
Grupo de Arquitectura de Computadores,

Comunicaciones y Sistemas

COMPUTER

ARCHITECTURE

Parallel Architectures: Models and Tools

Computer Technology

 Performance improvements:

 Improvements in semiconductor technology

 Feature size, clock speed

 Improvements in computer architectures
 Enabled by HLL compilers, UNIX

 Lead to RISC architectures

 Together have enabled:
 Lightweight computers

 Productivity-based managed/interpreted programming
languages

13

Technology 14

Integrated Circuit Cost

 Integrated circuit

 Bose-Einstein formula:

 Defects per unit area = 0.016-0.057 defects per square cm (2010)

 N = process-complexity factor = 11.5-15.5 (40 nm, 2010)

15

Example 16

 Wafer with a diameter of 30 cm.

 Dies of 1.5 cm side.

 Dies per wafer: 269.

 Dies of 1 cm side

 Dies per wafer: 640.

Trends in Technology

 Integrated circuit technology

 Transistor density: 35%/year

 Die size: 10-20%/year

 Integration overall: 40-55%/year

 DRAM capacity: 25-40%/year (slowing)

 Flash capacity: 50-60%/year

 15-20X cheaper/bit than DRAM

 Magnetic disk technology: 40%/year

 15-25X cheaper/bit than Flash

 300-500X cheaper/bit than DRAM

17

Bandwidth and Latency

 Bandwidth or throughput

 Total work done in a given time

 10,000-25,000X improvement for processors

 300-1200X improvement for memory and disks

 Latency or response time

 Time between start and completion of an event

 30-80X improvement for processors

 6-8X improvement for memory and disks

18

Bandwidth and Latency

Log-log plot of bandwidth and latency milestones

Transistors and Wires

 Feature size

 Minimum size of transistor or wire in x or y dimension

 10 microns in 1971 to .014 microns in 2014

 Transistor performance scales linearly

 Wire delay does not improve with feature size!

 Integration density scales quadratically

20

Power and Energy concerns

 Problem: Get power in, get power out

 Distribute power to increasingly complex circuitry

 Thermal Design Power (TDP)

 Characterizes sustained power consumption

 Used as target for power supply and cooling system

 Lower than peak power, higher than average power
consumption

 Dark silicon

 Clock rate can be reduced dynamically to limit power
consumption

 Energy per task is often a better measurement

21

Dynamic Energy and Power

 Dynamic energy
 Transistor switch from 0 -> 1 or 1 -> 0

 ½ x Capacitive load x Voltage2

 Dynamic power
 ½ x Capacitive load x Voltage2 x Frequency switched

 For a fixed task reducing clock rate reduces power,
not energy

 Voltage reduces both: has dropped from 5V to 1V in
20 years

22

Power

 Intel 80386
consumed ~ 2 W

 3.3 GHz Intel Core
i7 consumes 130 W

 Heat must be
dissipated from 1.5
x 1.5 cm chip

 This is the limit of
what can be cooled
by air

23

Static Power

 Static power consumption

 Due to leakage current flow

 Powerstatic=Currentstatic x Voltage

 Scales with number of transistors

 To reduce: power gating even to inactive modules

 Goal 2006 for leakage: 25% o total power
consumption

24

Reducing Power

 Techniques for reducing power:

 Do nothing well

 Dynamic Voltage-Frequency Scaling

 Low power state for DRAM, disks

 Overclocking, turning off cores

25

Trends in Cost

 Cost driven down by learning curve

 Yield

 DRAM: price closely tracks cost

 Microprocessors: price depends on volume

 Volume decrease the time needed to get down the
learning curve.

 Volume decreases cost, since it increases purchasing
and manufacturing efficiency.

 10% less for each doubling of volume.

26

Dependability

 Module reliability

 Mean time to failure (MTTF)

 Mean time to repair (MTTR)

 Mean time between failures (MTBF) = MTTF + MTTR

 Availability = MTTF / MTBF

27

Measuring Performance

 Typical performance metrics:

 Response time

 Throughput

 Speedup of X relative to Y

 Execution timeY / Execution timeX

 Execution time

 Wall clock time: includes all system overheads

 CPU time: only computation time in the CPU

 Benchmarks

 Kernels (e.g. matrix multiply)

 Toy programs (e.g. sorting)

 Synthetic benchmarks (e.g. Dhrystone)

 Benchmark suites (e.g. SPEC06fp, TPC-C)

28

Benchmarks 29

 Embedded

 Dhrystone .

 EEMBC (kernels).

 Desktop:

 SPEC2006 (interger and floating point programs).

 Servers:

 SPECWeb, SPECSFS, SPECjbb, SPECvirt_Sc2010.

 TPC

Metrics 30

 The only valid performance metric is the execution of real

programs.

 Any other metric is prone to errors.

 Any other alternative to real programs is prone to errors.

Benchmarks: SPEC 2006 31

Speedup

 Speedup (plus low prog. effort and resource needs)

 Speedup (p) =

 For a fixed problem:

 Speedup (p) =

Performance(p)

Performance(1)

Time(1)

Time(p)

32

Principles of Computer Design

 Take Advantage of Parallelism

 e.g. multiple processors, disks, memory banks, pipelining,
multiple functional units

 Principle of Locality

 Reuse of data and instructions

 Focus on the Common Case

 Amdahl’s Law

33

Amdahl´s law

Suppose a fraction f of your application is not

parallelizable

1-f : parallelizable on p processors

 Speedup(P) = T1 /Tp

 <= T1/(f T1 + (1-f) T1 /p) = 1/(f + (1-f)/p)

 <= 1/f

35

Example 1 36

 A web server has the following ratio of the execution time:

 Computation: 40%

 I/O: 60%

 If we replace this computer with another that is10 times faster

in computation, what is the overall speedup?

