Hardware Dinámicamente Reconfigurable

Julio Septien del Castillo Hortensia Mecha López

Curso 3er Ciclo Abril 2003

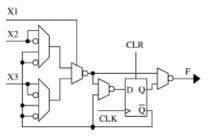
Departamento de Arquitectura de Computadores y Automática Universidad Complutense de Madrid

1

Temario

- Tema 1. Introducción al Hw reconfigurable
- Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable
- Tema 3. Arquitecturas académicas
- Tema 4. Arquitecturas grano grueso
- Tema 5. Problemas de gestión de recursos hw dinámicamente reconfigurables
- Sesiones prácticas
- Presentación de trabajos

Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

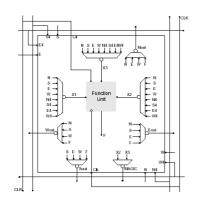

- 1. Arquitecturas de Xilinx
 - 6200
 - Virtex
 - Virtex II
- 2. Arquitecturas de Altera
 - Flex 6000
 - Flex 10K
- 3. Arquitecturas de Atmel
 - AT 6000
 - AT 40K
- 4. Método de configuración de las Virtex
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica

Arquitecturas de Xilinx. Xilinx 6200

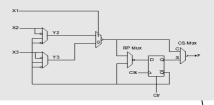
Se trata de una arquitectura de grano fino, de estilo mar de celdas que permite reconfiguración parcial a nivel de celda

Device	XC6209†	XC6216	XC6236†	XC6264†
Typical Gate Count Range	9000-13000	16000-24000	36000-55000	64000-100000
Number of Cells	2304	4096	9216	16384
Max. No. Registers	2304	4096	9216	16384
Number IOB's	192	256	384	512
Cell Rows x Columns	48x48	64x64	96x96	128x128

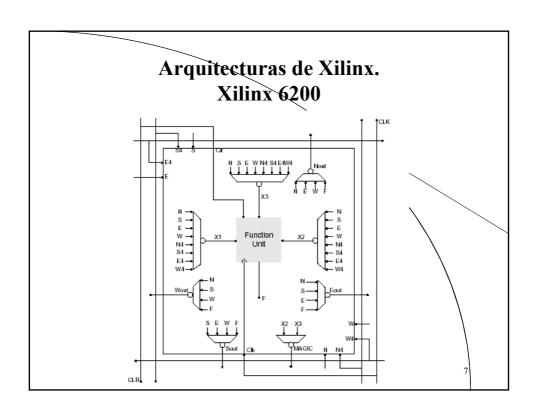
Cada celda básica puede implementar un conjunto de funciones de nivel lógico y dispone de una área de interconexionado para la comunicación entre celdas

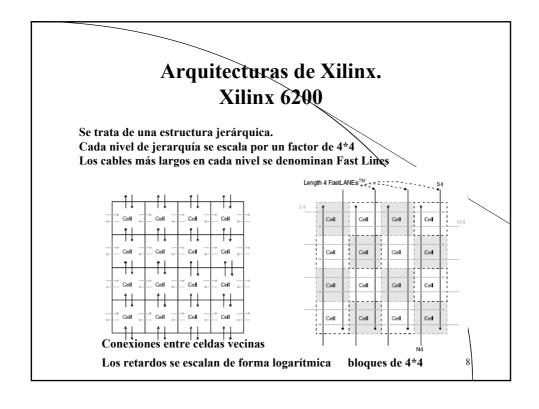

Bloque básico Xilinx 6200

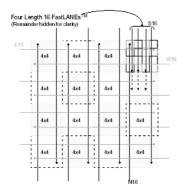
Estructura simple, simétrica, jerárquica y regular


La configuración se realiza mediante celdas de SRAM de 6 transistores direccionables desde el exterior

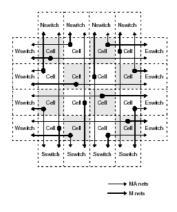
J


Arquitecturas de Xilinx. Xilinx 6200



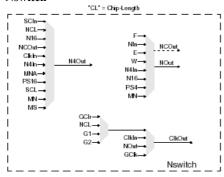

Además hay 4 líneas globales de bajo skew para reset y relojes Magic es para interconexionado Existen interconexiones entre celdas adyacentes, interconexiones de longitud 4 celdas (N4,S4,W4,E4), 16 celdas (N16,S16,W16,E16) y de longitud igual a la del chip

Las salidas de las UFs y los registros pueden leerse desde el exterior


IOBs

64 User IOB's (1 per border cell)

bloques de 16*16

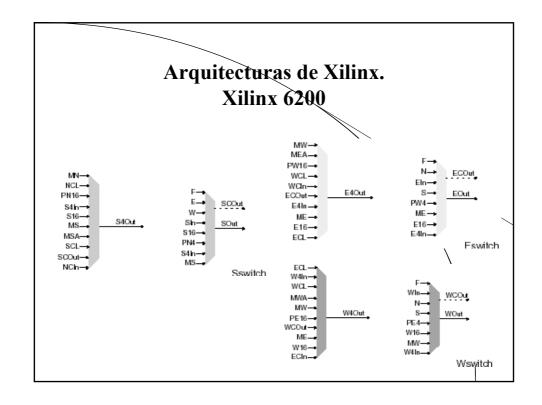

En la XC6216, los bloques de 64*64 proporcionan las Chip-Length En arquitecturas de mayor tamaño se sigue este proceso con más niveles

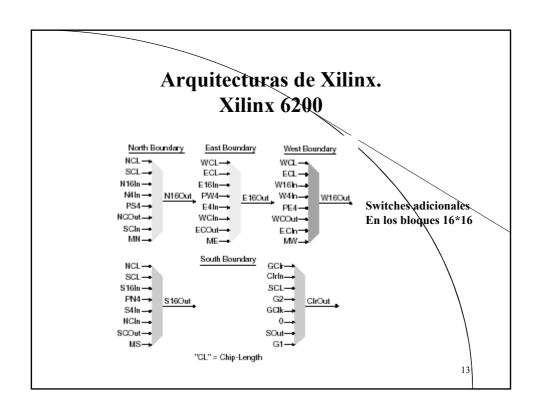
> Arquitecturas de Xilinx. Xilinx 6200

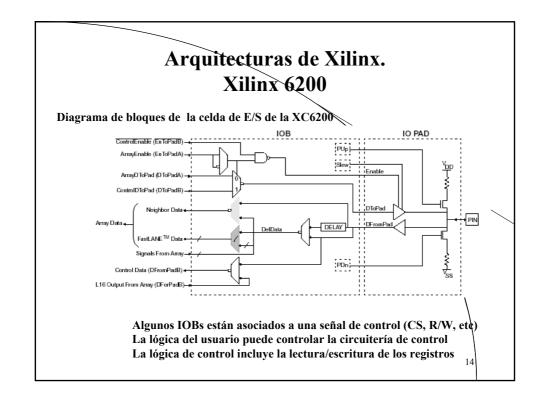
- •En cada bloque existen una serie de switches distribuidos por el borde, que proporcionan las conexiones entre los distintos niveles en la misma posición del array.
- En la figura se muestran los syitches para interconexionado en los alrededores del bloque de 4*4
- •Cada celda tiene una salida Magic que proporciona conexión directa a dos switches del bloque 4*4 (M y MA)

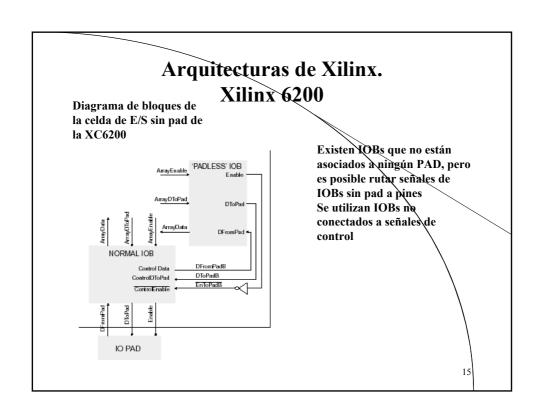
Nswitch

NCOut: conexión de vecindad si no se tratara de una celda límite (sirve de E al mux 8 a 1)

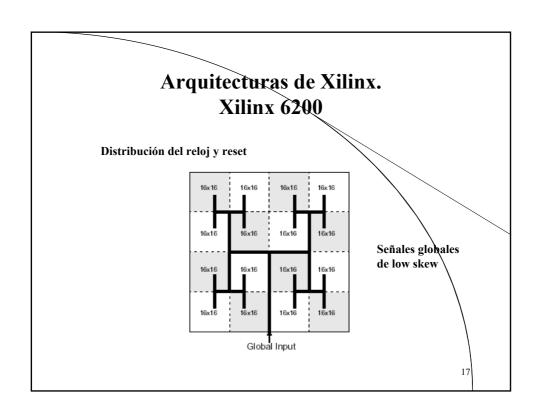

SCIn: conexión de la celda superior si no hubiera sido celda límite Las conexiones son direccionales, y se etiquetan según\a dirección de la señal

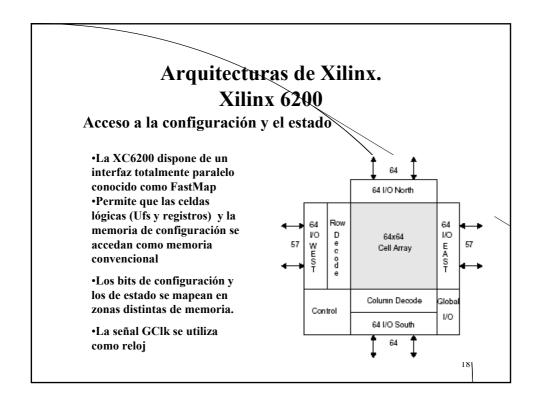

F: salida de la celda N,S,E,W: conexiones de celdas vecinas


N4In, S4In, W4in, E4in: entrada de las interconexiones de longitud 4 NCL,SCL.ECL,WCL: conexiones de longitud igual al chip PS4: conexión dirección S que entra al SSwitch del bloque 4*4 superior (con. U)


PS16: conexión dirección S del bloque 16*16 superior ClkIn: entrada de reloj

MN, MS, MNA: entradas Magic 11





- •El acceso a los bits de estado permite sacar y meter tareas restaurando su estado
- •También es un mecanismo para entrada/salida de datos
- •Cuando se accede al estado, todos los bits que se leen son de estado
- •También existen una serie de recursos para minimizar el número de ciclos para reconfiguración (compresión)
- •Cuando se configura se usa todo el bus de direcciones. Se puede acceder de 8 en 8 bits o bien de 32-bits, en cuyo caso se ignoran los dos bits de direcciones menos significativos

19

Arquitecturas de Xilinx. Xilinx 6200

Acceso a bits de configuración, estado y registros de control

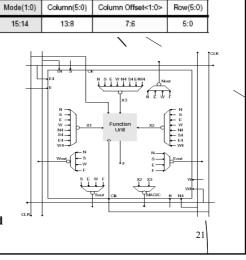
٨	Mode(1:0)	Column(5:0)	Column Offset<1:0>	Row(5:0)
	15:14	13:8	7:6	5:0

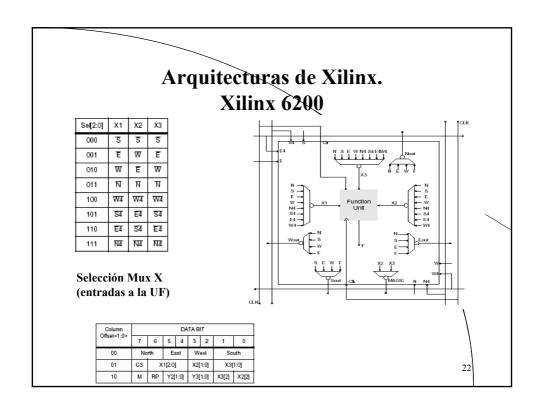
Formato de dirección de la XC6209 y la XC6216

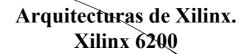
Mode(1:0)	Column(6:0)	Column Offset<1:0>	Row(6:0)
17:16	15:9	8:7	6:0

Formato de dirección de la XC6236 y la XC6264

Mode1	Mode0	Area Selected
0	0	Cell Configuration and State
0	1	East/West Switch or IOB
1	0	North/South Switch or IOB
1	1	Device Control Registers

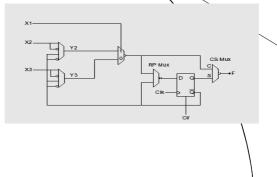

Mode 00


Column Offset<1:0>	DATA BIT							
Oliset<1.0>	7	6	5	4	3	2	1	0
00	No	rth	East		West		South	
01	CS	Х	X1[2:0]		X2[1:0]		X3[1:0]	
10	М	RP	Y2[1:0]	Y3[1:0]	X3[2]	X2[2]


Interconexionado de la celda

Sel[1:0]	North	South	East	West
00	F	F	F	F
01	И	Ē	N	W
10	Έ	w	E	1/1
11	W	ত	8	8

Selección del multiplexor de vecindad North-East-West-South



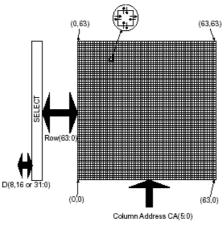
Column Offset<1:0>	DATA BIT							
Oliset<1.0>	7	6	5	4	3	2	1	0
00	No	rth	East		West		South	
01	CS	X1[2:0]		X2[1:0]	X3[1:0]	
10	М	RP	Y2[1:0]	Y3[1:0]	X3[2]	X2[2]

Sel[1:0]	Y2	Υ3
00	X2	Х3
01	ā	X3
10	X2	σ
11	g	Ø

Configuración de la UF

Arquitecturas de Xilinx. Xilinx 6200

Acceso al estado

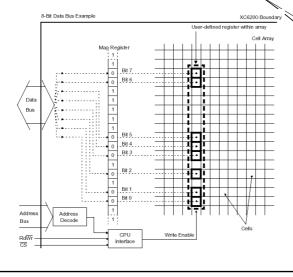

Column Offset=11 se usa para acceder al estado.

