ARCOS B B

COMPUTER
ARCHITECTURE

- Memory consistency models

7 ""'/0,7 Universidad . . ARCOS W
QYY) calsméeMadrid - Memory consistency models T
G/ www.uc3mes

o A memory consistency model:

o Set of rules defining how the memory system
processes memory operations from multiple
processors.

o Contract between programmer and system.

o Determines which optimizations ara valid on correct
programs.

Computer Architecture 2014

2% Universidad ARCOS I B

) Carlos III de Madrid
< s \\\'5 www.uc3m.es M e m O ry m O d e | . . .

o Interface between program and its transformations.
o Defines which values can be returned by a read.

o Language memory model has implications on the
hardware.

Program
C,C++, Machine Executed

FORTRAN, Code Code

Computer Architecture 2014

& 2% Universidad ARCOS .-l B

) CaloslldeMadrid ~ SjNgle processor memory model B i i

&/ www.uc3mees

STORE

LOAD

STORE

LOAD

o Memory behavior model:
o Memory operations happen ins program order.
= A read returns the value from last write in program order.
o Semantics defined by sequential program order.

o Simple reasoning but constrained.
= Solve data and control dependencies.

o Independent operations may be executed in parallel.
o Optimizations preserve semantics.

Computer Architecture 2014

2@y Universidad _ _ ARCOS ' B
QYY) caislieeMaria - Sequential consistency

N 1
www.uc3m.es . . .

o A multiprocessor system is sequentially consistent if the result of any
execution is the same that would be obtained if operations from all
processors were executed in some sequential order, and operations from

each individual processor appear in that sequence in the order established
by the program.

o [Lamport 1979]
o Turing Prize 2014.

Computer Architecture 2014

23 Universidad Sequential Consistency: ARCOS i

% Carlos III de Madrid

//J'm“\; www.uc3m.es ConStralntS .! .'

o Program order.

o Memory operations from a program must be
made visible to all processes in program order.

o Atomicity.
o Total execution order between processes must be
consistent requiring all operations to be atomic.

= Nothing that a processor does after it has seen the
new value from a write is made visible to other
processes before they have seen the value from that
write.

Computer Architecture 2014

i Universidad ARCOS .-l B

QW) Carlos I de Madrid == W
Q]M \\\'5 www.uc3m.es Ato m ICIty .! .l .|

[a = 1;)[whlle (a ;ﬂa{whlle }

o Non atomic writes:

o Write on b could bypass the while loop and read
from a could bypass the write.

m X=0.
o Atomic writes:
o Sequential consistency is preserved.

Computer Architecture 2014

‘ u"’o,_, Universidad ARCOS I-E B

) oo T deMadrid Sequential consistency & @

o SC constraints all memory operations:
o Write — Read.
o Write — Write.
o Read — Read, Read — Write.
o Simple model to reason about parallel programs.
o But, simple reordering for single-processors may
violate the sequential consistency model:

o Hardware reordering to improve performance.
= \Write buffers, overlapped writes.

o Compiler optimizations apply transformations with memory
operations reordering. Scalar replacement, register
allocation, instruction scheduling.

o Transformations by programmers or refactoring tools also
modify program semantics.

Computer Architecture 2014

&% Universidad Sequential consistency violation: ARCOS i

% Carlos III de Madrid

//er\\\-f www.uc3m.es erte Buffers .‘ .' .|
{ flag1=0; flag2=0; }
/hag1=1; h /h892==1; h
If (flag2==0) { If (flag1==0) {
critical section critical section
N) U y
[assert(flag11=0 || flag2!=0) |

\, /

o If caches use write buffer:
o Writes are delayed in buffer.
o Read obtain old value.

o Dekker algorithm is invalidated.

= Dekker algorithm is the first known solution to the critical
section problem.

Computer Architecture 2014

2% Universidad ARCOS .-l B

R S et Program order e
[flag1=0; flag2=0; }
/hag1=1; h /h892==1; h
If (flag2==0) { If (flag1==0) {
critical section critical section
J) C Y
[Write flag1, 1 } Write flag2, 1 }

| /]

[Read flag2, 0 Y [Read ﬂag1,¢0?}

Computer Architecture 2014

2% Universidad ARCOS ._' .

