
Grupo de Arquitectura de Computadores, 

Comunicaciones y Sistemas 

COMPUTER 

ARCHITECTURE 

Parallel Architectures: Models and Tools 



Computer Technology 

 Performance improvements: 

 
 Improvements in semiconductor technology 

 Feature size, clock speed 

 

 Improvements in computer architectures 
 Enabled by HLL compilers, UNIX 

 Lead to RISC architectures 

 

 Together have enabled: 
 Lightweight computers 

 Productivity-based managed/interpreted programming 
languages 
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Technology 14 



Integrated Circuit Cost 

 Integrated circuit 

 

 

 

 

 
 

 Bose-Einstein formula: 

 
 

 Defects per unit area = 0.016-0.057 defects per square cm (2010) 

 N = process-complexity factor = 11.5-15.5 (40 nm, 2010) 
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Example 16 

 Wafer with a diameter of 30 cm. 

 

 Dies of 1.5 cm side. 

 Dies per wafer: 269. 

 

 Dies of 1 cm side 

 Dies per wafer: 640. 



Trends in Technology 

 Integrated circuit technology 

 Transistor density:  35%/year 

 Die size:  10-20%/year 

 Integration overall:  40-55%/year 

 

 DRAM capacity:  25-40%/year (slowing) 

 

 Flash capacity:  50-60%/year 

 15-20X cheaper/bit than DRAM 

 

 Magnetic disk technology:  40%/year 

 15-25X cheaper/bit than Flash 

 300-500X cheaper/bit than DRAM 
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Bandwidth and Latency 

 Bandwidth or throughput 

 Total work done in a given time 

 10,000-25,000X improvement for processors 

 300-1200X improvement for memory and disks 

 

 Latency or response time 

 Time between start and completion of an event 

 30-80X improvement for processors 

 6-8X improvement for memory and disks 
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Bandwidth and Latency 

Log-log plot of bandwidth and latency milestones 



Transistors and Wires 

 Feature size 

 Minimum size of transistor or wire in x or y dimension 

 

 10 microns in 1971 to .014 microns in 2014 

 

 Transistor performance scales linearly 

 Wire delay does not improve with feature size! 

 

 Integration density scales quadratically 
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Power and Energy concerns 

 Problem:  Get power in, get power out 

 Distribute power to increasingly complex circuitry  

 Thermal Design Power (TDP) 

 Characterizes sustained power consumption 

 Used as target for power supply and cooling system 

 Lower than peak power, higher than average power 
consumption 

 Dark silicon 

 

 Clock rate can be reduced dynamically to limit power 
consumption 

 Energy per task is often a better measurement 
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Dynamic Energy and Power 

 Dynamic energy 
 Transistor switch from 0 -> 1 or 1 -> 0 

 ½ x Capacitive load x Voltage2 

 

 Dynamic power 
 ½ x Capacitive load x Voltage2 x Frequency switched 

 

 For a fixed task reducing clock rate reduces power, 
not energy 

 

 Voltage reduces both: has dropped from 5V to 1V in 
20 years 
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Power 

 Intel 80386 
consumed ~ 2 W 

 3.3 GHz Intel Core 
i7 consumes 130 W 

 Heat must be 
dissipated from 1.5 
x 1.5 cm chip 

 This is the limit of 
what can be cooled 
by air 
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Static Power 

 Static power consumption 

 

 Due to leakage current flow 

 Powerstatic=Currentstatic x Voltage 

 

 Scales with number of transistors 

 

 To reduce:  power gating even to inactive modules 

 

 Goal 2006 for leakage: 25% o total power 
consumption 
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Reducing Power 

 Techniques for reducing power: 

 

 Do nothing well 

 

 Dynamic Voltage-Frequency Scaling 

 

 Low power state for DRAM, disks 

 

 Overclocking, turning off cores 
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Trends in Cost 

 Cost driven down by learning curve 

 Yield 

 

 DRAM:  price closely tracks cost 

 

 Microprocessors:  price depends on volume 

 Volume decrease the time needed to get down the 
learning curve. 

 Volume decreases cost, since it increases purchasing 
and manufacturing efficiency. 

 10% less for each doubling of volume. 
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Dependability 

 Module reliability 

 

 Mean time to failure (MTTF) 

 Mean time to repair (MTTR) 

 Mean time between failures (MTBF) = MTTF + MTTR 

 Availability = MTTF / MTBF 
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Measuring Performance 

 Typical performance metrics: 

 Response time 

 Throughput 

 

 Speedup of X relative to Y 

 Execution timeY / Execution timeX 

 

 Execution time 

 Wall clock time:  includes all system overheads 

 CPU time:  only computation time in the CPU 

 

 Benchmarks 

 Kernels (e.g. matrix multiply) 

 Toy programs (e.g. sorting) 

 Synthetic benchmarks (e.g. Dhrystone) 

 Benchmark suites (e.g. SPEC06fp, TPC-C) 
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Benchmarks 29 

 Embedded 

 Dhrystone . 

 EEMBC (kernels). 

 

 Desktop: 

 SPEC2006 (interger and floating point programs). 

 

 Servers: 

 SPECWeb, SPECSFS, SPECjbb, SPECvirt_Sc2010. 

 TPC 



Metrics 30 

 The only valid performance metric is the execution of real 

programs. 

 Any other metric is prone to errors. 

 Any other alternative to real programs is prone to errors. 