Column Offset<1:0>	DATA BIT							
Oliset<1.0>	7	6	5	4	3	2	1	0
00	No	North		East		est	South	
01	CS	X1[2:0]		X2[1:0]		X3[1:0]		
10	М	RP	Y2[1:0]	Y3[1:0]	X3[2]	X2[2]

En este caso se lee o escribe 1 bit por celda y los bits de fila de la dirección se ignoran

Todos los bits de estado a los que se accede pertenecen a la misma columna

Los datos del bus de datos se determinan por el registro Map Existen un registro Wilcard de columna para escribir simultáneamente en varias celdas de la misma fila



- •Las transferencias de datos pueden ser de 8, 16 o 32 bits, incluso cuando los bits están distribuidos sobre una columna de celdas.
- •Mediante los bits de columna puede acceder a todas las celdas de una columna
- •Las L/E se pueden hacer de hasta 32 bits de una misma columna (en orden correlativo, no necesariamente consecutivas)

Espacio de direcciones

25

Arquitecturas de Xilinx. Xilinx 6200

El registro Map mapea las celdas de una columna sobre el bús externo (de 8, 16 ó 32 bits)
Un bit a 0 indiça que debe

Un bit a 0 indica que debe accederse a la celda de dicha fila Si hay más 0's que bits

Si hay más 0's que bits válidos, el patrón del bus se repite

Puede escribirse una columna completa con un patrón de 8 bits

Mecanismos para comprimir configuraciones:

Registro de máscara Registro de "wildcard"

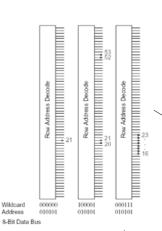
Registro de máscara

Un "1" en un bit de este registro indica que el bit correspondiente del bus de datos no es relevante (ni se lee ni se escribe)

Este registro se ignora durante las lecturas y escrituras de los registros de control

27

Arquitecturas de Xilinx. Xilinx 6200


Registro de Wildcard

- •Permite acceder a varias filas simultáneamente
- •Un 1 en un bit de este registro indica que el bit de dirección correspondiente es irrelevante
- •Se desactiva en las escrituras a los registros de control y cuando se lee el estado

00010 00110 Registro especial de wildcard 00100

Muy útil en diseños regulares

Existe otro registro de wildcard para columnas (también activo en escrituras de estado) Sirve para escribir en varios bancos simultáneamente

Registro de configuración del dispositivo

Bit:	7	6	5	4	3	2	1	0
Function:	-	Clock Enable		TTL/CMOS	Bi Wi		Co Sp	nfig eed

06- D M-0	Data Dara Michie
Config. Reg [3:2]	Data Bus Width
00	8
01	16
10	32
11	Illegal

Ancho de bus

Config. Reg [1:0]	Config Speed
00	GClk/16
01	GClk/8
10	GClk/4
11	GClk/2

Velocidad de configuración

29

Arquitecturas de Xilinx. Xilinx 6200

A[15:0]	Register	A[15:0]	Register
C000	Device Config	C031	ID (Byte1) (='i')
C004	Row Wildcard	C032	ID (Byte2) (='I')
C005	Column Wildcard	C033	ID (Byte3) (='i')
C008	Mask (Byte0)	C034	ID (Byte4) (='n')
C009	Mask (Byte1)	C035	ID (Byte5) (='x')
C00A	Mask (Byte2)	C036	ID (Byte6) (=' ')
C00B	Mask (Byte3)	C037	ID (Byte7) (='X')
C010	Map (Byte0)	C038	ID (Byte8) (='C')
C011	Map (Byte1)	C039	ID (Byte9) (='6')
C012	Map (Byte2)	C03A	ID (Byte10) (='0')
C013	Map (Byte3)	C03B	ID (Byte11) (='0')
C014	Map (Byte4)	C03C	ID (Byte12) (='0')
C015	Map (Byte5)	C03D	ID (Byte13) (=' ')
C016	Map (Byte6)*	C03E	ID (Byte14) (=' ')
C017	Map (Byte7)*	C03F	ID (Byte15) (=ID #)
C030	ID (Byte0) (='X')		

Mapeo en memoria de los Registros de control de programación

Además de la configuración a través del FastMap permite reconfiguración serie

Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

- 1. Arquitecturas de Xilinx
 - 6200
 - Virtex
 - Virtex II
- 2. Arquitecturas de Altera
 - Flex 6000
 - Flex 10K
- 3. Arquitecturas de Atmel
 - AT 6000
 - AT 40K
- 4. Método de configuración de las Virtex
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica

31

Arquitecturas de Xilinx.

Virtex

Densidades desde 50K puertas hasta 1Millón de puertas Circuitería para gesión de relojes:

4 DLLs

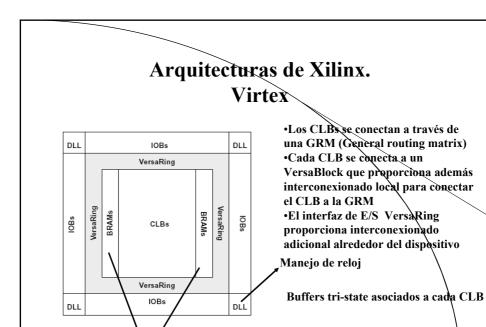
4 líneas principales para distribución de reloj

24 líneas locales secundarias

Table 1: Virtex Field-Programmable Gate Array Family Members.

Device	System Gates	CLB Array	Logic Cells	Maximum Available I/O	Block RAM Bits	Maximum SelectRAM+™ Bits		
XCV50	57,906	16x24	1,728	180	32,768	24,576		
XCV100	108,904	20x30	2,700	180	40,960	38,400		
XCV150	164,674	24x36	3,888	260	49,152	55,296		
XCV200	236,666	28x42	5,292	284	57,344	75,264		
XCV300	322,970	32x48	6,912	316	65,536	98,304		
XCV400	468,252	40x60	10,800	404	81,920	153,600		
XCV600	661,111	48x72	15,552	512	98,304	221,184		
XCV800	888,439	56x84	21,168	512	114,688	301,056		
XCV1000	1,124,022	64x96	27,648	512	131,072	393,216		

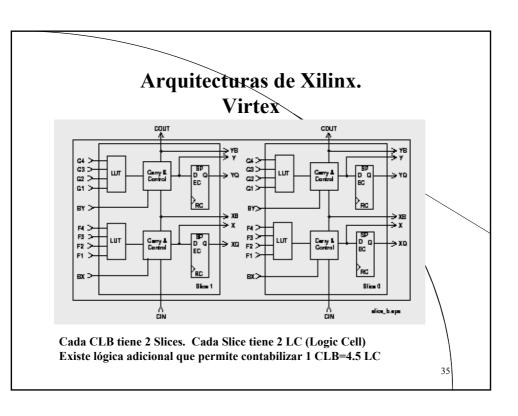
Sistema jerárquico de memoria:

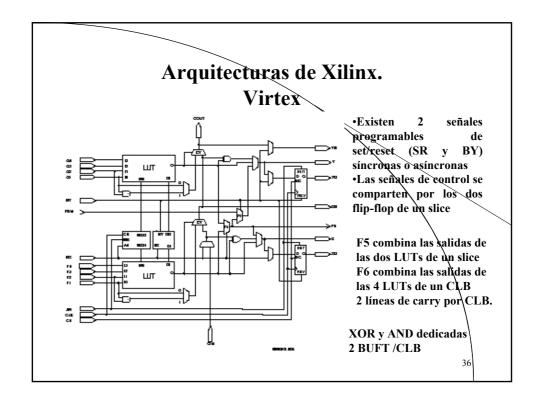

de memor 1.- LUTs

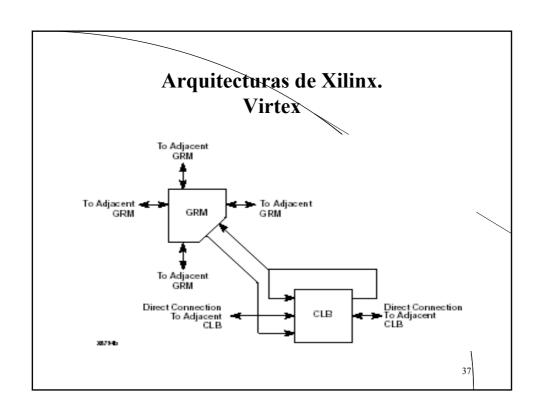
2.-Block RAM

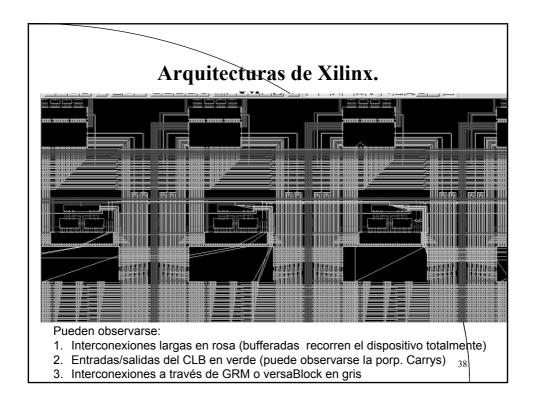
•Lógica especial para:

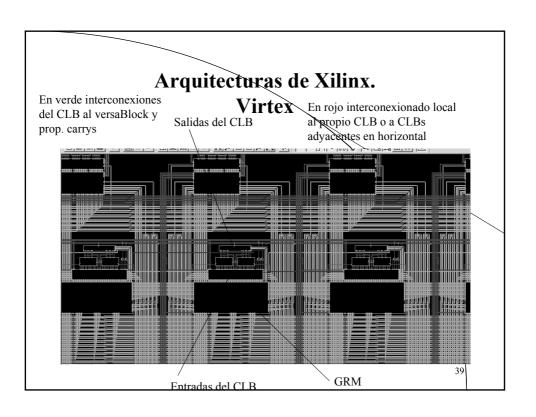
1.acarreo

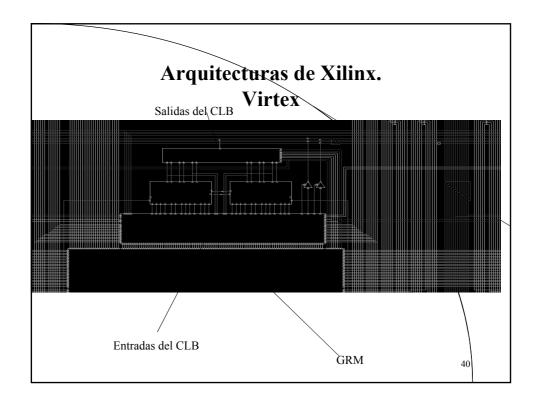

2.multiplicadores
3.encadenamiento
de funciones

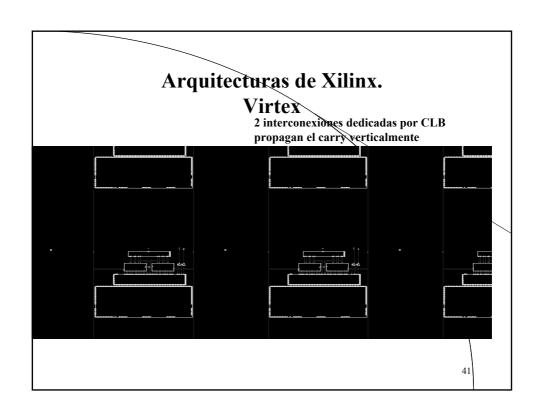


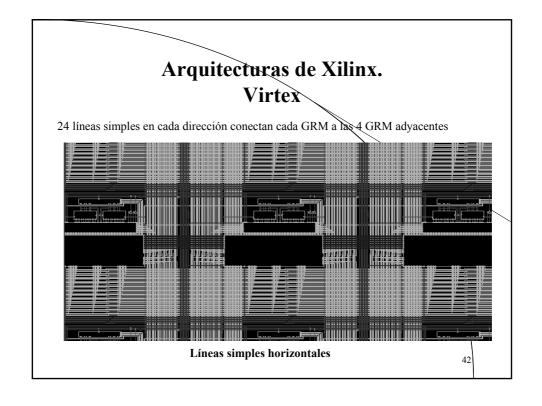

2 columnas de bloques de memoria de 4096 bit/bloque

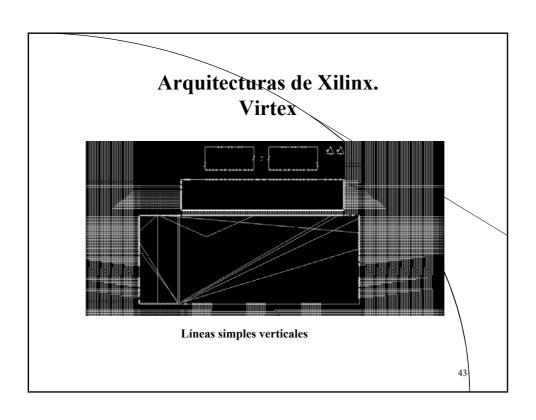

33

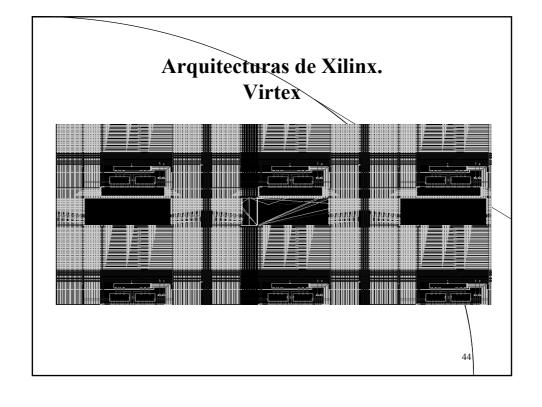

Arquitecturas de Xilinx. Virtex Soporta una gran variedad de estándares de señalización ·Los 3 elementos de almacenamiento pueden funcionar como reloj o como latches •Comparten el reloi •Señales de capacitación individuales •Señal de Set/Reset compartida y configurable Bank0 V V Bank1 Figure 2: Virtex Input/Output Block (IOB Como algunos estándares Virtex necesitan Vcco v Vref existen restricciones sobre la combinación de dichos estándares en cada banco 34