) Coonin deMadrid Program order &
[flag=0 }
A=23; while (flag != 1) {
flag = 1; }
X=A;
{Write A, 23 } [Read flag, 0 }

l 3R dfll'1 }
Wiite flag, 1 l,

‘ReadA, 07 |

Computer Architecture 2014

ay uesiaad - Sufficient conditions for sequential arcos it

< i \\\-S www.uc3m.es CO N S | Ste N Cy .! .l .|

0 Sufficient conditions:

o Each process emits memory operations in program
order.

o After emission of a write, emitting process waits to
complete the write before emitting other operation.

o After a read emission, emitting process waits until
read is completed and that the write of the value being
read is completed.

= Wait write propagation to all processes.

o These are very exigent conditions.

o There might be necessary conditions that are less
exigent.

Computer Architecture 2014

i Universidad ARCOS .-l B

QW) Carlos I de Madrid imizati == W
) Cros 14 Optimizations e

o Models relaxing execution program order.
oW-R
oW-W
oR-WW-W

Computer Architecture 2014

2% Universidad ARCOS .-! B

www.uc3m.es

: Carlos Il de Madrid Reordenngs - -

R — W W~ R
Alpha X X X X
PA-RISC X X X X
POWER X X X X
SPARC X
X86 X
AMD64 X
|AG4 X X X X
zSeries X

Computer Architecture 2014

) Lt v RE2DS bypass writes =t

< N W m
N M) www.uc3mes VV —_ R N N .

o A read may execute before a preceding write.

o Typical in systems with write buffer.
o Check consistency with buffer.
o Allow read buffer.

Computer Architecture 2014

& 2% Universidad ARCOS .-l B

) CarlsdeMadrid OQther models e

9] Q
i/ www.uc3mes

T R-=>W W-R

o Allow that writes may arrive into memory out of
program order.

c R WW-RR-RW-W
o Avoid only data and control dependencies within
Processor.

o Alternatives:
= WWeak consistency.
m Release consistency.

Computer Architecture 2014

2% Universidad ARCOS I-E B

5 ?) Carlos Il de Madrid . cos 1
LS Y www.uc3mes Wea k O rd e rl n g .! .l .|

o Weak ordering:

o Divide memory operations in data operations and
synchronization operations.

o Synchronization operations act as a barrier.

= All preceding data operations in program order to a
synchronization must complete before synchronization is
executed.

= All subsequent data operations in program order to a
synchronization operation must wait until synchronization
Ins completed.

= Synchronization are performed in program order.
o Hardware implementation of barrier.

= Processor keeps a counter.
Data operation emission — increment.
Data operation completion — decrement

Computer Architecture 2014

i Universidad ARCOS .-l B

NP Creslieemaaid - Acquire/release consistency & & @

o More relaxed than weak consistency.

0 Synchronization accesses divided into:
o Acquire.
o Release.

0 Semantics:
o Acquire:
= Must complete before all subsequent memory accesses.
o Release
= Must complete all previous memory accesses.

= Subsequent memory accesses MAY initiate.

= Operations following a release and must wait, must be
protected with an acquire.

Computer Architecture 2014

@\ Universida . . m
4ex Uivenaad - Memory consistency in Intel ARcCOS il i

Y wwwaucdmes Processors e N

o Until 2005 Intel had not completely clarified its
memory consistency model.

o Formalizing model highly complex.

o Problems for language implementations (Java,
C++, ...)

o Currently the model is clarified and public.

Computer Architecture 2014

:\\" NO\ Universidad ARCOS .-l B

) CarlosIldeMadrid [nte| INitial model B E §

9 i Q
i/ www.uc3mes

0 1486 y Pentium:

o Operations in program order.

= Exception: Read misses bypass writes in write buffer
only if all writes are cache hits.

m It is impossible that a read miss matches with a write.

Computer Architecture 2014

ARCOS '

5‘\"0,_, Universidad _ .)
Ry calosideMadrid - Afomic operations & & i

) %/ www.uc3m.es

0 Since 1486:
o Read or write 1 byte.
o Read or write a 16-bit aligned word.
o Read or write a 32-bit aligned double word.

