Econometría 2

Problemas

PROBLEMA 1

Considere el modelo $(1 - 0.4B)y_t = (1 - 0.4B^{12})a_t$ donde $a_t \sim RB(0, \sigma_a^2)$.

- 1. Identifica el modelo. Es estacionario e invertible?.
- 2. Calcula la media y la varianza de y_t .
- 3. Calcula $E[y_t y_{t-k}]$ y $E[y_t a_{t-12}]$.
- 4. Calcula $\widehat{y}_T(1)$ y $\widehat{y}_T(12)$.

PROBLEMA 2: Para el proceso

$$Y_t = Y_{t-12} + (1 - 0.5B)U_t \text{ con } U_t \sim N(0, 1),$$

- 1. Identifica el modelo y comprueba si es estacionario y/o invertible.
- $2.\ \,$ Obtén los coeficientes $1,\,2,\,11$ y 12 de su representación AR infinita.
- 3. Obtén $E[Y_tY_{t-1}]$ y $E[Y_tY_{t+12}]$.
- 4. Obtén las predicciones puntuales a horizonte 1 y 12 y sus intervalos de predicción del 95% de confianza de Y_{T+12} .

PROBLEMA 3:

Los analistas financieros de una auditoría consideran que los beneficios de un banco, y_t , siguen el siguiente modelo

$$y_t = y_{t-1} + a_t - 0.4a_{t-1}$$
, donde $a_t \sim N(0, 1)$.

- 1. Calcule $E[y_t]$, $V[y_t]$ y $E[y_ty_{t+s}]$. ¿El proceso es estacionario en sentido débil?
- 2. Calcule la predicción $\hat{y}_T(h)$ para h = 1, 2, 3
- 3. Construye un intervalo de confianza al 95% para la predicción de y_T
- 4. Construye un intervalo de confianza al 95% para la predicción de $y_{T+3}-y_{T+2}$

PROBLEMA 4:

Considere el modelo $(1 - 0.4B)y_t = (1 - 0.4B^{12})a_t$ donde $a_t \sim RB(0, \sigma_a^2)$.

- 1. Identifica el modelo.; Es estacionario e invertible?.
- 2. Calcula la media y la varianza de y_t .
- 3. Calcula $E[y_t y_{t-k}]$ y $E[y_t a_{t-12}]$.
- 4. Calcula $\hat{y}_T(1)$ y $\hat{y}_T(12)$.

PROBLEMA 5:

Se ha estimado, con una muestra de 150 observaciones, el siguiente modelo que relaciona a la variable ventas $(SALES_t)$ con un indicador adelantado de actividad económica $(LEADING_t)$ obteniéndose los siguientes resultados: (desviaciones típicas entre paréntesis)

$$(1-B)SALES_t = \underset{(0.0091)}{0.0350} + \left(\frac{4.7263B^3}{\underset{(0.0535)}{1 - 0.7239B}}\right)(1-B)LEADING_t + \left(1 - \underset{(0.0730)}{0.6261B}\right)a_t$$

Para la relación entre $(1 - B)SALES_t$ y $(1 - B)LEADING_t$:

- 1. ¿Cuál es el multiplicador del impacto?
- 2. Calcule los coeficientes de la función de respuesta al impulso hasta el retardo $6\,$
- 3. ¿Cuál es el efecto acumulado de los 4 primeros retardos?
- 4. Sabiendo que

T	SALES	LEADING
145	262.9	13.25
146	263.3	13.50
147	262.8	13.58
148	261.8	13.51
149	262.2	13.77
150	262.7	13.40

y que $a_{150} = -0.07$ y $a_{149} = 0.15$, calcule las predicciones $\widehat{SALES}_{150}(l)$, para l = 1, 2, es decir, calcule las predicciones para la variable SALES en T = 151 y T = 152.

