.
Whichever the case, we can conclude that there exists ¢ € [0, 1] such that f(c) = c.

(b) Consider the number

‘LL:

S|

Xn:f(xk)-
k=1

We can obtain a lower bound to i by replacing in this expression all the f(x;) by the smallest
one. Thus,

p= min f(x).

k=1,....n

Likewise, we can obtain an upper bound replacing them by the largest one:

So u is a value intermediate between two values that the function f takes in the interval [a, ],
therefore, since it is continuous, there must be a number ¢ € [a, b] at which f(c) = u.
Problem 6.3 Since f is a rational function, all that it is required for it to be continuous is that the

denominator does not vanish within the specified set.



230 Chapter C. Solutions to exercises

(a) In this case the denominator must never vanish. If A = 0 the function f(x) = 1 and trivially
continuous in R. Consider now A # 0. Since in this case the denominator is a quadratic
polinomial, the requirement that it never vanishes can be rephrase as its two roots being
complex. The condition for that is that the discriminant is negative, so

422 —41 <0 < A(A-1)<0.

This holds if each factor has a different sign, i.e., if 0 < A < 1. Therefore the function is
continuous in R provided A € [0,1).

(b) Any of the values of A found in the previous item make the function continuous in R —hence
also in [0, 1]—, so we just have to check what happens if A <0 or if A > 1. In any of these
two cases the denominator will have two real roots, so the key point is that none of them lies
within the interval [0, 1] where we want f(x) to be continuous.

By solving the quadratic equation we find the two roots as

CAHVAR ST — CA-VART) —
= =1+vV1-21"1, = =1-Vv1-A-1

X1 X2
If A =1 both x; =x; = 1 and so f is not continuous at x = 1. Thus A # 1 is required. In
this case x; > 1, so it will always be outside the interval [0, 1]. We can ignore it. On the
contrary, x; < 1, so it will be also ouside the interval provided x, < 0. This condition implies
v/1—A~1> 1, which can only hold if A < 0.

Summarising, f(x) will be continuous in [0, 1] provided A < 1.
Problem 6.4
(i) Numerator and denominator are continuous functions in R, so this function will be continuous
except when the denominator vanishes. It does when x?> — 8x+12 = (x — 6)(x—2) = 0, so f
is continuous in R — {2,6}.

(i) The function is the sum of a plynomial (continuous in R) and the function &3/, The
exponential is continuous everywhere and the function 3 /x too, except for x = 0. Besides,

lim &3/

= 00’
x—07F

so f is continous in R — {0}.

(iii) Polynomials are continuous in R and so the tangent except when its argument is an odd
multiple of /2. This means the points

n7r—2+z
3 6’

T
3x—|—2:n7r+§ =x= nez.

f is continuous except at these infinitely many points.

(iv) The polynomial is continuous in R, so f is continuous wherever the argument of the square
root is not negative. This means x> — 5x+ 6 = (x — 3)(x —2) > 0, which happens for x > 3
or x < 2. Thus f is continuous in (—eo,2) U (3,00).

(v) arcsinx is only defined for x € [—1, 1], but in this region it is continuous because is the inverse
of a continuous function. Thus f is continuous in [—1, 1].

(vi) The polynomials are continuous everywhere, so the only requirement is that the argument of
the logarithm is positive, i.e., 8x —3 > 0. Hence f is continuous in (3/8,).

(vii) This function represents the decimal part of x and is clearly discontinuous at the integers.
Thus f is continuous in R — Z.
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(viii)

(ix)

(x)

(xi)

(xii)

The polynomial and the sine function are both continuous everywhere, and so is 1 /x except
at x = 0. Function f is defined at x = 0 though, so we must check the definition of continuity
at this specific point. Since |x*sin(1/x)| < x?> and x> — 0 as x — 0, then

tim /(x) =0 = (0)

and f is continuous in R.

For x > 0 the function is continuous except for x = (2n — 1)w/2, n € N. For x < 0 the
function is always continuous. We must compute the two one-sided limits at x = 0 to check
for continuity at that point. Now,

tanx X
Iim f(x)= lim — = lim — = lim /x=0.
)Ho+f( ) =0t /X x0T /X xﬁOJr\/_
And on the other side,
lim e!/* = lim ¢ =0
x—0~ [——o0

lim (x) =0 = £(0),

so f is continuous in R—{(2n—1)w/2 : n € N}.