0 Since Pentium:
o Read or write a 64-bit aligned quadword.

o Non-cached memory access that fits in 32 bit
data bus.

0 Since P6:

o Non aligned access to data of 16, 32, or 64 bits
that fit in a cache line.

Computer Architecture 2014

& 2% Universidad ARCOS .-l B

) CarlosIlldeMadrid Bs b|OCking e

&/ www.uc3mees

o A processor may emit a signal to block the bus.
o Other elements cannot access the bus.

o Automatic bus blocking.
o XCHG instruction.

o Update segment descriptors, page directory, and page
table.

o Interruption acceptance.

o Bus software blocking:

o Use LOCK prefix in:

B Insgl)Jctions for bit checking and modification (BTS, BTR,
BTC).

= Exchange instructions (XADD, CMPXCHG, CMPXCHGSB).
= 1 operand arithmetic instructions (INC, DEC, NOT, NEG).

= 2 operand arithmetic-logic instructions (ADD, ADC, SUB, SBB,
AND, OR, XOR).

Computer Architecture 2014

ARCOS i B

%/ www.uc3mes

5‘\"@—, Universidad _ .)]
QYY) CarlostdeMadrid - Barrier instructions & & i

o LFENCE

o Barrier for load operations.

o Every load preceding a LFENCE is globally made
visible before any subsequent load.

0 SFENCE

o Barrier for store operations.

o Every store preceding SFENCE is globally made
visible before any subsequent store.

o MFENCE

o Barrier for load/store operations.

o All the load and store preceding MFENCE are
globally made visible before any other subsequent
load or store operation.

Computer Architecture 2014

A% unvesicd —— Gurrent memory model ARCOS i fi
“| Carlos III de Madrid

& wvacimes (in a single processor) S

o Reads do not bypass other reads (R = R).
o Writes do not bypass reads (R = W).

o Writes do not bypass writes (W = W).
o Exceptions for strings and non-temporal moves.

o Reads bypass preceding writes (W — R) to different
addresses.

o Reads/writes do not bypas |I/O operations, locked
Instructions, serializing instructions.

o Reads cannot bypass preceding LFENCE or MFENCE.

o Writes cannot bypass preceding LFENCE, SFENC or
MFENCE.

o LFENCE cannot bypass a preceding read.
o SFENCE cannot bypass a preceding write.
o MFENCE cannot bypass a preceding read or write.

Computer Architecture 2014

i Universidad ARCOS I-E B

Caios I deMadrid - Multiprocessor memory model -

o Each processor is individually compliant with
former rules.

o Writes from a processor are observed in the
same order by all the other processors.

o Writes of a processor are NOT ordered with
respect to writes from other processors.

o Memory ordering is transitive.

o Two writes are viewed in a consistent order by
any other processor distinct from those two.

0 Lock instructions have a total order.

Computer Architecture 2014

57 'I"”/,’ Universidad ARCOS I B

P Cortos M deMadrid Example: Write ordering B F

Writes from
Processor A Processor B Processor C eyery

Write A.1 Write B.1 Write C.1 g:ngss” keep
Write A.2 Write B.2 Write C.2
Write A.3 Write B.3 Write C.3

Write A.1

Write B.1

Write B.2 Order for every

Write C.1 process is kept

Write A.2

Write B.3 No order is guaranteed

Write A.3 across processes

Write C.2
Write C.3

Computer Architecture 2014

@y Universidad N O reo rd € rl n g

% Carlos III de Madrid

i35 Y7 www.uc3mes R — R W —_ W
)

[X=Y=0 \
N
mov [_x], 1 mov r1, [_y]
mov [_y], 1 mov r2, [X]
9 Y,
§ 3 NOT
r1=1yr2=0 ALLOWED

Computer Architecture 2014

>\ Universidad N O reo rd e r-l 1 g
| Carlos III de Madrid

Y
\ _\\C www.uc3m.es R) W

(x=y=0 \
N
mov r1, [X] mov r2, [_y]
mov [_y], 1 mov [X], 1
L y,
§ 3 NOT
\ =1y r2=1 / ALLOWED

