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o A memory consistency model:

o Set of rules defining how the memory system
processes memory operations from multiple
processors.

o Contract between programmer and system.

o Determines which optimizations ara valid on correct
programs.
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o Interface between program and its transformations.
o Defines which values can be returned by a read.

o Language memory model has implications on the
hardware.

Program
C,C++, Machine Executed

FORTRAN, Code Code
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STORE

LOAD

STORE

LOAD

o Memory behavior model:
o Memory operations happen ins program order.
= A read returns the value from last write in program order.
o Semantics defined by sequential program order.

o Simple reasoning but constrained.
= Solve data and control dependencies.

o Independent operations may be executed in parallel.
o Optimizations preserve semantics.
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o A multiprocessor system is sequentially consistent if the result of any
execution is the same that would be obtained if operations from all
processors were executed in some sequential order, and operations from

each individual processor appear in that sequence in the order established
by the program.

o [Lamport 1979]
o Turing Prize 2014.
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o Program order.

o Memory operations from a program must be
made visible to all processes in program order.

o Atomicity.
o Total execution order between processes must be
consistent requiring all operations to be atomic.

= Nothing that a processor does after it has seen the
new value from a write is made visible to other
processes before they have seen the value from that
write.
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[a = 1; )[whlle (a ;ﬂa{whlle }

o Non atomic writes:

o Write on b could bypass the while loop and read
from a could bypass the write.

m X=0.
o Atomic writes:
o Sequential consistency is preserved.
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o SC constraints all memory operations:
o Write — Read.
o Write — Write.
o Read — Read, Read — Write.
o Simple model to reason about parallel programs.
o But, simple reordering for single-processors may
violate the sequential consistency model:

o Hardware reordering to improve performance.
= \Write buffers, overlapped writes.

o Compiler optimizations apply transformations with memory
operations reordering. Scalar replacement, register
allocation, instruction scheduling.

o Transformations by programmers or refactoring tools also
modify program semantics.
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{ flag1=0; flag2=0; }
/hag1=1; h /h892==1; h
If (flag2==0) { If (flag1==0) {
critical section critical section
N ) U y
[ assert(flag11=0 || flag2!=0) |

\, /

o If caches use write buffer:
o Writes are delayed in buffer.
o Read obtain old value.

o Dekker algorithm is invalidated.

= Dekker algorithm is the first known solution to the critical
section problem.
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[ flag1=0; flag2=0; }
/hag1=1; h /h892==1; h
If (flag2==0) { If (flag1==0) {
critical section critical section
J ) C Y
[Write flag1, 1 } Write flag2, 1 }

| /]

[Read flag2, 0 Y [Read ﬂag1,¢0?}
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[ flag=0 }
A=23; while (flag != 1) {
flag = 1; }
X=A;
{Write A, 23 } [ Read flag, 0 }

l 3R dfll'1 }
Wiite flag, 1 l,

‘ReadA, 07 |
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0 Sufficient conditions:

o Each process emits memory operations in program
order.

o After emission of a write, emitting process waits to
complete the write before emitting other operation.

o After a read emission, emitting process waits until
read is completed and that the write of the value being
read is completed.

= Wait write propagation to all processes.

o These are very exigent conditions.

o There might be necessary conditions that are less
exigent.
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o Models relaxing execution program order.
oW-R
oW-W
oR-WW-W
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R — W W~ R
Alpha X X X X
PA-RISC X X X X
POWER X X X X
SPARC X
X86 X
AMD64 X
|AG4 X X X X
zSeries X
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o A read may execute before a preceding write.

o Typical in systems with write buffer.
o Check consistency with buffer.
o Allow read buffer.
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T R-=>W W-R

o Allow that writes may arrive into memory out of
program order.

c R WW-RR-RW-W
o Avoid only data and control dependencies within
Processor.

o Alternatives:
= WWeak consistency.
m Release consistency.
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o Weak ordering:

o Divide memory operations in data operations and
synchronization operations.

o Synchronization operations act as a barrier.

= All preceding data operations in program order to a
synchronization must complete before synchronization is
executed.

= All subsequent data operations in program order to a
synchronization operation must wait until synchronization
Ins completed.

= Synchronization are performed in program order.
o Hardware implementation of barrier.

= Processor keeps a counter.
Data operation emission — increment.
Data operation completion — decrement
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o More relaxed than weak consistency.

0 Synchronization accesses divided into:
o Acquire.
o Release.

0 Semantics:
o Acquire:
= Must complete before all subsequent memory accesses.
o Release
= Must complete all previous memory accesses.

= Subsequent memory accesses MAY initiate.

= Operations following a release and must wait, must be
protected with an acquire.
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o Until 2005 Intel had not completely clarified its
memory consistency model.

o Formalizing model highly complex.

o Problems for language implementations (Java,
C++, ...)

o Currently the model is clarified and public.
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0 1486 y Pentium:

o Operations in program order.

= Exception: Read misses bypass writes in write buffer
only if all writes are cache hits.

m It is impossible that a read miss matches with a write.
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0 Since 1486:
o Read or write 1 byte.
o Read or write a 16-bit aligned word.
o Read or write a 32-bit aligned double word.

0 Since Pentium:
o Read or write a 64-bit aligned quadword.

o Non-cached memory access that fits in 32 bit
data bus.