6.0/1666.15625.1
64.0

1

10

4.0
6.0

1




S

Example 2 37

 An application has a parallel portion that takes 50% of the

execution time.

 We execute the application in a 32-processor computer, what is the

maximum speedup?

9393.1
515625.0

1

32

5.0
5.0

1




S

Example 2 38

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Speedup

F=0,5 F=0,75 F=0,8 F=0,9

Amdahl’s Law (for 1024 processors)

Speedup

0

128

256

384

512

640

768

896

1024

0 0.01 0.02 0.03 0.04

s

See: Gustafson, Montry, Benner, “Development of Parallel Methods for a 1024

Processor Hypercube”, SIAM J. Sci. Stat. Comp. 9, No. 4, 1988, pp.609.

39

Amdahl´s law

 But:

 There are many problems can be “embarrassingly”

parallelized

 Ex: image processing, differential equation solver

 In some cases the serial fraction does not increase with

the problem size

 Additional speedup can be achieved from additional

resources (super-linear speedup due to more memory)

“

40

Speedup

sp
e
e
d
u
p

p

linear speedup

sub-linear speedup

41

Superlinear Speedup?

 Possible causes

 Algorithm

 e.g., with optimization problems, throwing many

processors at it increases the chances that one will “get

lucky” and find the optimum fast

 Hardware

 e.g., with many processors, it is possible that the entire

application data resides in cache (vs. RAM) or in RAM

(vs. Disk)

42

Parallel Efficiency

 Effp = Sp / p

 Typically 1, unless superlinear speedup

 Used to measure how well the processors are

utilized

 If increasing the number of process by a factor 10

increases the speedup by a factor 2, perhaps it’s not

worth it: efficiency drops by a factor 5

43

Performance Goal => Speedup

 Architect Goal

 observe how program uses

machine and improve the design to

enhance performance

 Programmer Goal

 observe how the program uses the

machine and improve the

implementation to enhance

performance

44

Gustafson’s law

 Amdahl’s law focuses on the negative point of view of parallel processing

 However:

 Parallel machines are used for solving large problems.

 A sequential computer could never execute a large parallel program.

 Memory limits.

 Processing limits.

p

s

T

T
S 

machine paralle ain Time

machine sequencial ain T





p

s

T

imeT

45

Gustafson’s law 46

Gustafson’s law

 The amount of work changes with the number of processors

)1(
)1(

pp
T

pTT

T

T
S

s

ss

p

s
p 





 



Ts = Tp

T’s

 Ts (1−) Ts

 Ts (1−) p Ts

Parallel machine

Sequential

machine

47

Gustafson’s law 48

 The sequential portion of the program decreases with program

size.

 When the problem size grows we can assume a close-to-linear speedup

(S≈p).

 Using parallelism, we can approach larger problems.

Results 49

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Speedup

alpha=0,5 alpha=0,25 alpha=0,2 alpha=0,1 Lineal

Principles of Computer Design

 The Processor Performance Equation

50

Principles of Computer Design

 Different instruction types having different CPIs

51

Application Trends

 Demand for cycles fuels advances in hardware, and vice-versa

 Cycle drives exponential increase in microprocessor performance

 Drives parallel architecture harder: most demanding applications

 Goal of applications in using parallel machines: Speedup

Speedup (p processors) =

 For a fixed problem size (input data set), performance = 1/time

 Speedup fixed problem (p processors) =

Performance (p processors)

Performance (1 processor)

Time (1 processor)

Time (p processors)

New Applications
More Performance

52

Particularly Challenging

Computations

 Science
 Global climate modeling
 Astrophysical modeling
 Biology: genomics; protein folding; drug design
 Computational Chemistry
 Computational Material Sciences and Nanosciences

 Engineering
 Crash simulation
 Semiconductor design
 Earthquake and structural modeling
 Computation fluid dynamics (airplane design)
 Combustion (engine design)

 Business
 Financial and economic modeling
 Transaction processing, web services and search engines

 Defense
 Nuclear weapons -- test by simulations
 Cryptography

53

Supercomputing trends

 1PFLOP has been surpassed in 2008

 Currently:

 33 PFLOPS

 3.1M cores system

 We head toward ExaScale age

 1,000,000,000 cores

 Increased probabilities of failures

 Learn to live with failures

 Fault tolerance

 Learn to continue in the presence of failures

 Challenges in getting a global view of the system

 New challenges for applications and algorithms

 Scale invariance targeted

 Local versus global

 Learn from Internet

 Learn from nature: evolution, adaptation, swarm behaviour

 Energy efficiency target: 20MW for an Exascale system (50x improvement)

54

TOP 500

 Since 1993 twice a year: June and November

 Ranking of the most powerful computing systems in the world

 Ranking criteria: performance of the LINPACK benchmark

 Jack Dongarra alma máter

 Site web: www.top500.org

 Poster 2012:
http://www.top500.org/static/lists/2012/06/TOP500_201206_Po
ster.pdf

55

http://www.top500.org
http://www.top500.org
http://www.top500.org/static/lists/2012/06/TOP500_201206_Poster.pdf
http://www.top500.org/static/lists/2012/06/TOP500_201206_Poster.pdf
http://www.top500.org/static/lists/2012/06/TOP500_201206_Poster.pdf

Top 500 – June 2012 56

Green 500

 For a long time performance has been the only
metric

 FLOPS

 Total cost of ownership (TCO) neglected

 Conscience about increasing costs of power,
maintenance, administration, failure recovery

 Ranking of the most energy-efficient
supercomputers in the world

 MFLOPS/Watt

 First edition: November 2007

 Last release: June 2012

58

Green500 – June 2012 59