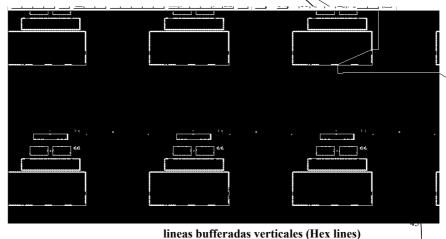


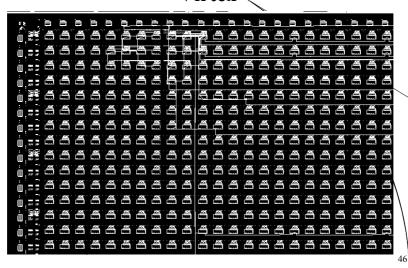


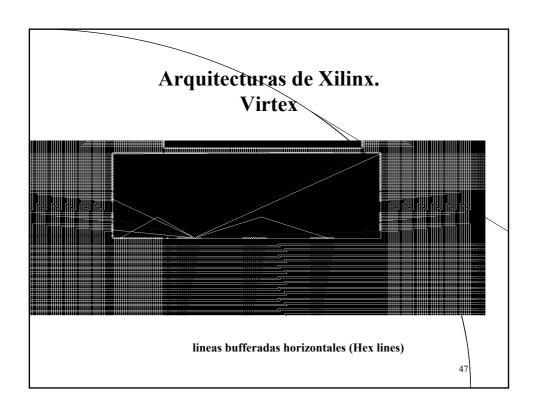


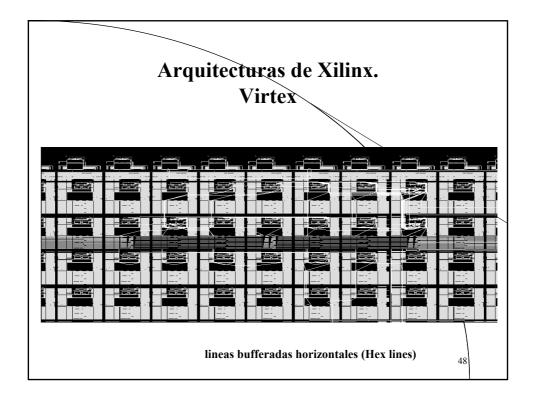


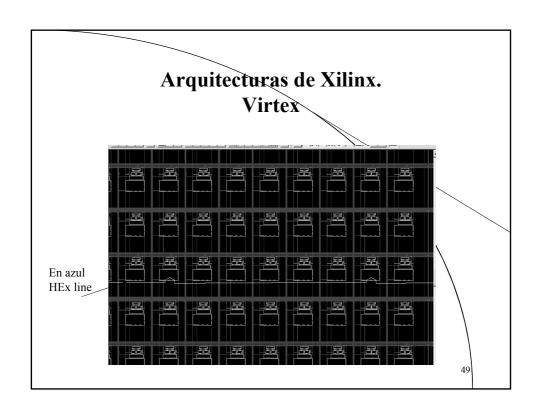


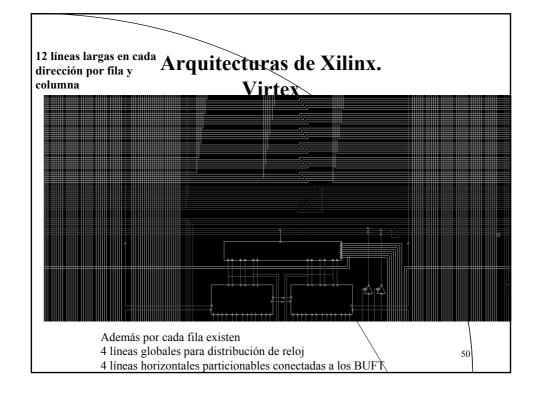


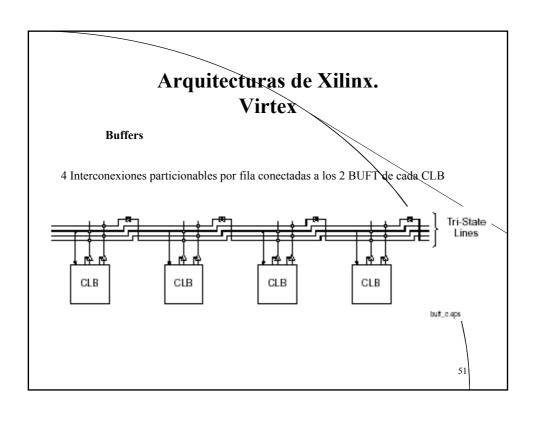


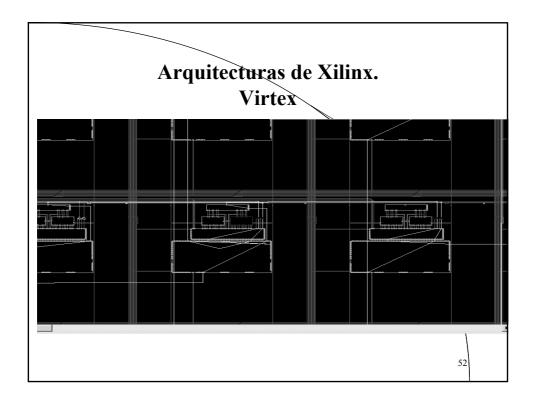

Arquitecturas de Xilinx. Virtex

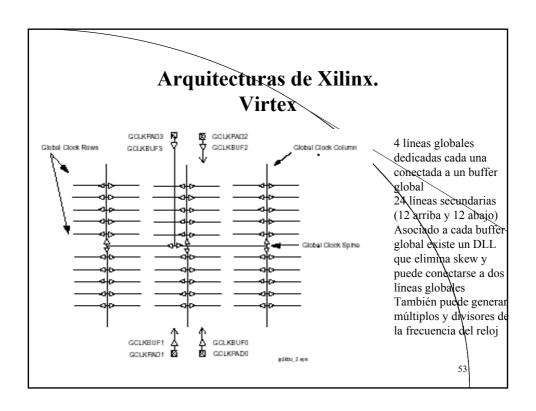

96 lineas bufferadas (Hex lines) en cada dirección conectan cada GRM con otra GRM separada 6 bloques. Se pueden acceder en los extremos y en el punto medio.

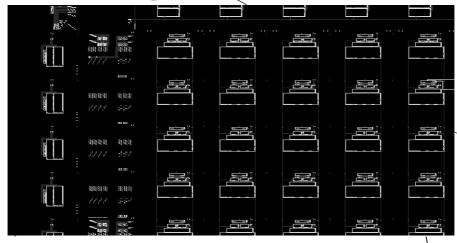



Arquitecturas de Xilinx. Virtex



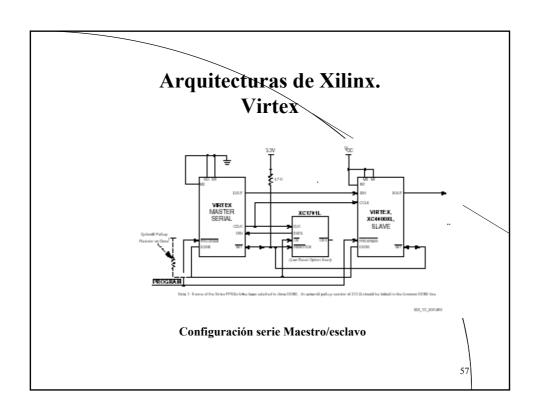


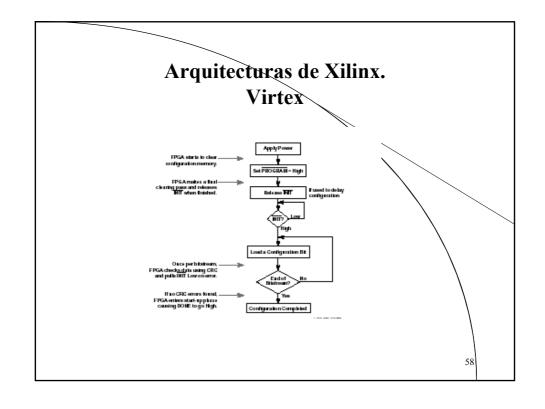


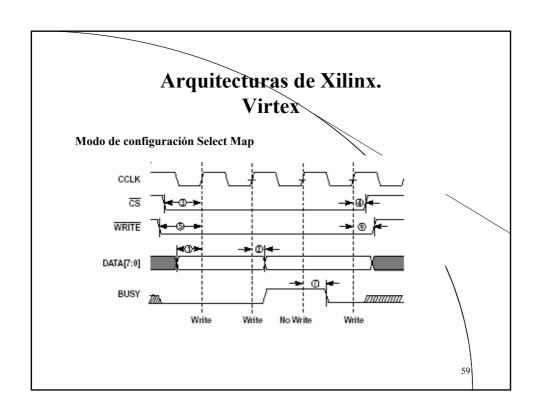


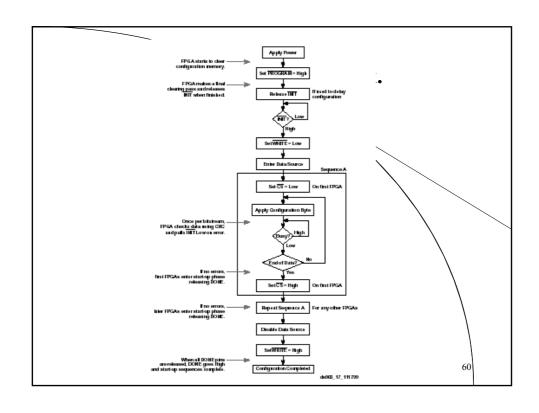
Arquitecturas de Xilinx. Virtex **Block Select Ram** Total Block Virtex Device # of Blocks SelectRAM Bits XCV50 10 XCV150 XCV200 14 57.344 XCV300 16 65,536 XCV400 81,920 20 XCV600 24 98,304 Además de la LUT Select RAM 114,688 XCA800 28 existen dos columnas de RAM en XCV1000 131,072 cada Virtex Las columnas de distribuyen en RAMB4_S#_S# WEA ENA RSTA bloques síncronos de 4096bits DOA[#:0] (Block SelectRAM) y doble > CLKA ADDRA[#:0] puerto WEB ENB DOB[#:0] RSTB > CLKB 54 300_da_008

Arquitecturas de Xilinx.

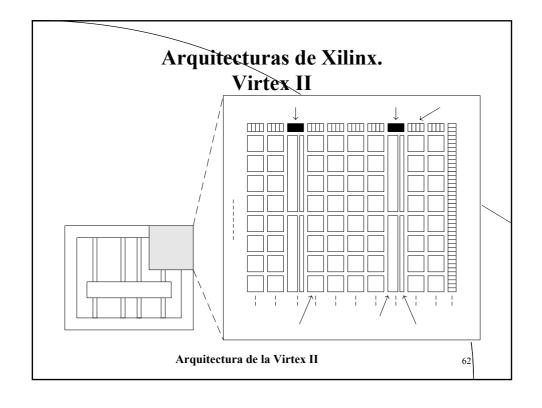


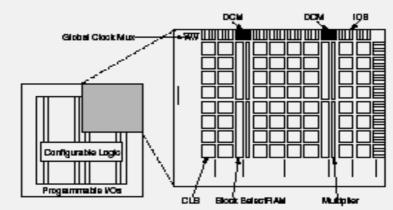

Cada bloque de 4096Kbits de memoria ocupa lo que 4 CLBs La cantidad de memoria de este tipo depende del número de filas de CLBs


Arquitecturas de Xilinx. Virtex


• Configuración

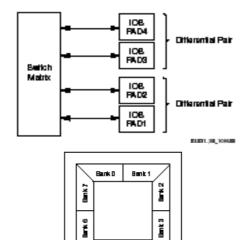
Configuration Mode	M2	M1	MO	CCLK Direction	Data Width	Serial D _{out}	Configuration Pull-ups
Master-serial mode	0	0	0	Out	1	Yes	No
Boundary-scan mode	1	0	1	N/A	1	No	No
SelectMAP mode	1	1	0	ln .	8	No	No
Slave-serial mode	1	1	1	ln .	1	Yes	No
Master-serial mode	1	0	0	Out	1	Yes	Yes
Boundary-scan mode	0	0	1	N/A	1	No	Yes
SelectMAP mode	0	1	0	In	8	No	Yes
Slave-serial mode	0	-	1	ln .	1	Yes	Yes





Arquitecturas de Xilinx. Virtex II

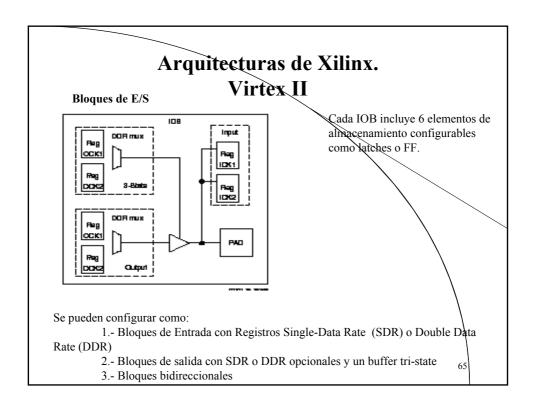
		(1 CLB = 4	CLB slices = N	lax 128 bits)		SelectF	SelectRAM Blocks		
Device	System Gates	Array Row x Col.	Silces	Maximum Distributed RAM Kbits	Multiplier Blocks	18-Kbit Blocks	Max RAM (Kbits)	DCMs	Max I/O Pads(1)
XC2V40	40K	8 x 8	256	8	4	4	72	4	88
XC2V80	80K	16 x 8	512	16	8	8	144	4	120
XC2V250	250K	24 x 16	1,536	48	24	24	432	8	200
XC2V500	500K	32 x 24	3,072	96	32	32	576	8	264
XG2V1000	1M	40 x 32	5,120	160	40	40	720	8	432
XC2V1500	1.5M	48 x 40	7,680	240	48	48	864	8	528
XC2V2000	2M	56 x 48	10,752	336	56	56	1,008	8	624
XC2V3000	3M	64 x 56	14,336	448	96	96	1,728	12	720
XC2V4000	4M	80 x 72	23,040	720	120	120	2,160	12	912
XC2V6000	6M	96 x 88	33,792	1,056	144	144	2,592	12	1,104
XC2V8000	8M	112 x 104	46,592	1,456	168	168	3,024	12	1,108

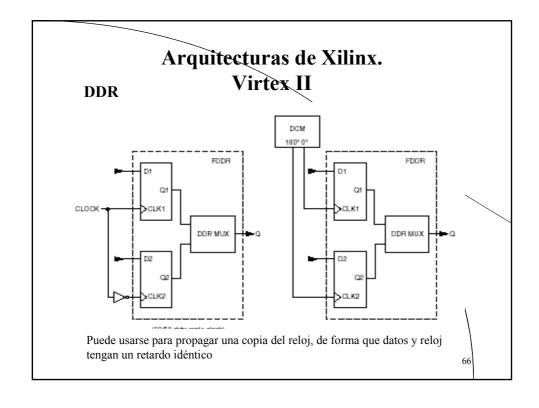


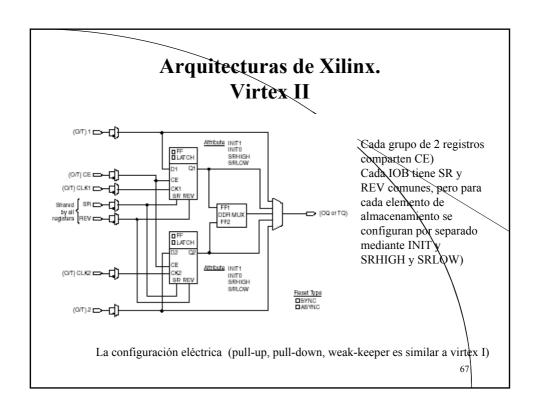
Arquitecturas de Xilinx. Virtex II

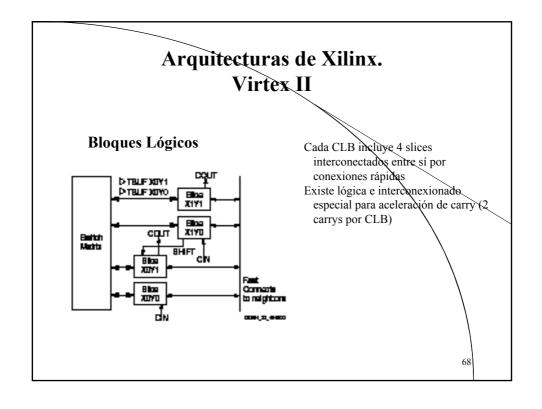
Block Select RAM como en Virtex I pero en bloques de 18Kbit Dual-Port
Sistema de interconexionado jerárquico: Active Interconnect Technology
Aparecen multiplicadores explícitamente asociados a cada bloque de RAM
Hasta 12 DCM