Computer Architecture 2014

2\ Universidad
) Carlos III de Madrid

/ www.uc3m.es

Reordering

W(a) = R(b)

x=y=0
mov [_X], 1 mov [_y], 1
mov r1, [y] mov r2, [X]
\.
i 1= 0y r2=0

Computer Architecture 2014

ARCOS i B
N

Universidad _ N O reo rd e r| N g
Carlos III de Madrid

www.uc3m.es VV —) R

(x=0 }
mov [_X], 1
mov r1, [X]
\
(1= 0 NOT
M= ALLOWED

Computer Architecture 2014

: ‘“v'/o: Universidad _ V|S|b|||ty Of ertes from Other ARCOS ._' -
Carlos III de Madrid

/ www.uc3m.es p ro Ce S S O r .l .l .'

Writes may be perceived in different order by every processor

[x=y=0 \
.
mov [x], 1 mov [_y], 1
mov r1, [x] mov r3, [_y]
_mov r2, [_y] mov r4, [_x] Y

Computer Architecture 2014

>\ Universidad

) Carlos Il de Madrid

/ www.uc3m.es

Transitive visibility of writes

x=y=0
N\
mov [_X], 1 mov r1, [X] mov r2, [Y]
mov [_y], 1 mov r3, [X]
_ v
(=1y r2=1y r3=0 \

NOT
ALLOWED

Computer Architecture 2014

&S unvesiid — Consistent write order for other ARCOS il fi
Carlos III de Madrid

/ www.uc3m.es p ro Ce S S O r'S .! .‘ .'

[x=y=0 \

Ve N
mov [_X], 1 mov [y], 1 mov r1, [X] mov r3, [_Y]
mov r2, [Y] mov r4, [X]

_ J

[=1y r2=0y r3=1y r4=0 \

NOT
ALLOWED

Computer Architecture 2014

A& unvesicd ——— Locked instructions define total ARCOS il
’) Carlos III de Madrid

i / www.uc3m.es Order . . .

[rM=r2=1,x=y=0 \

Ve N
xchg [x], r1 xchg [y], r2 mov r3, [X] mov r5, [_Y]
mov r4, [y] mov r6, [X]

_ J

[=1y r2=0y r3=1y r4=0 \

NOT
ALLOWED

Computer Architecture 2014

2% Universidad ARCOS .—! B

1)) cuesiieemaris Reads not reordered with locks B

www.uc3m.es

(x=y=0,r=r3=1 |
4 D
xchg [_x], r1 xchg [v], r3
mov r2, [y] mov r4, [X]
~ y,
() NOT
\ r2=0yra=0 / ALLOWED

Computer Architecture 2014

2% Universidad ARCOS .-! B

1)) cuosiieemaria Writes not reordered with locks B

www.uc3m.es

(x=y=0,r1=1 \
p D
xchg [x], r1 mov r2, [_y]
mov [_y], r1 mov r3, [X]
9 Y,
§ 3 NOT
2=1yr3=0 ALLOWED

Computer Architecture 2014

N ! - -
>\ Universidad

) CaosldeMadrid -~ Prgctical effects

) TuTy Q
Ny g www.uc3m.es

0 Sequential consistency
o Load: mov reg, [mem]
o Store: xchg [mem], reg

o Relaxed consistency
o Load: mov reg, [mem]
o Store: mov [mem], reg

0 Release/acquire consistency
o Load: mov reg, [mem]
o Store: mov [mem], reg

Computer Architecture 2014

ARCOS i B

Universidad ARCOS ' B

) Carlo smaemaid Referencia B W

) Q
s/ www.uc3m.es

o Computer Architecture. A Quantitative Approach.
Fifth Edition.
Hennessy y Patterson.
Section: 5.6

o Adve, S. V., and Gharachorloo, K. Shared
memory consistency models: A tutorial. IEEE
Computer 29, 12 (December 1996), 66-76.

o Intel 64 and |A-32 Architectures Software
Developer Manuals. Volume 3: Systems
Programming Guide.

o 8.2: Memory Ordering

Computer Architecture 2014