As close as we like to a rational number there is always an irrational number. As close as we
like to an irrational number there is always a rational number. So, f is discontinuous at every
x # 0. At x = 0 function f(x) is continuous though. The reason is that | f(x)| = |x| — 0 as
x—0, so

lim f(x) = 0= f(0).

x—0

Each piece of this piecwise function separately is a continuous function, so we just need to
check what happens at the joints. Thus,

lim f(x) = lim (x—1)> =0, lim f(x) = lim (]x| —x) =0,

x—1t x—1t x—1- x—1-
SO
lim f(x) =0= f(1).
x—1
And
lim f(x)= lim (Jx]—x) =2, lim f(x)= lim sin(7x)=0,
x——1- x——1t x——1t x——1-

so f(x) is continuous in R — {—1}.

The two polynomials defining the function for |x| > 1 are continuous function. In (—1,1)
the function is defined as sgnx+ 1, which is continuous except at x = 0. We now need to
check the two joints. Thus,

lim f(x) = lim 2x =2, lim f(x)= lir{1 (sgnx+1) =2,
x—1-

x—1t x—1t x—1-

SO

lim f(x) =2 = f(1).
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And
lim f(x)= lim (sgnx+1)=0, lim f(x)= lim (x4+1)*=0,
x——1- x——1* x——1% x——1-
SO
lim f(x)=0= f(—1).
x——1

Summarising, f(x) is continuous in R — {0}.

(xiii) Each of the three pieces of this piecewise function is continuous (a polynomial or the absolute
value of a polynomial), so we need to check just the joints. Thus,

li = lim (4x—5) =3 li = lim x¥*—1|=3
xir%l+ f(X) xi%l*( * ) ’ xigl‘ f(X) xi%l‘ |x | ’
SO

lim f(x) = 3 = f(2).

x—2
And

li = i 2 _1|=3 li = lim 2 =4
x—>1£n2* f(X) x—>1£n2Jr |X | ’ x—>1£n2+f(X) x—>11—n2*x ’

so f(x) is continuous in R — {—2}.
(xiv) The functions defining f(x) for |x| > 1 are both polynomials —hence continuous. Within
|x| < 1itis defined as g(x) = x— [x]. Now, g(x) =x+1 for all =1 <x <0, g(x) = x for all
0 <x < 1,and g(1) =0. Thus function f(x) can be redefined as
(x—1)2 x>1,
flx)=1qx, 0<x<1,
x+1, x <O0.

All three pieces are continuous (polynomials), so we must look at the joints. So,

lim f(x) = lim (x—1)*> =0, lim f(x) = lim x=1,

x—1t x—1t x—1- x—1-

and
li =1 =0 li =1 1)=1.
Jim f@x)= lim x=0,  lim f(x)= lim (x+1)

Therefore the f(x) is continuous in R — {0, 1}.
Problem 6.5
(i) Denoting f(x) = x? — 18x+2, a continuous function in R, we have f(—1) =21, f(1) = —15,
so Bolzano’s theorem guarantees at least one zero in [—1, 1].
(ii) Denoting f(x) = x—sinx— 1, a continuous function in R, we have f(0) = —1 and f(7) =
w—1> 0, so Bolzano’s theorem guarantees at least one zero in [0, 7].

(ii1) Since e* > 0, we know that ¢* + 1 > 0, so the equation cannot have any solution in R.
(iv) Since —1 < cosx < 1 for all x € R, the equation cosx = —2 cannot have any solution in R.

(v) f(x) >0 for all =2 <x <0 and f(x) <O for all 0 <x < 2. If f(x) where continuous
this would imply that f(0) = 0. But the function is not continuous at x = 0 (f(07) = 2,
f(01) = —2), so there is no solution to the equation f(x) =0 in [—2,2].
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(vi) Denoting

3 7 X 2
flx)= % —sin(mx) +3 — 3= % —sin(nx)+§,

f(=2)=—4/3 and f(2) = 8/3, so Bolzano’s theorem guarantees at least one zero in [—2,2].

(vii) Clearly |sinx| — sinx < 2, so the equation |sinx| — sinx = 3 cannot have any solution in R.
Problem 6.6 If f(x) = az, 1 ¥ 4 ayx®* 4 - -+ + ayx + ap then, as x — 4o we have f(x) ~
arn s 1x*" 1. Therefore the signs of f(x) for large positive x and large negative x are opposite, so we
can apply Bolzano and conclude that f(x) must be zero at least at one point in R.