 



Benchmarks: SPEC 2006 31 



Speedup 

 

 Speedup (plus low prog. effort and resource needs) 

   Speedup (p) =  

 For a fixed problem: 

   Speedup (p) =  

Performance(p) 

Performance(1) 

Time(1) 

Time(p) 
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Principles of Computer Design 

 Take Advantage of Parallelism 

 e.g. multiple processors, disks, memory banks, pipelining, 
multiple functional units 

 

 Principle of Locality 

 Reuse of data and instructions 

 

 Focus on the Common Case 

 Amdahl’s Law 

33 



Amdahl´s law 

Suppose a fraction f of your application is not 

parallelizable 

 

1-f : parallelizable on p processors 

       Speedup(P) = T1 /Tp 

            <= T1/(f T1 + (1-f) T1 /p) = 1/(f + (1-f)/p)  

            <= 1/f  
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Example 1 36 

 A web server has the following ratio of the execution time: 

 Computation: 40% 

 I/O: 60%  

 

 If we replace this computer with another that is10 times faster 

in computation, what is the overall speedup?  

6.0/1666.15625.1
64.0

1

10

4.0
6.0

1




S



Example 2 37 

 An application has a parallel portion that takes 50% of the 

execution time.  

 

 We execute the application in a 32-processor computer, what is the 

maximum speedup?  

9393.1
515625.0

1

32

5.0
5.0

1




S



Example 2 38 
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Amdahl’s Law (for 1024 processors) 

Speedup
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See: Gustafson, Montry, Benner, “Development of Parallel Methods for a 1024 

Processor Hypercube”, SIAM J. Sci. Stat. Comp. 9, No. 4, 1988, pp.609. 
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Amdahl´s law 

 But: 

 There are many problems can be “embarrassingly” 

parallelized 

 Ex: image processing, differential equation solver 

 In some cases the serial fraction does not increase with 

the problem size 

 Additional speedup can be achieved from additional 

resources (super-linear speedup due to more memory) 

“ 
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Speedup 
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Superlinear Speedup? 

 Possible causes 

 Algorithm 

 e.g., with optimization problems, throwing many 

processors at it increases the chances that one will “get 

lucky” and find the optimum fast 

 Hardware 

 e.g., with many processors, it is possible that the entire 

application data resides in cache (vs. RAM) or in RAM 

(vs. Disk)  
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Parallel Efficiency 

 Effp = Sp / p 

 Typically 1, unless superlinear speedup 

 Used to measure how well the processors are 

utilized 

 If increasing the number of process by a factor 10 

increases the speedup by a factor 2, perhaps it’s not 

worth it: efficiency drops by a factor 5 
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Performance Goal => Speedup 

 Architect Goal 

 observe how program uses 

machine and improve the design to 

enhance performance 

 Programmer Goal 

 observe how the program uses the 

machine and improve the 

implementation to enhance 

performance 

44 



Gustafson’s law 

 Amdahl’s law focuses on the negative point of view of parallel processing 

 However: 

 Parallel machines are used for solving large problems. 

 A sequential computer could never execute a large parallel program.  

 Memory limits. 

 Processing limits.  

p

s

T

T
S 

machine paralle ain  Time

machine sequencial ain  T





p

s

T

imeT
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Gustafson’s law 46 



Gustafson’s law 

 The amount of work changes with the number of processors 
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Gustafson’s law 48 

 The sequential portion of the program decreases with program 

size.  

 When the problem size grows we can assume a close-to-linear speedup 

(S≈p). 

 

 Using parallelism, we can approach larger problems. 



Results 49 
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Principles of Computer Design 

 The Processor Performance Equation 
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Principles of Computer Design 

 Different instruction types having different CPIs 
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Application Trends 

 Demand for cycles fuels advances in hardware, and vice-versa 

 Cycle drives exponential increase in microprocessor performance 

 Drives parallel architecture harder: most demanding applications 

 Goal of applications in using parallel machines: Speedup 

  

Speedup (p processors) =  

 For a fixed problem size (input data set), performance = 1/time 

  Speedup fixed problem (p processors) =   

Performance (p processors) 

Performance (1 processor) 

Time (1 processor) 

Time (p processors) 

New Applications 
More Performance 
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Particularly Challenging  

Computations 

 Science 
 Global climate modeling 
 Astrophysical modeling 
 Biology: genomics; protein folding; drug design 
 Computational Chemistry 
 Computational Material Sciences and Nanosciences 

 Engineering 
 Crash simulation 
 Semiconductor design 
 Earthquake and structural modeling 
 Computation fluid dynamics (airplane design) 
 Combustion (engine design) 

 Business 
 Financial and economic modeling 
 Transaction processing, web services and search engines 

 Defense 
 Nuclear weapons -- test by simulations 
 Cryptography 
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Supercomputing trends 

 1PFLOP has been surpassed in 2008 

 Currently: 

 33 PFLOPS 

 3.1M cores system 

 We head toward ExaScale age 

 1,000,000,000 cores 

 Increased probabilities of failures 

 Learn to live with failures 

 Fault tolerance 

 Learn to continue in the presence of failures 

 Challenges in getting a global view of the system 

 New challenges for applications and algorithms 

 Scale invariance targeted 

 Local versus global 

 Learn from Internet 

 Learn from nature: evolution, adaptation, swarm behaviour 

 Energy efficiency target: 20MW for an Exascale system (50x improvement) 
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TOP 500 

 Since 1993 twice a year: June and November 

 Ranking of the most powerful computing systems in the world  

 Ranking criteria: performance of the LINPACK benchmark  

 Jack Dongarra  alma máter  

 Site web: www.top500.org 

 Poster 2012: 
http://www.top500.org/static/lists/2012/06/TOP500_201206_Po
ster.pdf 
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Green 500 

 For a long time performance has been the only 
metric 

 FLOPS 

 Total cost of ownership (TCO) neglected 

 Conscience about increasing costs of power, 
maintenance, administration, failure recovery 

 Ranking of the most energy-efficient 
supercomputers in the world 

 MFLOPS/Watt 

 First edition: November 2007 

 Last release: June 2012 
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