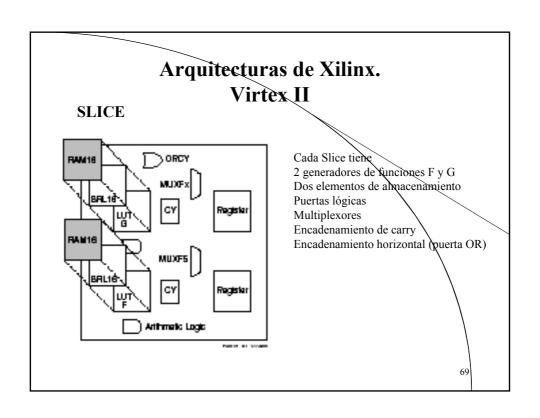
Arquitecturas de Xilinx. Virtex II

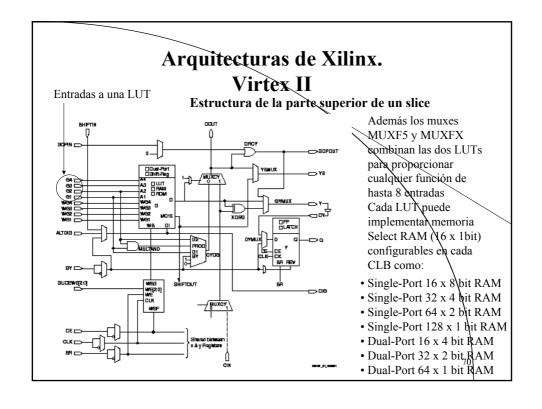

Bank 5

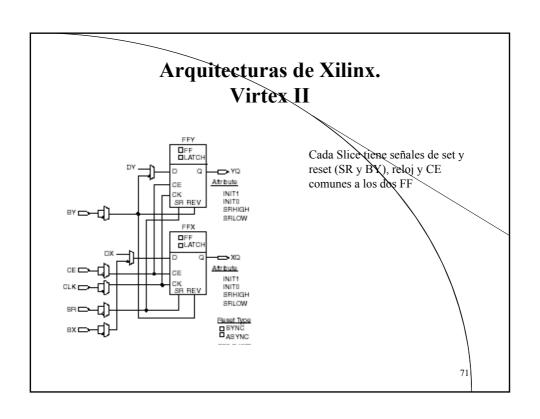

Soporta una amplia variedad de estándares de E/S

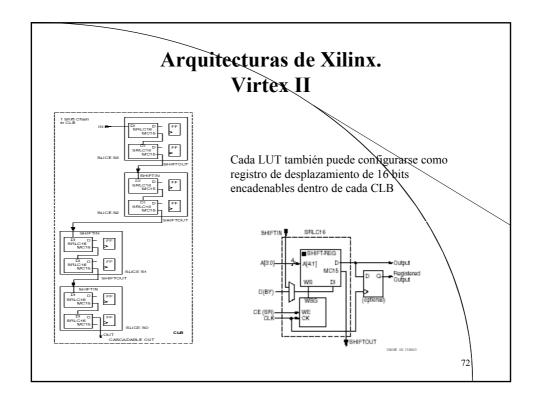

Los pares diferenciales se conectan siempre a la misma matriz de conmutación

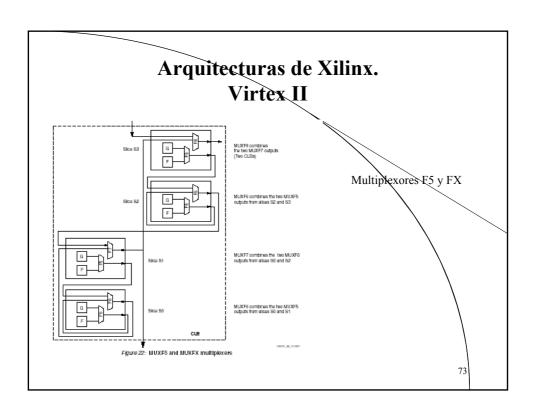

Se clasifican en bancos, y todos los elementos de un banco están conectados a un determinado VREF y VCCO

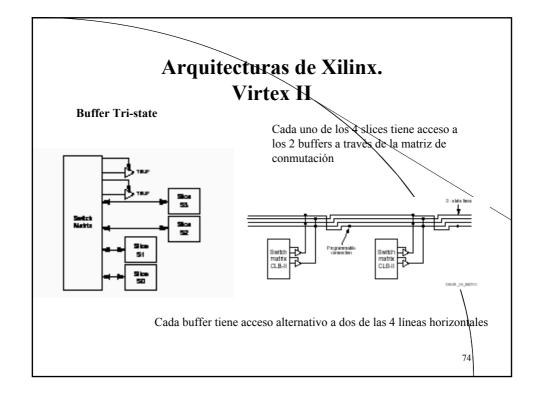

Como algunos estándares necesitan VREF y VCCO existen restricciones sobre que estándares pueden combinarse dentro de un mismo banco



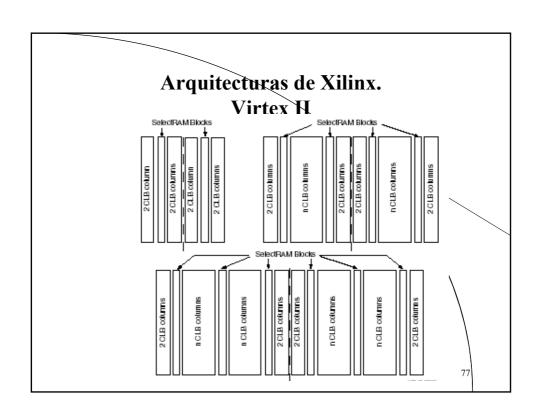








Arquitecturas de Xilinx. Virtex H

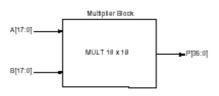

Device	CLB Array: Row x Column	Number of Silces	Number of LUTs	Max Distributed SelectRAM or Shift Register (bits)	Number of Filp-Flops	Number of Carry-Chains ⁽¹⁾	Number of SOP Chains ⁽¹⁾	
XG2V40	8 x 8	256	516	8,192	516	16	16	
XC2V80	16 x 8	512	1,024	16,384	1,024	16	32	
XG2V250	24 x 16	1,536	3,072	49,152	3,072	32	48	
XC2V500	32 x 24	3,072	6,144	98,304	6,144	48	64	
XC2V1000	40 x 32	5,120	10,240	163,840	10,240	64	90	
XC2V1500	48 x 40	7,680	15,360	245,760	15,360	80	96	
XC2V2000	56 x 48	10,752	21,504	344,064	21,504	96	112	
XC2V3000	64 x 56	14,336	28,672	458,752	28,672	112	128	
XC2V4000	80 x 72	23,040	46,080	737,280	46,080	144	160	
XC2V6000	96 x 88	33,792	67,584	1,081,344	67,584	176	192	
XC2V9000	112 x 104	46,592	93,184	1,490,944	93,184	208	224	

75

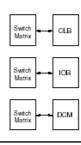
Arquitecturas de Xilinx. Virtex H

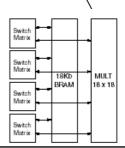
Block Select RAM

		SelectRAM	Blocks
Device	Columns	Per Column	Total
XC2V40	2	2	4
XC2V90	2	4	8
XC2V250	4	6	24
XC2V500	4	8	32
XC2V1000	4	10	40
XC2V1500	4	12	48
XC2V2000	4	14	56
XC2V3000	6	16	96
XC2V4000	6	20	120
XC2V6000	6	24	144
XC2V8000	6	28	168



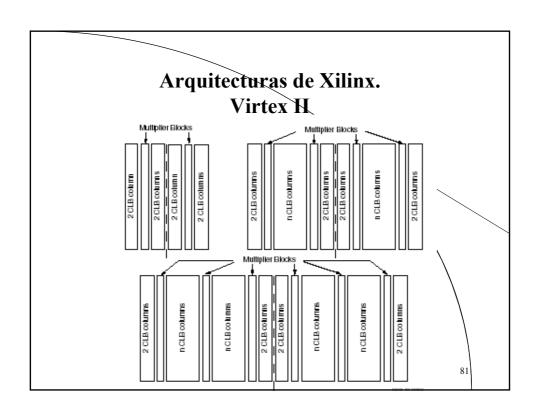
Device	DIOCKS	III PADICS	III Bits
XG2V40	4	72	73,728
XC2V80	8	144	147,456
XC2V250	24	432	442,368
XC2V500	32	576	589,824
XC2V1000	40	720	737,290
XC2V1500	48	964	884,736
XC2V2000	56	1,008	1,032,192
XC2V3000	96	1,728	1,769,472
XC2V4000	120	2,160	2,211,840
XC2V6000	144	2,592	2,654,208
XC2V9000	168	3,024	3,096,576

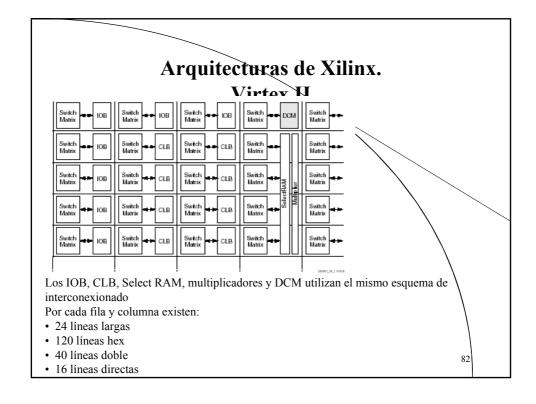

Arquitecturas de Xilinx. Virtex H


Multiplicadores

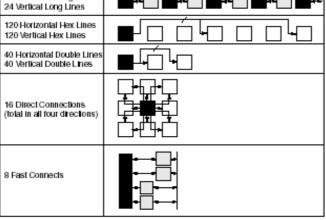
Existe un bloque de SelectRam que puede usarse como entrada al multiplicador, permitiendo la implementación de DSP Cada bloque et un multiplicador es de 18*18 en C2

El multiplicador y la memoria SelectRAM pueden usarse simultán amente, aunque comparten parte del interconexionado. Existen restricciones de hasta 18 bits de ancho en el uso de la memoria cuando se usa el multiplicador





80


Arquitecturas de Xilinx. Virtex H

		Multipl	lers
Device	Columns	Per Column	Total
XC2V40	2	2	4
XC2V90	2	4	8
XC2V250	4	6	24
XC2V500	4	8	32
XC2V1000	4	10	40
XC2V1500	4	12	48
XC2V2000	4	14	56
XC2V3000	6	16	96
XC2V4000	6	20	120
XC2V6000	6	24	144
XC2V8000	6	28	168

Arquitecturas de Xilinx. Virtex H

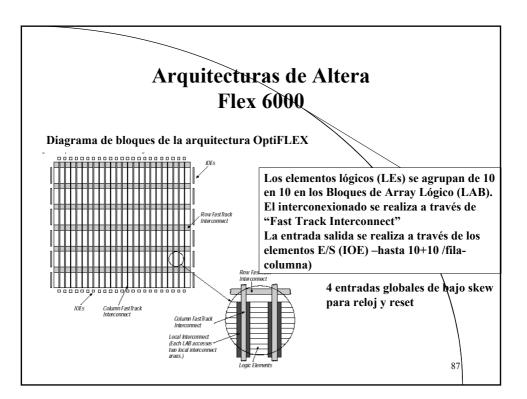
DEST OF THE

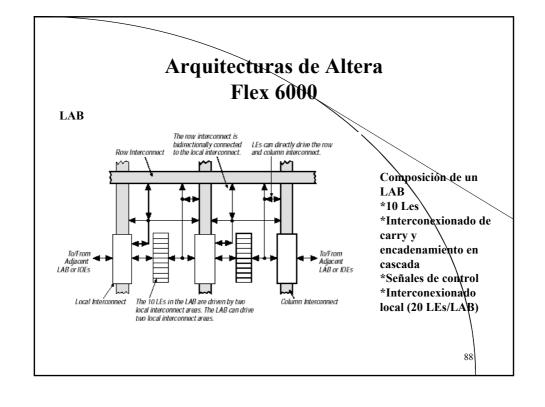
83

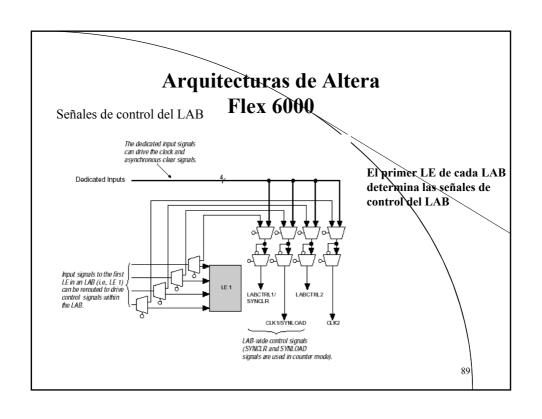
Arquitecturas de Xilinx. Virtex H

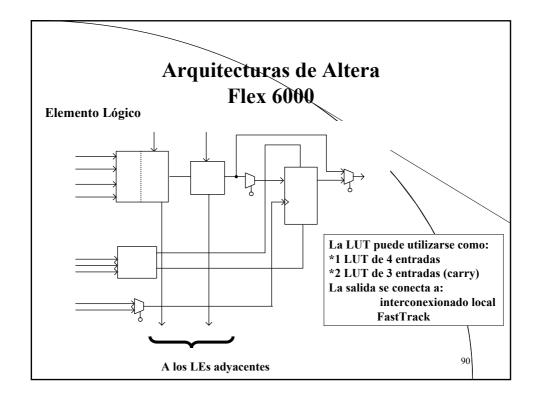
Además tiene el siguiente interconexionado dedicado:

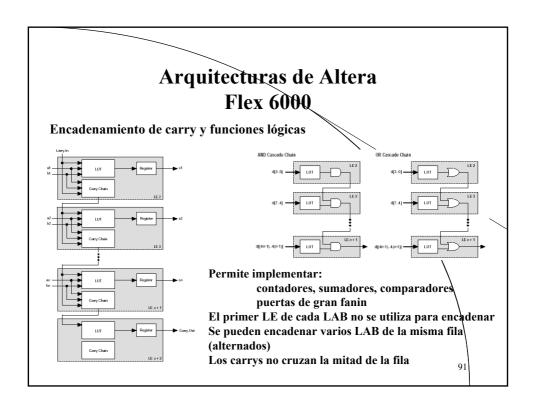
- 1.- 8 líneas de reloj globales por cuadrante
- 2.- 4 líneas horizontales por fila de CLBs conectadas a los buffers 3-state
- 3.- 2 líneas especiales por columna para propagación de carry
- 4.- 2 líneas dedicadas por fila para propagar las salida de la OR con el slice adyacente
- 5.- 1 línea vertical para conectar los registros de desplazamiento de LUT a LUT

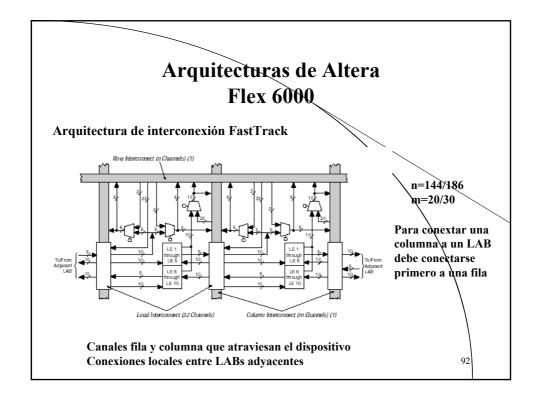

Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

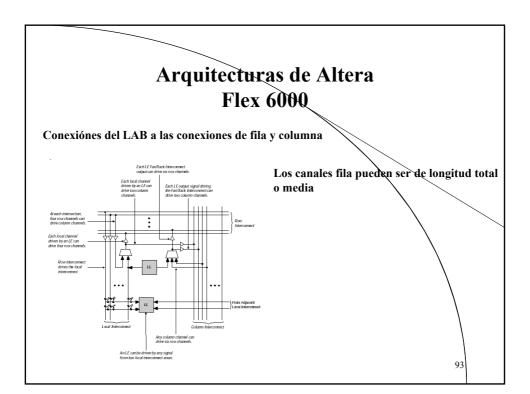

- 1. Arquitecturas de Xilinx
 - 6200
 - Virtex
 - Virtex II
- 2. Arquitecturas de Altera
 - Flex 6000
 - Flex 10K
- 3. Arquitecturas de Atmel
 - AT 6000
 - AT 40K
- 4. Método de configuración de las Virtex
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica

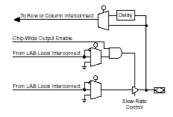

85

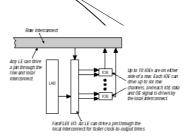

Arquitecturas de Altera Flex 6000

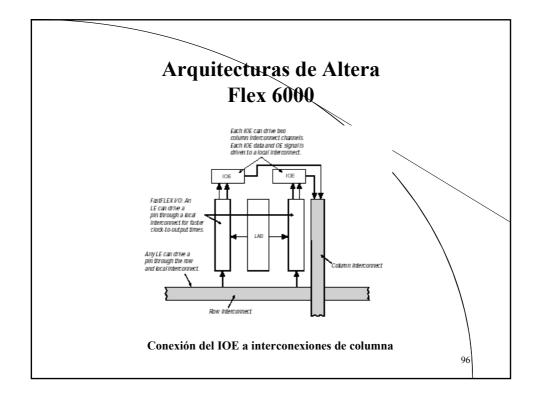

Table 1. FLEX 6000 Device Features												
Feature	EPF6010A	EPF6016	EPF6016A	EPF6024A								
Typical gates (1)	10,000	16,000	16,000	24,000								
Logic elements (LEs)	880	1,320	1,320	1,960								
Maximum I/O pins	102	204	171	218								
Supply voltage (V _{CCINT})	3.3 V	5.0 V	3.3 V	3.3 V								









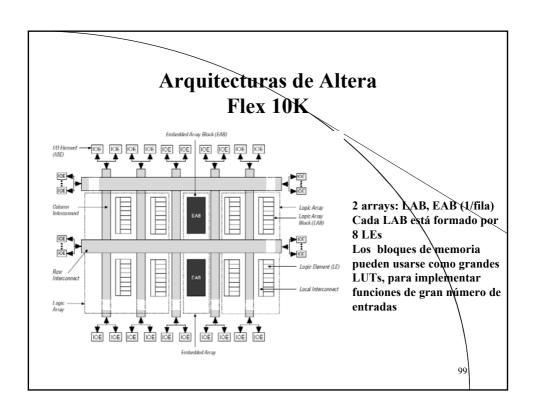

Arquitecturas de Altera Flex 6000

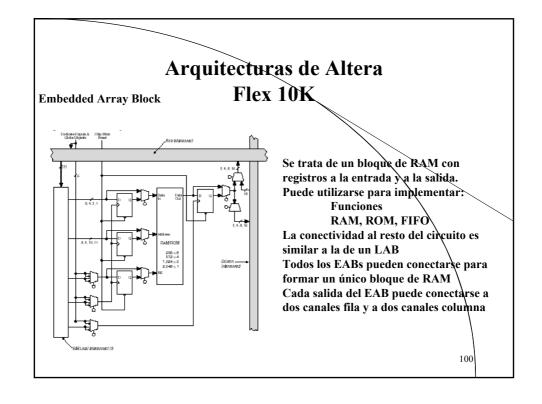
Bloques de Entrada /salida

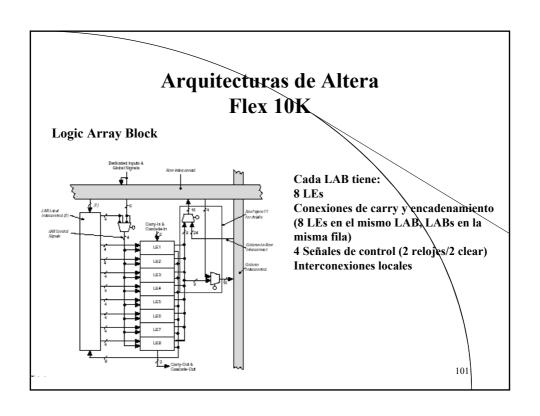
Los IOEs pueden configurarse como entrada, salida o bidireccionales Cada IOE recibe los datos de las interconexiones locales adyacentes Si funciona como entrada se conecta a las interconexiones de fila o columna (hasta 6 filas y 2 columnas por IOE)

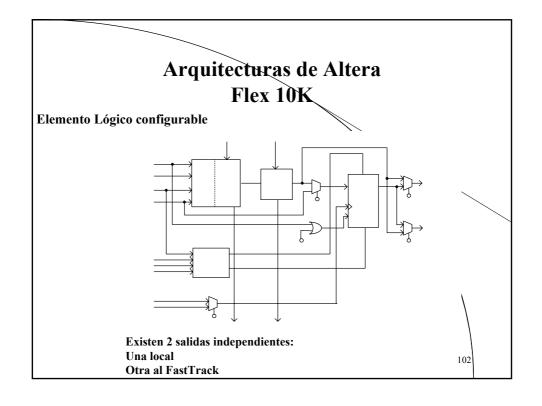
Arquitecturas de Altera Flex 10K

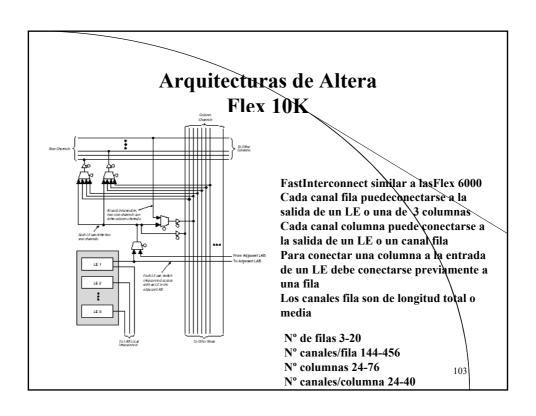
Table 1. FLEX 10K Device Featur	res				
Feature	EPF10K10 EPF10K10A	EPF10K20	EPF10K30 EPF10K30A	EPF10K40	EPF10K50 EPF10K50V
Typical gates (logic and RAM) (1)	10,000	20,000	30,000	40,000	50,000
Maximum system gates	31,000	63,000	69,000	93,000	116,000
Logic elements (LEs)	576	1,152	1,728	2,304	2,880
Logic array blocks (LABs)	72	144	216	288	360
Embedded array blocks (EABs)	3	6	6	8	10
Total RAM bits	6,144	12,288	12,288	16,384	20,480
Maximum user I/O pins	150	189	246	189	310

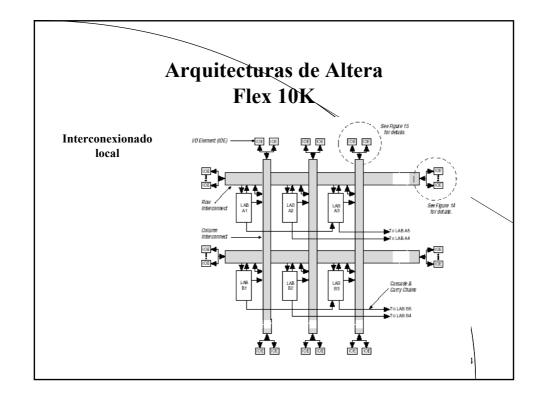

Embedded Array Block (EAB): 2048 bits de RAM/bloque

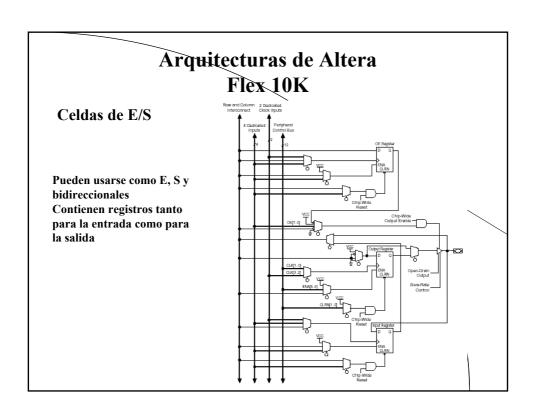

97

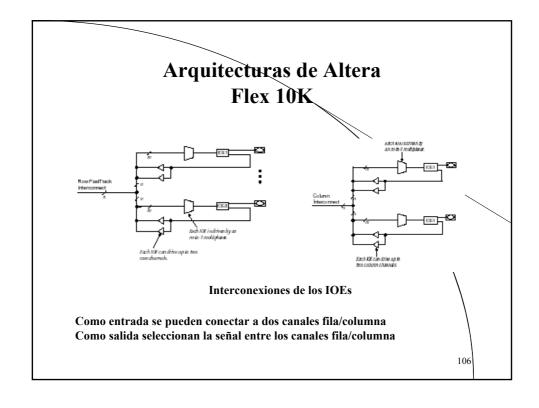

Arquitecturas de Altera Flex 10K


Feature	EPF10K70	EPF10K100 EPF10K100A	EPF10K130V	EPF10K250A
Typical gates (logic and RAM) (1)	70,000	100,000	130,000	250,000
Maximum system gates	118,000	158,000	211,000	310,000
LEs	3,744	4,992	6,656	12,160
LABs	468	624	832	1,520
EABs	9	12	16	20
Total RAM bits	18,432	24,576	32,768	40,960
Maximum user I/O pins	358	406	470	470


Hasta 6 señales de reloj global y 4 clear



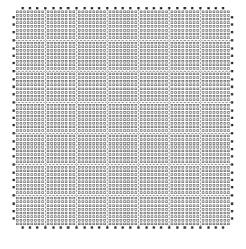




Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

- 1. Arquitecturas de Xilinx
 - 6200
 - Virtex
 - Virtex II
- 2. Arquitecturas de Altera
 - Flex 6000
 - Flex 10K
- 3. Arquitecturas de Atmel
 - AT 6000
 - AT 40K
- 4. Método de configuración de las Virtex
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica

107

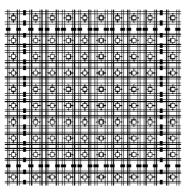

Arquitecturas de Atmel AT6000

AT6000 Series Field Programmable Gate Arrays

Device	AT6002	AT6003	AT6005	AT6010
Usable Gates	6,000	9,000	15,000	30,000
Cells	1,024	1,600	3,136	6,400
Registers (maximum)	1,024	1,600	3,136	6,400
I/O (maximum)	96	120	108	204
Typ. Operating Current (mA)	15 - 30	25 - 45	40 - 80	85 - 170
Cell Rows x Columns	32 x 32	40 x 40	56 x 56	80 x 80

Reconfiguración parcial dinámica

Arquitecturas de Atmel AT6000



Se trata de una arquitectura basada en una red de celdas sencillas conectadas a una red de buses Alrededor del array existen una serie de celdas de E/S

Cada 8 celdas se colocan unos repetidores de bus Las celdas se pueden utilizar también para conexionado

109

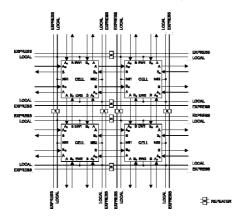
Arquitecturas de Atmel AT6000

Dos clases de buses:

*Locales: conectan el array de celdas con la red de buses

*Express: no se conectan directamente a las celdas y proporcionan grandes velocidades Existen 2 buses Express por fila

y 2 por columna

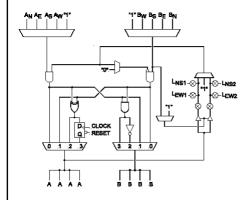

Los repetidores dividen los buses en segmentos. Permiten las siguientes funciones

1. Aislar segmentos de bus

- 3. Conectar dos segmentos de bus express
- 2. Conectar dos segmentos de bus local
- 4. Transferencia entre bus local y express

Arquitecturas de Atmel AT6000

Interconexiones de celda a celda y de bus a bus


Existen 2 buses locales para cada columna de celdas NS1 y NS2 Existen 2 buses locales para cada fila de celdas EWL y EW2

En cada sector de 8*8 los buses locales se conectan a todas las celdas de la fila o columna correspondiente Cada celda puede rutar una señal en 90° (NS1 con EW1 y NS2 con EW2)