PROBLEMA 6:

Un investigador desea analizar la relación dinámica que puede existir entre dos variables ecónomicas $(Y_{1,t} \ y \ X_{1,t})$ para lo cual dispone de una muestra de datos trimestrales que abarca el período 1981.1 hasta 2012.4. Para ello, realiza la función de correlación cruzada entre las variables preblanqueadas que se recoge a continuación:

Date: 12/19/12 Time: 13:25 Sample: 1981Q2 2012Q4 Included observations: 127

Correlations are asymptotically consistent approximations

BETA,ALFA(-i)	BETA,ALFA(+i)	i	lag	lead
-		0	0.2490	0.2490
1 (1	'¶'	1	-0.0035	
1	יון י	2	0.5266	0.0461
- '	יון י	3	-0.1898	0.0573
	'_¶ '	4	-0.5121	
'	' □_'	5	-0.1003	
' =	l 'E'	6	0.4076	0.1033
'_=	l '₽'	7	0.2707	0.1190
<u> </u>		8	-0.0878	0.0675
<u> </u>		9		-0.0947
<u> </u>			-0.0629	
! □	<u>'</u> ¶	11		-0.0351
∵ ₽!		12	0.0960	0.0561
	'		-0.2048	
' - '	│		-0.1280	
· E ·	' '	15	0.0568	0.0352
' III '	l '_"	16	0.0818	0.0339
			-0.0112	
<u>'</u> '	'7 '		-0.0247	
; 🖳	' '	20	0.1824	0.0484
; 57	; .	21	0.0604	0.1970
		22		
71 :			-0.0224	
i n i i			-0.0508	
; "	l ; h .;	25	0.1310	0.0965
, F	l [6]	26	0.0320	0.0740
ı n	l , [,	27		
,] , ,	1 1 1	28	0.0362	0.0020
, 🛅	l , b , ,	29	0.1279	0.0706
, [,	l ₁ [₁		-0.0201	
₫ ,				
급 .	'11 '		-0.0969	
, T	₁ Ъ₁	33	0.1229	0.1112
, 5 ,		34		-0.0014
1 [1		35	-0.0007	0.0400
□ '		36	-0.1967	

Figure 1: Función de correlación entre el output y el input preblanqueados

Dependent Variable: Y1 Method: Least Squares Date: 12/19/12 Time: 13:29 Sample: 1981Q2 2012Q4 Included observations: 127

	Coefficient	Std. Error	t-Statistic	Prob.
Y1(-1)	0.502230	0.035650	14.08799	0.0000
Y1(-2)	-0.733892	0.036554	-20.07713	
X1(-2)	2.391610	0.093641	25.54033	0.0000
X1(-3)	-1.316026	0.091019	-14.45885	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.873227 0.870135 0.302176 11.23115 -26.18620 1.709155	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		1.547097 0.838519 0.475373 0.564954 0.511769

- 1. Ayude al investigador a establecer la relación dinámica entre ambas variables: identifique los órdenes b,r y s de la función de respuesta al impulso, plantee el modelo resultante en la notación adecuada y explique detalladamente en qué se basa su elección.
- 2. Después de dar muchas vueltas, el investigador consigue estimar el modelo, cuyos resultados se presentan en la siguiente figura.
 - (a) Exprese el modelo en la notación del modelo de función de transferencia, es decir $Y_t = \frac{\omega(B)}{\delta(B)} B^b X_t + \frac{\theta(B)}{\phi(B)} a_t$, siendo $a_t \sim (0, \sigma_a^2)$. Coincide el modelo con la especificación que usted habría hecho? ¿Qué le falta? ¿Qué le sobra?
 - (b) Analice la estabilidad del modelo estimado
 - (c) Calcule la función de respuesta al impulso hasta j=5, es decir calcule v_j para j=1,2,3,4,5
 - (d) Calcule el multiplicador de largo plazo del modelo estimado
 - (e) Calcule el retardo medio del modelo estimado.
- 3. Conociendo los datos que se proporcionan a continuación sobre la evolución de las variables, calcule las predicciones para el año 2013.

