Derivatives: Partial derivatives

If \(f(x,y) \), then

\[
\frac{\partial f(x,y)}{\partial x}, \quad \frac{\partial f(x,y)}{\partial y}
\]

Ratio of change on the direction of the axis.

Directional derivatives:

\[
\nabla f(x,y), \quad \sigma = \text{vector.}
\]

Ratio of change on the direction \(\sigma \).

Existence of all directional derivatives \(\Rightarrow \) differentiability at a tangent plane.
Differentiability

We have \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \) a scalar function and we would like to see if \(f \) is differentiable at a point \(P \).
At a point \((x_0, y_0, f(x_0, y_0))\) \(\in \mathbb{R}^3\) will have a plane going through that point with equation

\[
\frac{z = f(x_0, y_0) + A(x - x_0) + B(y - y_0)}{A, B \in \mathbb{R}\text{ coefficients for the plane.}}
\]

But, if we want to have the tangent plane to the surface \(z = f(x, y)\) at \(P = (x_0, y_0, f(x_0, y_0))\), we need that

\[
\left. \frac{(x-x_0)}{A} \quad \frac{(y-y_0)}{B} \right|_{(x_0, y_0)} = \left. \frac{f(x, y_0)}{A} \quad \frac{f(x_0, y)}{B} \right|_{(x_0, y_0)}
\]

\[
\left[f(x + h) = f(x) + f'(x_0)(x - x_0) + o(h) \right]
\]

\[
\lim_{h \to 0} \frac{o(h)}{h} = 0
\]
That would be the tangent plane if
\[
\lim_{(x,y) \to (x_0,y_0)} \frac{2(x+y)}{||(x,y)||} = 0 = \lim_{(x,y) \to (x_0,y_0)} \frac{2((x,y)-(x_0,y_0))}{||(x,y)-(x_0,y_0)||}
\]

Definition - Differentiability

Let \(A \subset \mathbb{R}^2 \) be a set in \(\mathbb{R}^2 \) such that \((x_0,y_0) \in A \).

Let \(f : A \subset \mathbb{R}^2 \to \mathbb{R} \) be a scalar function.

Then, \(f \) is differentiable at \((x_0,y_0)\) if

1. \(\frac{df(x,y)}{dx}, \frac{df(x,y)}{dy} \) exist,
2. \(\lim_{(x,y) \to (x_0,y_0)} \frac{f(x,y) - f(x_0,y_0) - \frac{df(x_0,y_0)}{dx}(x-x_0) - \frac{df(x_0,y_0)}{dy}(y-y_0)}{||(x,y)-(x_0,y_0)||} = 0 \)
We might write that limit as

\[
\lim_{(xy) \to (x_0,y_0)} \frac{f(xy) - f(x_0y_0) - Df(x_0y_0) \cdot (x-x_0, y-y_0)}{||(xy) - (x_0,y_0)||} = 0
\]

If that is the case we write the tangent plane to the graph of \(f \) at \((x_0, y_0) \) as

\[
z = f(x_0y_0) + \frac{\partial f(x_0y_0)}{\partial x} (x-x_0) + \frac{\partial f(x_0y_0)}{\partial y} (y-y_0)
\]

\(A \)

\(B \)

These two particular coefficients define the tangent plane to \(z = f(xy) \) (slopes in the directions of the axis)
Definition

$\mathbb{R}^n \to \mathbb{R}^m, \ x \in A, \ f : A \to \mathbb{R}^m$

\(f \) is differentiable at \(x \in \mathbb{R}^n \) if

a) all partial derivatives exist at \(x_0 \)

b) \(\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - Jf(x_0)(x-x_0)\|}{\|x-x_0\|} = 0 \)

[Jacobian matrix]
Problem 5 of set 1.2

\[f(x, y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \]

c) Is differentiable at \((0, 0)\)?

We might study the continuity first at \((0, 0)\).

\[\lim_{(x, y) \to (0, 0)} f(x, y) = \lim_{(x, y) \to (0, 0)} \frac{2xy}{x^2 + y^2} = \lim_{x \to 0} \frac{2x^2}{x^2(1+x^2)} \]

\[y = 2x \]

\[= \lim_{x \to 0} \frac{2x}{1+x^2} = \frac{2x}{1+x^2} \quad \text{The limit depends on the direction so it does not exist.} \]

\[f \text{ is not continuous at } (0, 0) \Rightarrow f \text{ is not diff.} \]
\[
\lim_{(x,y) \to (0,0)} \frac{2xy}{x^2+y^2} = \lim_{r \to 0} \frac{2r^2 \cos \theta \sin \theta}{r^2} = 2 \cos \theta \sin \theta
\]

The limit depends on the direction \(\theta \) so it does not exist.