111

Arquitecturas de Atmel AT6000

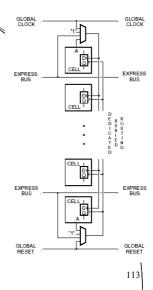
Estructura de la celda básica

Cada celda recibe 4 conexiones de los buses locales, y 2 entradas (A y B) de cada celda adyacente (N, S, E, W) Una salida A (B) siempre se conecta a una entrada A (B)

Los dos multiplexores de sañ da tienen las mismas señales de control Para escribir un bus local la puerta de paso del bus y la puerta de paso del driver triestado se abren Para conectar LNS1 y LEW1 o LNS2 con LEW2 se abren las dos puertas de paso asociadas

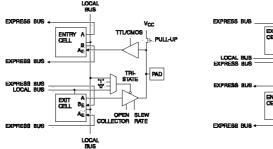
Arquitecturas de Atmel AT6000

Distribución de reloj


La distribución se realiza por columnas y permite que diferentes columnas utilicen relojes distintos

Para cada columna se selecciona entre

- * Reloj global
- * Bus express
- * Salida de la primera celda de la columna
- * Un 1 (columnas combinacionales)


El reloj global se distribuye en una red de bajo skew

La distribución del reset es similar en la parte inferior de cada columna

Arquitecturas de Atmel AT6000

Entrada/Salida

EXPRESS BUS

LOCAL BUS

EXPRESS BUS

EXPRESS

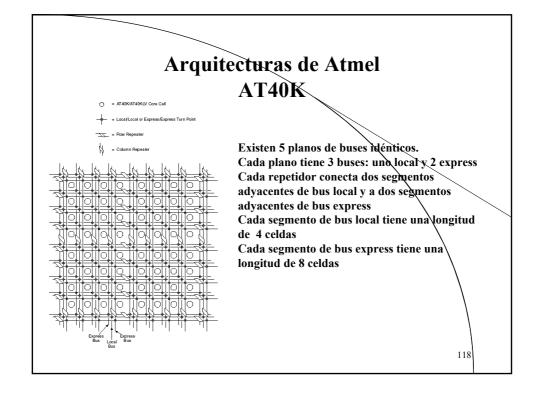
Hay dos tipos de celdas de E/S:

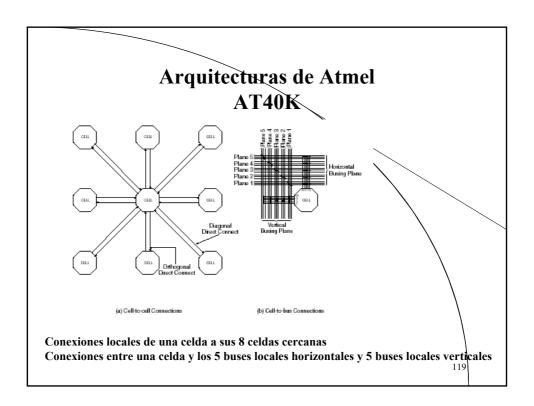
Tipo A: la salida tipo A de la celda exit se conecta a un driver de salida el buffer de entrada se conecta a la entrada A

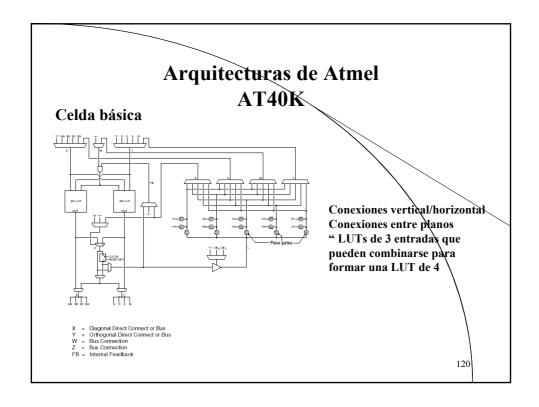
Tipo B: la salida tipo B de la celda exit se conecta a un driver de salida el buffer de entrada se conecta a la entrada B

Arquitecturas de Atmel AT40K

Device	AT40K05 AT40K05LV	AT40K10 AT40K10LV	AT40K20 AT40K20LV	AT40K40 AT40K40LV					
Usable Gates	5K - 10K	10K - 20K	20K - 30K 40K -						
Rows x Columns	16 x 16	24 x 24	32 x 32	48 x 48					
Cells	256	576	1,024	2,304					
Registers	256 ⁽¹⁾	576 ⁽¹⁾	1,024 ⁽¹⁾	2,304 ⁽¹⁾					
RAM Bits	2,048	4,608	8,192	18,432					
I/O (Maximum)	128	192	256	384					

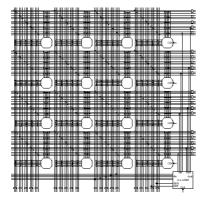

Memoria RAM en bloques de 32*4 bits 8 relojes globales Cache Logic (Reconfiguración Parcial/total dinámica)


115


Arquitecturas de Atmel AT40K

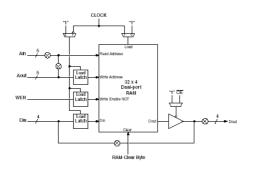
Se trata de un array simétrico de celdas idénticas, separadas cada 4 celdas por repetidores de bus
Las celdas de RAM se colocan en las intersecciones de los repetidores de fila y columna

Arquitecturas de Atmel AT40K = Horizontal Repeate = Core Cell **BOOOBOOOBOOO** Los repetidores sirven para regenerar las señales y para ■0000■0000■0000■ conectar buses locales y express **-0000-0000-0000** [BAR] [RV] [RV] [RV] [RW] [RW] [RV] [RV] [RV] [RW] [RV] **-0000-0000-0000-**■0000■0000■ $[M] \ [M] \ [M]$ 117



Arquitecturas de Atmel AT40K

Conexiones de los bloques de RAM



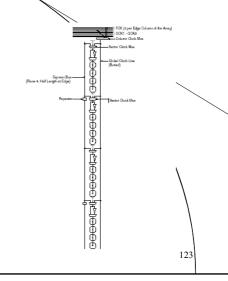
Din₃₋₀ se conecta a 4 bases locales horizontales distribuidos sobre cuatro filas

Dout₃₋₀ se conecta a 4 buses locales horizontales distribuidos sobre cuatro filas de la misma columna Ain₄₋₀ se conecta a 5 buses express horizontales en la misma columna Las lecturas y escrituras se realizan de forma independiente

121

Arquitecturas de Atmel AT40K

La lectura es asíncrona La escritura puede ser síncrona o asíncrona


Arquitecturas de Atmel AT40K

Distribución de reloj

Existen 8 buses de reloj globales (cada uno conectado a un pin de reloj)
En cada columna existe un mux de reloj de columna. Se encuentra en la parte superior y selecciona uno entre los 8 relojes globales

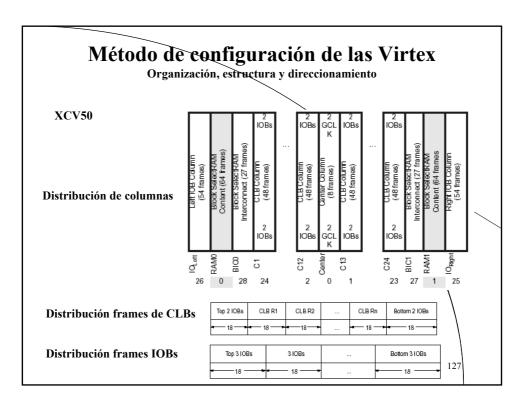
Cada 4 celdas hay un mux de reloj de sector. Permite seleccionar entre el reloj de columna, el bus express del plano 4 o cte 1. Este reloj puede invertirse

La distribución del reset es similar: Sólo hay un reset global Puede optarse por el bus express del plano 5

Arquitecturas de Atmel AT40K Celdas de entrada/Salida Existe 3 tipos: primarias, secundarias y de esquina. Se diferencian en la conexión al resto del circuito

Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

- 1. Arquitecturas de Xilinx: 6200, Virtex, Virtex IX
- 2. Arquitecturas de Altera: Flex 6000, Flex 10K
- 3. Arquitecturas de Atmel: AT 6000, AT 40K
- 4. Método de configuración de las Virtex
 - Organización, estructura y direccionamiento
 - Registros de configuración
 - Modos de configuración: serie maestro / esclavo, paralelo (SelectMAP)
 - Proceso de configuración
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica


125

Método de configuración de las Virtex

Organización, estructura y direccionamiento

- Estructura memoria de configuración como matriz bidimensional.
- División lógica en columnas y frames.
 - Una columna está compuesta por distintos frames.
 - Frame es la unidad mínima de configuración.
- Dos espacios de direcciones :
 - Espacio CLB : Reloj, CLBs, IOBs, interconexión SelectRAM.
 - Espacio RAM :bloques de memoria SelectRAM.

	. 1		
Device	Frames	Bits per Frame	Configuration Bits
V50	1453	384	559,232
V100	1741	448	781,248
V150	2029	512	1,040,128
V200	2317	576	1,335,872
V300	2605	672	1,751,840
V400	3181	800	2,546,080
V600	3757	960	3,608,000
V800	4333	1088	4,715,584
V1000	4909	1248	6,127,712

Método de configuración de las Virtex

Organización, estructura y direccionamiento

• Dirección dividida en tres partes : tipo (CLB o RAM), dirección mayor (columna) y dirección menor (nº de frame dentro de la columna).

	# of	
Column Type	Frames	# per Device
Center	8	1
CLB	48	# of CLB columns
IOB	54	2
Block SelectRAM Interconnect	27	# of Block SelectRAM columns
Block SelectRAM Content	64	# of Block SelectRAM columns

Método de configuración de las Virtex

Organización, estructura y direccionamiento

 Configuración Virtex a través de un "bitstream" compuesto por secuencia de comandos y datos.

CMD 1 data CMD 2 data CMD 3 data CMD 1

- Dato : en palabras de 32 bits. Relleno con ceros si es preciso.
- Comando: operación de lectura / escritura a un registro de configuración (una o dos palabras).

Г	Т	уре	9	С	P		Register Address								R	ŝ۷				. 1	Mor	d C	oun	t								
3	1	30	29	28	27	26	25 24 23 22 21 20 19 18 17 16 1					15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
Г	0	0	1	х	х	0	0	0	0	0	0	0	0	0	0	Х	Х	х	Х	0	0	х	х	х	х	х	х	х	х	х	х	х

	Ţ	уре	9	О	Р												١.	Nor	d Co	oun	t											_
31	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0		1	0	х	х	0	0	0	0	0	0	0	х	х	х	Х	х	х	Х	х	х	Х	х	Х	х	х	Х	х	Х	х	х	х

129

Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

- 1. Arquitecturas de Xilinx: 6200, Virtex, Virtex IX
- 2. Arquitecturas de Altera: Flex 6000, Flex 10K
- 3. Arquitecturas de Atmel: AT 6000, AT 40K
- 4. <u>Método de configuración de las Virtex</u>
 - Organización, estructura y direccionamiento de configuración
 - Registros de configuración
 - Modos de configuración: serie maestro / esclavo, paralelo (SelèctMAP)
 - Proceso de configuración completo:
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica

Método de configuración de las Virtex Registros de configuración

Register Name	Mnemonic	R/W	Binary Address
CRC	CRC	R/W	0000
Frame Address	FAR	R/W	0001
Frame Data Input	FDRI	W	0010
Frame Data Output	FDRO	R	0011
Command	CMD	R/W	0100
Control	CTL	R/W	0101
Control Mask	MASK	R/W	0110
Status	STAT	R	0111
Legacy Output	LOUT	W	1000

Register Name	Mnemonic	R/W	Binary Address
Configuration Option	COR	R/W	1001
Reserved	_	_	1010
Frame Length	FLR	R/W	1011
Reserved	-	_	1100
Reserved	_	_	1101
Reserved	-	_	1110
Reserved	_	_	1111

Γ	T	уре	9	(P	Τ					R	egi:	ster	Ade	dres	ss					R	ŝ۷				_	Nor	d C	oun	t			_
3	1	30	29	28	27	2	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г)	0	1	Х	х	(0	0	0	0	0	0	0	0	0	0	х	х	х	х	0	0	х	х	Х	х	х	х	Х	х	Х	х	Х

131

Método de configuración de las Virtex Registros de configuración

- Registro de comandos (CMD): controla la lógica de configuración. Operaciones que controla.
 - Escribir / Leer en memoria, inicio secuencia de arranque, reseteo registro CRC, cambio frecuencia de reloj, etc ...

Symbol	Command	Binary Code
RCRC	Reset CRC Register	0111b
SWITCH	Change CCLK Frequency	1001b
WCFG	Write Configuration Data	0001b
RCFG	Read Configuration Data	0100b
LFRM	Last Frame Write	0011b
START	Begin Start-Up Sequence	0101b

Método de configuración de las Virtex Registros de configuración

 Registro de opciones de configuración (COR): selección de las distintas opciones de configuración.

-	_	_	_	_	_						_		_										_	_			_			`		_	٠.
	Total Prince	NE PI) E D	SINGLE			OSCERE	30.00			JOSAIJSS			TOCK WAIT	No.		SHUTDOWN		DONE_CYCLE			LCK_CYCLE			GTS_CYCLE			GWE_CYCLE			GSR_CYCLE		
3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
П)	х	х	х	х	х	х	Х	х	х	х	х	х	х	Х	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	

DONE_PIPE: 1 se añade un estado de pipeline a DONEIN en el startup

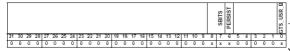
DRIVE_DONE: 1 se conecta DONE a Vdd SINGLE: Captura del Readback es one-shot

OSCFSEL: selecciona la frecuencia de CCLK en Master Slave

SSCLKSRC: fuente de reloj de la secuencia de startup

LOCK WAIT: DLL que hace esperar al startup hasta que se bloquee

SHUTDOWN: si se realiza Start-Up o Shutdown


DONE CYCLE, LCK CYCLE, GTS CYCLE, GWE CYCLE, GSR CYCLE

fase del startup donde se desactivan estas señales

133

Método de configuración de las Virtex Registros de configuración

- Registro de control (CTL): controla proceso de configuración.

SBITS: nivel de seguridad (R/W, sólo escritura, ninguno de los dos)
PERSIST: interfaz de configuración permanece después de ésta
GTS-USR_B: señal de 3-state global

- Registro de máscara del registro de control (MASK): Determina qué bits del COR pueden modificarse
- Registro de chequeo CRC: permite realizar chequeos en la configuración del dispositivo.