examen

obs	Y1	X1	X1F	
2012Q1	1.259210	1.821195	1.821195	
2012Q2	1.867710	2.155363	2.155363	
2012Q3	2.600878	2.380027	2.380027	
2012Q4	2.503725	2.044544	2.044544	
2013Q1	NA	NA	1.740482	
2013Q2	NA	NA	1.700453	
2013Q3	NA	NA	1.700453	
2013Q4	NA	NA	1.700453	
	2012Q1 2012Q2 2012Q3 2012Q4 2013Q1 2013Q2 2013Q3 2013Q4	2012Q1 1.259210 2012Q2 1.867710 2012Q3 2.600878 2012Q4 2.503725 2013Q1 NA 2013Q2 NA 2013Q3 NA 2013Q4 NA	2012Q1 1.259210 1.821195 2012Q2 1.867710 2.155363 2012Q3 2.600878 2.380027 2012Q4 2.503725 2.044544 2013Q1 NA NA 2013Q2 NA NA 2013Q3 NA NA	2012Q1 1.259210 1.821195 1.821195 2012Q2 1.867710 2.155363 2.155363 2012Q3 2.600878 2.380027 2.380027 2012Q4 2.503725 2.044544 2.044544 2013Q1 NA NA 1.740482 2013Q2 NA NA 1.700453 2013Q3 NA NA 1.700453 2013Q4 NA NA 1.700453

PROBLEMA 7:

Se ha estimado el siguiente modelo: $\nabla \nabla_4 z_t = 0.7 \nabla \nabla_4 z_{t-1} + 0.7 \nabla \nabla_4 z_{t-4} - 0.49 \nabla \nabla_4 z_{t-5} + a_t$.

- 1. Identifique el modelo dentro de la clase de los modelos ARIMA
- 2. Calcule la función de autocorrelación del proceso estacionario. ¿Cómo será el comportamiento del correlograma?
- 3. Llamando $\omega_t=\nabla\nabla_4 z_t$ Sabiendo que $\omega_{95}=20.2, \omega_{96}=23.4, \omega_{97}=19.3, \omega_{98}=17.5, \omega_{99}=15.4$ y $\omega_{100}=13.7$, calcule $\widehat{\omega}_T(l)$ para l=1,2,3,4.5

PROBLEMA 8:

Considere el siguiente proceso AR(2): $Z_t = 0.6Z_{t-1} + 0.2Z_{t-2} + 6.5 + a_t$, siendo $a_t \sim (0, \sigma_a^2)$.

- a. Verifique si el proceso es estacionario e invertible.
- b. Calcule $E[Z_t]$
- c. Calcule la función de autocorrelación teórica del proceso hasta el retardo 5
- d. Escriba la forma $MA(\infty)$ del proceso considerando desviaciones con respecto a la media.

PROBLEMA 9:

Los analistas financieros de una auditoría consideran que los beneficios de un banco, y_t , siguen el siguiente modelo

$$y_t = y_{t-1} + a_t - 0.4a_{t-1}$$
, donde $a_t \sim N(0, 1)$.

- 1. Calcule $E[y_t],\ V[y_t]$ y $E[y_ty_{t+s}].$ ¿El proceso es estacionario en sentido débil?
- 2. Calcule la predicción $\hat{y}_T(h)$ para h=1,2,3
- 3. Construye un intervalo de confianza al 95% para la predicción de y_T
- 4. Construye un intervalo de confianza al 95% para la predicción de $y_{T+3}-y_{T+2}$

PROBLEMA 10: En el siguiente modelo:

$$Y_t = \phi_2 Y_{t-2} + U_t - \theta_2 U_{t-2} \text{ con } U_t \sim N(0, 1),$$

- 1. Obtener las autocorrelaciones de orden 1 y 2 (ρ_1 y $\rho_2).$
- 2. ¿Cómo es la función de autocorrelaciones parciales?
- 3. Obtén el intervalo de predicción de Y_{T+2}
- 4. Obtén la representación $MA(\infty)$. ¿Cuál es el efecto a largo plazo de un cambio unitario en U_t .?