0 Since P6:

o Non aligned access to data of 16, 32, or 64 bits
that fit in a cache line.
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o A processor may emit a signal to block the bus.
o Other elements cannot access the bus.

o Automatic bus blocking.
o XCHG instruction.

o Update segment descriptors, page directory, and page
table.

o Interruption acceptance.

o Bus software blocking:

o Use LOCK prefix in:

B Insgl)Jctions for bit checking and modification (BTS, BTR,
BTC).

= Exchange instructions (XADD, CMPXCHG, CMPXCHGSB).
= 1 operand arithmetic instructions (INC, DEC, NOT, NEG).

= 2 operand arithmetic-logic instructions (ADD, ADC, SUB, SBB,
AND, OR, XOR).
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o LFENCE

o Barrier for load operations.

o Every load preceding a LFENCE is globally made
visible before any subsequent load.

0 SFENCE

o Barrier for store operations.

o Every store preceding SFENCE is globally made
visible before any subsequent store.

o MFENCE

o Barrier for load/store operations.

o All the load and store preceding MFENCE are
globally made visible before any other subsequent
load or store operation.
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o Reads do not bypass other reads (R = R).
o Writes do not bypass reads (R = W).

o Writes do not bypass writes (W = W).
o Exceptions for strings and non-temporal moves.

o Reads bypass preceding writes (W — R) to different
addresses.

o Reads/writes do not bypas |I/O operations, locked
Instructions, serializing instructions.

o Reads cannot bypass preceding LFENCE or MFENCE.

o Writes cannot bypass preceding LFENCE, SFENC or
MFENCE.

o LFENCE cannot bypass a preceding read.
o SFENCE cannot bypass a preceding write.
o MFENCE cannot bypass a preceding read or write.
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o Each processor is individually compliant with
former rules.

o Writes from a processor are observed in the
same order by all the other processors.

o Writes of a processor are NOT ordered with
respect to writes from other processors.

o Memory ordering is transitive.

o Two writes are viewed in a consistent order by
any other processor distinct from those two.

0 Lock instructions have a total order.
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Writes from
Processor A Processor B Processor C  eyery

Write A.1 Write B.1 Write C.1 g:ngss” keep
Write A.2 Write B.2 Write C.2
Write A.3 Write B.3 Write C.3

Write A.1

Write B.1

Write B.2 Order for every

Write C.1 process is kept

Write A.2

Write B.3 No order is guaranteed

Write A.3 across processes

Write C.2
Write C.3
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[ X=Y=0 \
N
mov [_x], 1 mov r1, [_y]
mov [_y], 1 mov r2, [ X]
9 Y,
§ 3 NOT
r1=1yr2=0 ALLOWED
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( x=y=0 \
N
mov r1, [ X] mov r2, [_y]
mov [_y], 1 mov [ X], 1
L y,
§ 3 NOT
\ =1y r2=1 / ALLOWED
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Reordering

W(a) = R(b)

x=y=0
mov [_X], 1 mov [ _y], 1
mov r1, [ y] mov r2, [ X]
\.
i 1= 0y r2=0
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( x=0 }
mov [_X], 1
mov r1, [ X]
\
( 1= 0 NOT
M= ALLOWED
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Writes may be perceived in different order by every processor

[ x=y=0 \
.
mov [ x], 1 mov [_y], 1
mov r1, [ x] mov r3, [_y]
_mov r2, [_y] mov r4, [_x] Y
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Transitive visibility of writes

x=y=0
N\
mov [_X], 1 mov r1, [ X] mov r2, [ Y]
mov [_y], 1 mov r3, [ X]
\_ v
( =1y r2=1y r3=0 \

NOT
ALLOWED
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[ x=y=0 \

Ve N
mov [_X], 1 mov [ y], 1 mov r1, [ X] mov r3, [_Y]
mov r2, [ Y] mov r4, [ X]

\_ J

[ =1y r2=0y r3=1y r4=0 \

NOT
ALLOWED
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[ rM=r2=1,x=y=0 \

Ve N
xchg [ x], r1 xchg [ y], r2 mov r3, [ X] mov r5, [_Y]
mov r4, [ y] mov r6, [ X]

\_ J

[ =1y r2=0y r3=1y r4=0 \

NOT
ALLOWED
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( x=y=0,r=r3=1 |
4 D
xchg [_x], r1 xchg [ v], r3
mov r2, [ y] mov r4, [ X]
~ y,
( ) NOT
\ r2=0yra=0 / ALLOWED
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( x=y=0,r1=1 \
p D
xchg [ x], r1 mov r2, [_y]
mov [_y], r1 mov r3, [ X]
9 Y,
§ 3 NOT
2=1yr3=0 ALLOWED
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0 Sequential consistency
o Load: mov reg, [mem]
o Store: xchg [mem], reg

o Relaxed consistency
o Load: mov reg, [mem]
o Store: mov [mem], reg

0 Release/acquire consistency
o Load: mov reg, [mem]
o Store: mov [mem], reg
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o Computer Architecture. A Quantitative Approach.
Fifth Edition.
Hennessy y Patterson.
Section: 5.6

o Adve, S. V., and Gharachorloo, K. Shared
memory consistency models: A tutorial. IEEE
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