Método de configuración de las Virtex Registros de configuración

 Registro de dirección de frame (FAR): guarda la dirección del "frame" sobre el que se va realizar una operación de lectura / escritura de configuración. Esta dirección va incrementándose a medida que se escriben las frames

	Block Type	Major Address (Column Address)	Minor Address (Frame Address)	
31 30 29 28 27 2	26 25 2	24 23 22 21 20 19 18 17	16 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0
0 0 0 0 0	х х :	* * * * * * * * *	x x x x x x x x	0 0 0 0 0 0 0 0 0

Туре	Codes
CLB	00
RAM	01

- Registro de datos de entrada frame (FDRI): guarda los datos de configuración que serán escritos en la memoria del dispositivo.
- Registro de datos de salida frame (FDRO): guarda los datos de configuración que son leídos de la memoria del dispositivo.

135

Método de configuración de las Virtex Registros de configuración

- Registro de longitud de frame (FLR): guarda la longitud de un frame en palabras de 32 bits, en función del tamaño de la Virtex.
- Registro de salida de herencia (LOUT): utilizado para configuraciones daisy-chaining.
- Registro de estado (STAT) : con información de señales de control.

																	DONE	INIT			MODE	GHIGH B	GSR_B	GWE B	GTS_CFG	IN ERROR			LOCK	כסכב בסטטם	CENTO
3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	П	Л
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	х	Х	Х	Х	х	Х	Х	х	х	X X	x :	ζ.

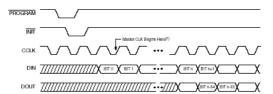
Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

- 1. Arquitecturas de Xilinx: 6200, Virtex, Virtex IX
- 2. Arquitecturas de Altera: Flex 6000, Flex 10K
- 3. Arquitecturas de Atmel: AT 6000, AT 40K
- 4. Método de configuración de las Virtex
 - Organización, estructura y direccionamiento de configuración
 - Registros de configuración
 - Modos de configuración: serie maestro / esclavo, paralelo (SelectMAP)
 - Proceso de configuración
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica

137

Método de configuración de las Virtex

Modos de configuración


- Los modos de configuración establecen la manera de cargar el "bitstream" con las operaciones.
- Los pines de configuración pueden ser dedicados o reutilizarse en el diseño después de la reconfiguración.
- Existen 4 modos de configuración básicos:
 - Modo serie maestro.
 - Modo serie esclavo.
 - Modo paralelo (SelectMAP).
 - Modo estándar JTAG.

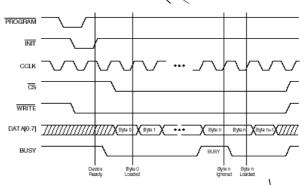
Configuration Mode	M2	M1	Mo	Pull-ups
Master Serial	0	0	0	No
Slave Serial	- 1	1	1	No
SelectMAP	- 1	1	0	No
Boundary Scan	- 1	0	1	No
Master Serial (w/pull-ups)	- 1	0	0	Yes
Slave Serial (w/pull-ups)	0	1	1	Yes
SelectMAP (w/pull-ups)	0	1	0	Yes
Boundary Scan (w/pull-ups)	0	0	1	Yes

Método de configuración de las Virtex

Modos de configuración

- Configuración serie :
 - Se transmite un bit en cada ciclo de reloj (más significativo en primer lugar).
 - Imposible reconfiguración parcial ni lectura de memoria.
 - Dos modos de configuración:
 - Maestro: el dispositivo Virtex genera la señal de reloj.
 - Útil para cargar de memorias PROM.
 - Esclavo: la señal de reloj se genera externamente.
 - Adecuado para la configuración por un microprocesador.
 - Modo daisy chain: combinar varias FPGAs en cadena (modos maestro \ esclavo). Cuando un dispositivo es configurado, éste configura al siguiente.

139

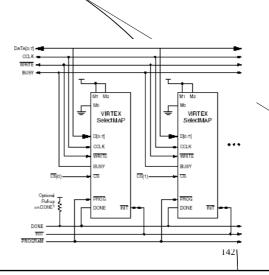

Método de configuración de las Virtex Modos de configuración PROM DATA DIN DOUT C8 VIRTEX VIRTEX. MASTER XC4000X SERIAL Spartan-XL (Low Reset Option Used) Optional SLAVE Pul-up 7 140

Método de configuración de las Virtex

Modos de configuración

Modo Paralelo: Select Map

- Configuración a través de un bus de 8 bits.
- Se permite reconfiguración parcial y leer de la memoria de configuración


•Es el modo de configuración más adecuado cuando se realiza configuración mediante un microprocesador.

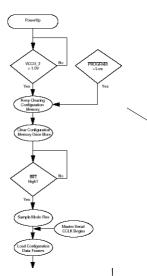
141

Método de configuración de las Virtex

Modos de configuración

•No está previsto configuración daisy chain, pero si se permite configuración de varios dispositivos a la vez con la misma configuración.

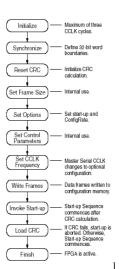
Método de configuración de las Virtex Proceso de configuración


- Fases para la configuración del dispositivo Virte
 - Inicialización de la configuración del dispositivo
 - Encendido
 - Borrado de memoria
 - Carga de los datos de configuración:
 - Sincronización
 - Selección de opciones y frecuencia de configuración
 - Carga de datos
 - Chequeo CRC (primer chequeo)
 - Carga del último frame
 - Finalización del proceso de configuración:
 - Secuencia de arranque (startup)
 - Chequeo CRC (segundo chequeo)
 - Transición al estado operacional

143

Método de configuración de las Virtex Proceso de configuración

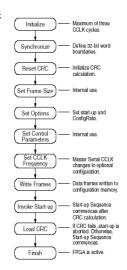
-Inicialización:


- Encendido (POWER-UP) : los pines de alimentación del dispositivo deben suministrar voltaje mínimo (VCCint a un valor de 2.5V y VCCO 2 1.0 V).
- Borrado de la memoria de configuración: mientras señal PROGRAM se mantenga a 0 se realizará limpiado de memoria.
- Retrasar configuración: la señal INIT se pone en alta cuando se termina de limpiar la memoria de configuración, pero se puede forzar a baja para retrasar proceso.
- Inicio de la carga de los datos de configuración.

Método de configuración de las Virtex Proceso de configuración

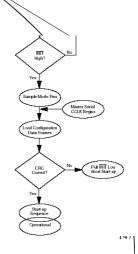
Carga de los datos de configuración:

- Sincronización: se marca el inicio de las palabras de 32 bits mediante una de palabra de sincronización.
- Selección de opciones y frecuencia de configuración
 - Escritura registro CMD RCRC: reseteo del registro de chequeo.
 - Escritura registro FLR : establece la longitud de los frames del dispositivo.
 - Escritura registros COR y MASK: se indican las opciones de configuración y se escribe en el registro de máscara.
 - Escritura registro FAR : se establece dirección inicial del frame a cargar
 - Escritura registro CMD WCFG: indicamos operación escritura de datos en la memoria de configuración.

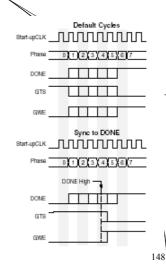


Método de configuración de las Virtex Proceso de configuración

- Escritura registro FDRI : escritura de datos.
 - En este registro se escriben los datos de configuración.
 - El volumen de datos se indica en el campo correspondiente del comando de escritura al registro FDRI.
 - Estructura de los datos (para una Virtex XCV100) :


Data Frame 0 (38 words)	Pad Word
	:
Data Frame n (38 words)	Pad Word
Pad Frame (39 words)	•

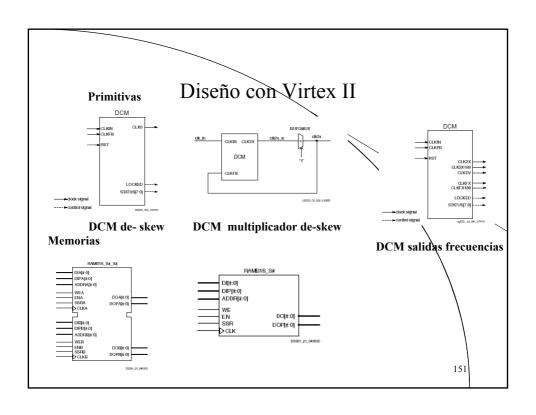
- Iterar secuencia <escritura registro FAR> <escritura registro FDR> tantas veces como se quiera.
- Chequeo CRC (primer chequeo) antes de cargar último frame.

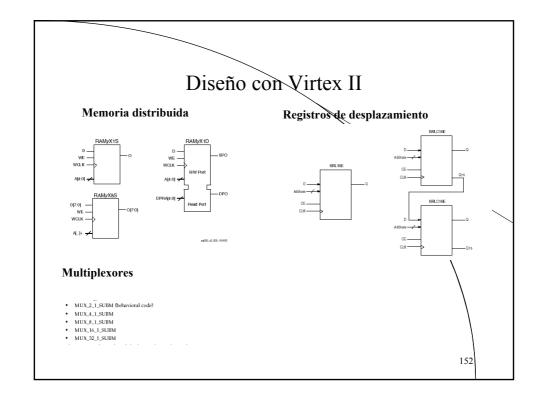

Método de configuración de las Virtex Proceso de configuración

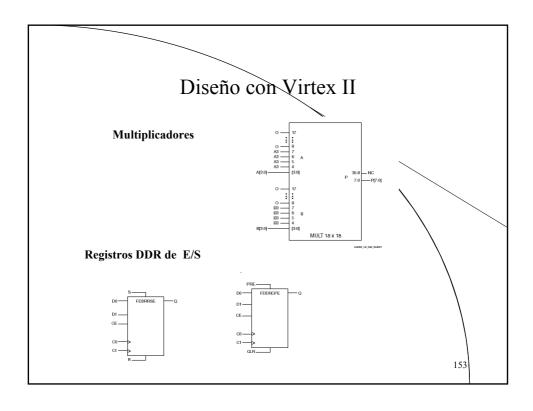
- •Carga del último frame
- •Escritura registro CMD LFRM : escritura último frame.
- Escritura registro FDR : escritura de los datos de configuración del último frame.
- •Finalización del proceso de configuración:
 - •Secuencia de arranque
 - •Chequeo CRC (segundo chequeo)
 - •Transición al estado operacional

Método de configuración de las Virtex Proceso de configuración

- •Finalización del proceso de configuración:
 - •Secuencia de arranque
 - •Escritura registro CMD START :
 - inicializamos secuencia de arranque.
 - •Escritura registro CTL : seleccionamos opciones de control interno.
 - Escritura registro CRC : segundo chequeo CRC (antes de pasar al estado operacional).
 - •Chequeo CRC (segundo chequeo)
 - •Transición al estado operacional


Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable


- 1. Arquitecturas de Xilinx: 6200, Virtex, Virtex IN
- 2. Arquitecturas de Altera: Flex 6000, Flex 10K
- 3. Arquitecturas de Atmel: AT 6000, AT 40K
- 4. Método de configuración de las Virtex
 - Organización, estructura y direccionamiento
 - Registros de configuración
 - Modos de configuración: serie maestro / esclavo, paralelo (SelèctMAP)
 - Proceso de configuración
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica


149

Diseño con Virtex II

- Utilización de las redes de reloj globales
- Utilización de los Digital Clock Managers (DCMs)
- Utilización de la Memoria Block SelectRAMTM
- Utilización de la Memoria Distribuida SelectRAM
- Utilización de los Look-Up Tables como Shift Registers (SRLXTs)
- Diseño de grandes Multiplexores
- Implementación de Lógica de Suma of Productos (SOP)
- Utilización de los Multiplicadores Empotrados
- Utilización de los recursos de E/S Single-Ended
- Utilización de la Digitally Controlled Impedance (DCI)
- Utilización de los Double-Data-Rate (DDR) I/O
- Utilización LVDS I/O
- Using the CORE Generator System

Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

- 1. Arquitecturas de Xilinx: 6200, Virtex, Virtex II
- 2. Arquitecturas de Altera: Flex 6000, Flex 10K
- 3. Arquitecturas de Atmel: AT 6000, AT 40K
- 4. Método de configuración de las Virtex
 - Organización, estructura y direccionamiento
 - Registros de configuración
 - Modos de configuración: serie maestro / esclavo, paralelo (SelectMAP)
 - Proceso de configuración
- 5. <u>Diseño con Virtex II</u>
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica

Diseño con Virtex II

Cuando se genera el mapa de bits es posible utilizar la opción —g compress que permite comprimir las configuraciones mediante la escritura de varias frames idénticas mediante una única escritura

En las Virtex II existe un registro MFWR (Multiple Frame Write) y un nuevo comando MFWR que permite escribir los mismos datos en varias Frames simultáneamente.

- 1. Write WCFG command to CMD register
- 2. Write desired frame to FDRI
- 3. Write to FAR register with the first desired address
- 4. Write MFWR command to CMD register
- 5. Write two dummy words to the MFWR register
- 6. Write to FAR register with the second desired address
- 7. Write two dummy words to MFWR register
- 8. Repeat steps 6 and 7 until the last desired address

155

Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

- 1. Arquitecturas de Xilinx: 6200, Virtex, Virtex IX
- 2. Arquitecturas de Altera: Flex 6000, Flex 10K
- 3. Arquitecturas de Atmel: AT 6000, AT 40K
- 4. Método de configuración de las Virtex
 - Organización, estructura y direccionamiento
 - Registros de configuración
 - Modos de configuración: serie maestro / esclavo, paralelo (SelèctMAP)
 - Proceso de configuración
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica

Diseño con Virtex II

>Las Virtex II disponen de un desencriptador en el propio chip, que permite que las configuraciones de bitstream no puedan analizarse.

> Existen hasta un total de 6 claves que se pueden almacenar en una RAM dedicada, alimentada por una batería externa.

> El método para encriptar los datos es Data Encryption Standard (DES), que utiliza una única clave, o bien el Triple Data Encryption Algorithm (TDEA), que utiliza 3 claves.

Cada clave tiene 56bits y sirve para encriptar bloques de 64bits cada vez.

Output_{encrypted} =
$$E_{K3}(D_{K2}(E_{K1}(I)))$$

. . . .
Output_{decrypted} = $D_{K1}(E_{K2}(D_{K3}(I)))$

>Las claves para encriptar pueden elegirse aleatoriamente por el comando Bitgen, o bien por el usuario.

157

Diseño con Virtex II

> Una Virtex puede almacenar hasta 6 claves. Por tanto aceptar bitstream alternativos de dos vendedores IP. La única condición es que las claves deben almacenarse al mismo tiempo.