Existence of all directional derivatives \(\implies \) continuity \(\implies \) differentiability.

ii) Find \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \) at \((0,0)\)

Show that \(\frac{\partial f}{\partial x} \) is not continuous.

\[
\frac{\partial f(0,0)}{\partial x} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0 = \frac{\partial f(0,0)}{\partial y}
\]
\[\lim_{\theta \to 0} \frac{f(\theta, 0) - f(0, 0)}{\theta} = \lim_{\theta \to 0} \frac{0 - 0}{\theta} = 0 \]

\[f(x,y) = \frac{2xy}{x^2 + y^2} \quad \Rightarrow \quad f(0,0) = \frac{2 \cdot 0 \cdot 0}{0^2 + 0} = 0 \]

\[f(0,0) = 0 \quad \Rightarrow \quad f(0,0) = \frac{2 \cdot 0 \cdot 0}{0^2 + 0} = 0 \]

\[f(0,0) = 0 \quad \Rightarrow \quad f(0,0) = \frac{2 \cdot 0 \cdot 0}{0^2 + 0} = 0 \]

Partial derivative with respect to \(x \)

\[f(x,y) = 2y \]

\[\frac{\partial f(x,y)}{\partial x} = 2y \left(\frac{x^2 + y^2}{x^2 + y^2} \right) - 2xy \frac{2x}{2x} \]

\[= \frac{-2x^2 y + 2y^3}{(x^2 + y^2)^2} \]

At \((0,0)\)

\[\frac{\partial f(0,0)}{\partial x} = 0 \]
\[
\frac{\partial f(x,y)}{\partial x} = \begin{cases}
-\frac{2x^2y + 2y^3}{(x^2+y^2)^2} & \text{if } (x,y) \neq (0,0) \\
0 & \text{if } (x,y) = (0,0)
\end{cases}
\]

Continuous at \((0,0)\) if
\[
\lim_{(x,y) \to (0,0)} -\frac{2x^2y + 2y^3}{(x^2+y^2)^2} = 0 = \frac{\partial f(0,0)}{\partial x}
\]

Using polar coordinates. \(x = 2\cos \theta\)
\(y = 2\sin \theta\)

\[
\lim_{(x,y) \to (0,0)} -\frac{2x^2y + 2y^3}{(x^2+y^2)^2} = \lim_{r \to 0} -\frac{2r^5 \cos^2 \theta \sin \theta + 2r^3 \sin^3 \theta}{r^4}
\]

\[
= 2 \lim_{r \to 0} \frac{1}{r^2} \left(\sin^3 \theta - \cos^2 \theta \sin \theta \right)
\]

\[
= \infty
\]

\(\text{unbounded.}\)
Problem 10 i)

\[f(x, y) = x - y + 2 \] \{ Find the tangent plane. \}

\((x_0, y_0) = (1, 3) \)

It linear so that tangent plane = \(f \).

\[z = f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x}(x - x_0) + \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0) \]

\[f(x_0, y_0) = 1 - 3 + 2 = 0 \]

\[\frac{\partial f(x_0, y_0)}{\partial x} = 1 \quad \frac{\partial f(x_0, y_0)}{\partial y} = -1 \]

\[z = (x - 1) - (y - 3) = x - y + 2 \]

\[2 = x - y + 2 \] \(\sqrt{\text{Tangent plane.}} \)
But if is away from \(T \) if we are outside of the ball.
Proposition

$A \subset \mathbb{R}^n$, $x_0 \in A$ and $f: A \to \mathbb{R}$ differentiable at x_0 and $u \in \mathbb{R}^n \setminus \{0\}$ for a vector.

Then,

$$Df(x_0) = \sum_{i=1}^{N} \frac{\partial f(x_0)}{\partial x_i} \cdot u_i = \langle Df(x_0), u \rangle$$

u is normalised vector

$||u|| = 1$

$\cdot \langle Df(x_0), (\alpha u) \rangle = \alpha \langle Df(x_0), u \rangle$ if $\alpha \neq 1$

We must have

$||u|| = 1$
Example: Set 1.3 problem 3 i)

\[f(x,y) = x^2 + y^2 \text{ at } (1,1) \text{ along the direction } (1,-1) \]

\[\nabla f(1,1) = \lim_{(xy) \to (1,1)} \frac{f((1,1)+t(1,-1)) - f(1,1)}{t \| (1,-1) \|} \]

\(f \) is differentiable everywhere (it is a polynomial)

\[\nabla f(1,1) = \left< \nabla f(1,1), \frac{(1,-1)}{\| (1,-1) \|} \right> \]

\[\nabla f(x,y) = (2x, 2y) \implies \nabla f(1,1) = (2, 2) \]

\[\| (1,-1) \| = \sqrt{1+1} = \sqrt{2} \]

\[\nabla f(1,1) = \left< (2, 2), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) \right> = \frac{2}{\sqrt{2}} - \frac{2}{\sqrt{2}} = 0 \]
Remark

- $< \nabla f(x_0), \sigma > = \frac{\| \nabla f(x_0) \| \| \sigma \| \cos(\nabla f, \sigma)}{1}$

= $\| \nabla f(x_0) \| \cos(\nabla f, \sigma) \leq \| \nabla f(x_0) \|

We obtain that the directional derivative of f at x_0 in the direction of σ is maximal in the direction of ∇f.

$\cos(\nabla f, \sigma) = 1 \implies \text{angle}(\nabla f, \sigma) = 0$

or

$\nabla f \parallel \sigma$

Also,

$-\nabla f(x_0)$ maximal decreasing for f.
Problem 5, set 1.3

Temperature of a metal plate

\[T(x,y) = e^x \cos y + e^y \cos x \]

a) Direction of maximal increasing for \(T \) at \((0,0)\)

\[\nabla T(x,y) = \left(e^x \cos y - e^y \sin x, -e^x \sin y + e^y \cos x \right) \]

\[\frac{\partial T}{\partial x} \quad \frac{\partial T}{\partial y} \]

\[\nabla T(0,0) = \left(1, 1 \right) \]

b) \(T \) decreasing the fastest

\[-\nabla T(0,0) = \left(-1, -1 \right) \]
Proposition

\(\mathbb{R}^n, x_0 \in \Omega, f: \Omega \to \mathbb{R} \) differentiable at \(x_0 \)

with \(\nabla f(x_0) \neq 0 \) then

\(\nabla f(x_0) \perp \) to the level curve of \(f \) at \(f(x_0) \)

For example in \(\mathbb{R}^3 \)

\(\nabla f(x, y, z) \neq (0, 0, 0) \)

\((x, y, z) \in \Omega, \Omega \) domain in \(\mathbb{R}^3 \)

Assume a level curve

\(f(x, y, z) = c \in \mathbb{R} \)

\(S_c = \) specific level curve at \(c \).
Since f is diff., the tangent plane will be perpendicular to the level curve.

So that ∇f is the normal vector to the level curve.
In other words, take two points on the tangent plane.

\[P^* = (P_1, P_2, P_3) \quad \text{and} \quad P = (x, y, z) \]

with \(n = (n_x, n_y, n_z) \) as the normal vector to the tangent plane.

\[(P - P^*) \cdot n = 0 \implies (x - P_1)n_x + (y - P_2)n_y + (z - P_3)n_z = 0\]

There is only one normal vector! \\

Definition \\
Let \(S \) be a surface in \(\mathbb{R}^3 \), then the tangent plane to \(S \) at \((x_0, y_0, z_0) \in S \) is given by \(\nabla f(x_0, y_0, z_0) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} = 0 \)
Problem 4.6. Set \(f(x, y, z) = 1.2 \)

\(\nabla f(x, y, z) = (2x, 2y, 2z) \)

\(\nabla f(1, 1, 1) = (2, 2, 2) \)

Tangent plane:

\[\nabla f(1, 1, 1) \cdot \begin{pmatrix} x-1 \\ y-1 \\ z-1 \end{pmatrix} = 0 \]

\[2x-2 + 2y-2 + 2z-2 = 0 \]

\[x + y + z = 3 \]