>Bitgen crea la bitstream encriptada a partir de las claves en la vínea de argumento o bien a partir de un Fichero de claves.

```
# Comment for key file

Key 0 0x9ac28ebeb2d93b;

Key 1 pick;

Key 2 string for my key;

Key 3 0x0000000000000;

Key 4 8774ebJebb4f84;

Keyaeq 0 F;

Keyaeq 1 M;

Keyaeq 2 L;

Keyaeq 3 F;

Keyaeq 4 M;

Keyaeq 5 L;

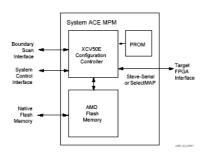
Keyaeq 5 L;
```

bitgen -g Encrypt:Yes -g Key0: 0x9ac28ebeb2d83b -g Key1:pick -g Key2: string for ny key" -g Key3ox0010000101000 -g Key4:8774eb3eb4f84 -g Keyseq0:F, -g Keyseq1:M, -gKeyseq2:I -g Keyseq3:F -g Keyseq4:M -g Keyseq5:L -g StartCBC:S03f2f655b1b2f82 -g StartKey:0 myinput.ncd

Diseño con Virtex II

- >No se pueden utilizar simultáneamente la opción de compresión con la de encriptación.
- > Tampoco se permite el readback ni la reconfiguración parcial (en el registro de control se coloca el nivel de seguridad a 1 o 2).
- Las claves se cargan a través de JTAG mediante la herramienta IMPACT.
- > Una vez programadas las claves, no pueden reprogramarse sin borrar el dispositivo.
- > Una vez programado el dispositivo con las claves correctas, la configuración se realiza normalmente utilizando el bitstream encriptado con cualquier método.
- > También pueden utilizarse bitstream no encriptados.

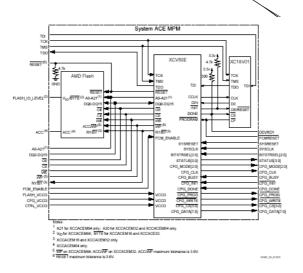
159

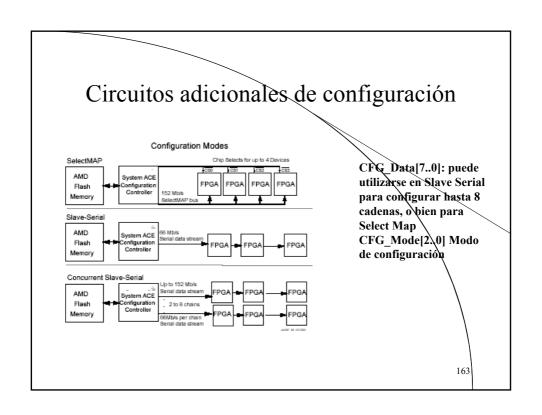

Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

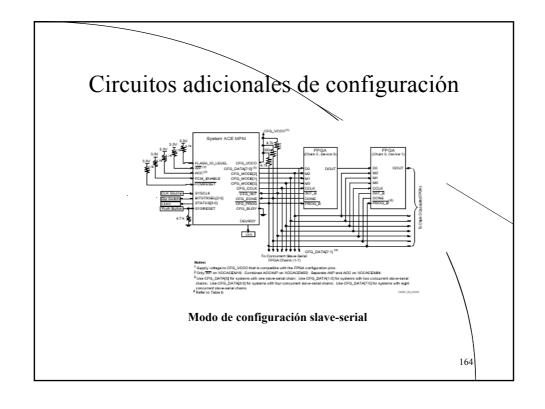
- 1. Arquitecturas de Xilinx: 6200, Virtex, Virtex IX
- 2. Arquitecturas de Altera: Flex 6000, Flex 10K
- 3. Arquitecturas de Atmel: AT 6000, AT 40K
- 4. Método de configuración de las Virtex
 - Organización, estructura y direccionamiento
 - Registros de configuración
 - Modos de configuración: serie maestro / esclavo, paralelo (SelèctMAP)
 - Proceso de configuración
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica

Circuitos adicionales de configuración

El Sistema ACE Multi-Package Module (MPM) está diseñado para realizar las tareas de configuración en un sistema Multi-FPGA. Está formado por tres bloques:

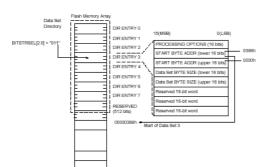

- 1.- Un controlador, diseñado sobre una Virtex XCV50E
- 2.- Una PROM XC18V01 de configuración de la Virtex atilizada para implementar el controlador
- 3.- Una memoria Flash para cargar las configuraciones de las virtex objetivo


Tiene 4 interfaces:


- 1. -JTAG interfaz para boundary scan test y programación de la PROM
- 2.- Interfaz de control: reloj, selección, señales de control y estado de configuración
- 3.- Interfaz de memoria Flash
- 4.- Interfaz con las FPGAs via Slaveserial o Select Map

Circuitos adicionales de configuración

CFG CLK: fuente de reloj CFG CS[3..0] chip enables FCMRESET: fuerza a la XCX50E a reconfigurarse Sysreset: Resetea a lógica de control del MPM para iniciar download BITSTRSEL[2..0] determina la configuración que debe cargarse DEVRDY: conectado al pin DONE de la XCV50E 162

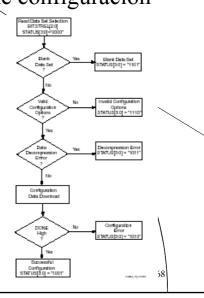


Circuitos adicionales de configuración TORRES DE CONFIGURA ACE MPM PEDA DE CONFIGURA ACE MPM PEDA

Circuitos adicionales de configuración

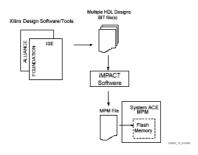
Organización de la Memoria Flash

Existe un directorio donde se almacena información sobre cada configuración:


- 1.- Opciones de configuración
- 2.- Dirección inicial de la conf.
- 3.- Longitud de la configuración

Se pueden cargar hasta 8 configuraciones, seleccionadas por BITSTRSEL[2:0].

Diseño con Virtex II Estos dispositivos incorporan un descompresor, y permiten almacenar diferentes configuraciones en un ratio 2:1. System ACE SC Scan Interface Configuration Controller JTAG Configuration Formatter System Control Interface State Target FPGA SelectMAP Flash Interface I/F Decompressor Flash 167

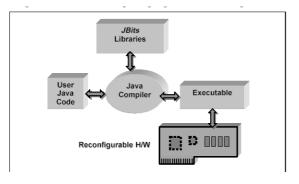

Circuitos adicionales de configuración

- La secuencia de configuración es:
 - 1.- Se inicial al comenzar la alimentación o al pulsar SYSRESET
 - 2.- Se muestrea BITSTRSEL[2:0]
 - 3.- Se activa CFG_PROGRAM para prepara las FPGAs destino
 - 3.- Se espera que CFG INIT se active
 - 4.- Se busca los datos de configuración a partir de la información del directorio y comienza a enviarse datos
 - 5.- Se chequea que DONE se active al final de la configuración

Circuitos adicionales de configuración

Flujo de diseño

Las herramientas de Xilinx permiten generar las distintas configuraciones.
La herramienta IMPACT permite compilar los *.bit en una única imagen para a una única cadena en modo Slave-Serial o a una única FPGA en modo SelecMap.
También sirve para compilar los distintos conjuntos de datos en una imagen de la Memoria Flash (fichero *.MPM), donde se guardan también los datos de configuración de cada conjunto de datos
Utilizando el mismo software se programa la memoria Flash

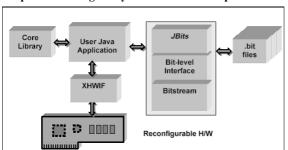

169

Tema 2. Arquitecturas comerciales de Hw dinámicamente reconfigurable

- 1. Arquitecturas de Xilinx: 6200, Virtex Virtex II
- 2. Arquitecturas de Altera: Flex 6000, Flex 10K
- 3. Arquitecturas de Atmel: AT 6000, AT 40K
- 4. Método de configuración de las Virtex
- 5. Diseño con Virtex II
 - Compresión
 - Cifrado
 - Circuitos adicionales de configuración
- 6. Herramientas para reconfiguración dinámica
 - 1. Jbits
 - 2. Diseño Modular para reconfiguración parcial

Herramientas para reconfiguración dinámica JBits

Se trata de un conjunto de clases Java que proporcionar un interfaz (API) para acceder a un mapa de bits de Xilinx para las XC4000 y las Virtex Permite tanto construir circuitos como modificarlos

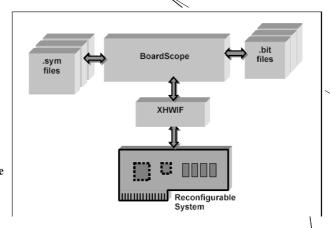

Es un soporte software para la reconfiguración dinámica de los circuitos. Es muy rápida, permite colocación e interconexionado, y proporciona información física del circuito La biblioteca de clases precompiladas que permite un acceso completo a todas los recursos configurables del dispositivo

El código ejecutable proporciona información de datos y control

171

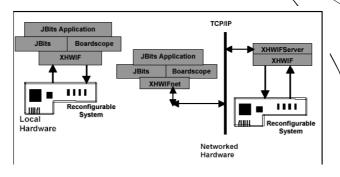
Herramientas para reconfiguración dinámica JBits

XHWIF Xilinx standard HardWare Interfaz es un interfaz hardware que permite configurar y realizar readback para una determinada plataforma

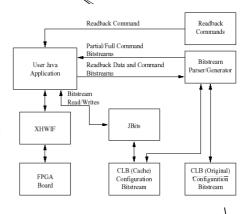

La biblioteca de Cores es una colección de clases Java que definen macroceldas parametrizables y que pueden situarse en cualquier lugar (contadores, sumadores, multiplicadores, etc.)

El interfaz Bit-Level proporciona el soporte para todos los dispositivos de una determinada familia

La clase bitstream permite leer y escribir bitstream desde y sobre ficheros, así como manejar datos del readback. No se realizan configuraciones parciales


BoardScope es una herramienta de depuración que proporciona un interfaz gráfico Permite obtener el estado interno del circuito y su configuración mientras el hardware está operativo

173


Herramientas para reconfiguración dinámica JBits

El XHWIF Server es una aplicación que implementa el interfaz XHWIF. Permite que las aplicaciones que trabajan con JBits se comuniquen con las tarjetas de HW Reconfigurable a través de Internet

Herramientas para reconfiguración dinámica JRoute y JRTR

JBits no soporta reconfiguración parcial, y el interconexionado se realiza de forma manual.
JRoute permite realizar interconexionado con distintos niveles de control.
JRTR permite realizar reconfiguraciones parciales, a través de una cache de configuraciones

175

Herramientas para reconfiguración dinámica JRTR

Function	Description
parse()	Parses write and readback bitstream packet commands and overlays them onto the CLB and Block RAM (BRAM) configuration memories.
get()	Generates full or partial CLB and BRAM configuration packet streams.
clearPartial()	Clears the partial reconfiguration flag and forces a full reconfiguration only on the next get().
clearFull()	Clears the partial and full configuration flags and puts the object into an initial state.
writeClbCache()	Forces a write of the cache to the original CLB configuration.
getClbCache()	Returns a pointer to the CLB configuration stream. This will be used to synch up with the JBits object after parsing.

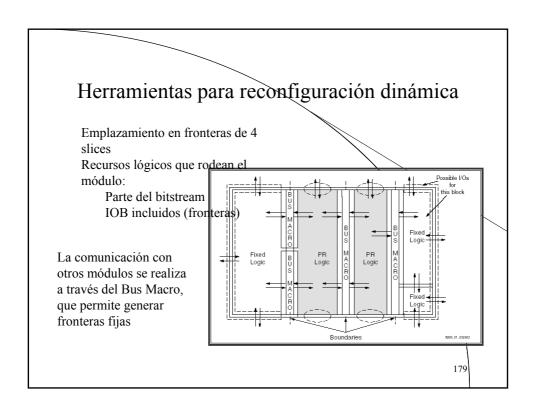
El Parser/Generador se usa para analizar una configuración y generar configuraciones globales o parciales

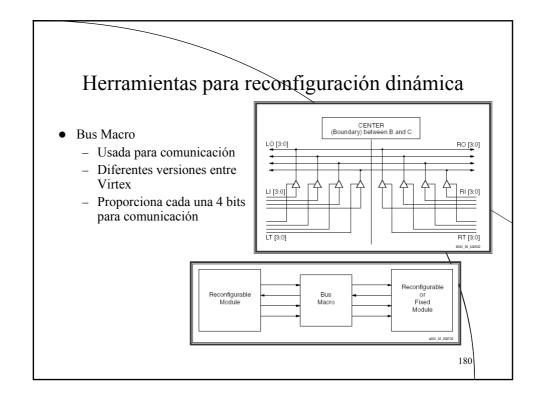
Herramientas para reconfiguración dinámica

• Reconfiguración parcial con Diseño Modular

- Reconfiguración parcial: se trata de reconfigurar ma parte de la FPGA mientras el resto del diseño sigue todavía operativo.
- Estilos:
 - Parcial Multicolumna:
 - Diseños independientes
 - Comunicación entre diseños (Bus Macro)
 - Manipulaciones Small-Bit
 - Sólo una pequeña parte del diseño se modifica
 - Bitstream pequeños (diferentes ordenes de magnitud)
 - Politica de reemplazamiento de bitstream
 - Cambios
 - · Ecuaciones LUT
 - · Contenidos RAM
 - I/O
 - · Otras propiedades

177

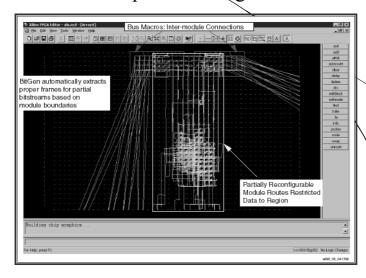

Herramientas para reconfiguración dinámica


- Características de un modulo reconfigurable:
 - Dimensiones
 - Altura = Altura dispositivo (FPGA)
 - Ancho = Mínimo de 4 slices y múltiplos.
 - Responsabilidad programador la comunicación entre los distintos módulos fijos y/o reconfigurables
 - Estado elementos almacenamiento se preserva cuando se reconfiguran

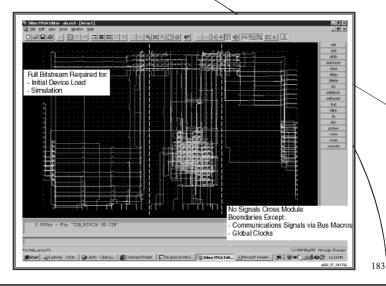
Lógica del reloj va separada

Modulo reconfigurable no deben compartir clk, reset...

Se recomienda clk globales



Herramientas para reconfiguración dinámica


- Cuando se realiza la colocación y rutado de un diseño hay que especificar:
 - Localización de cada módulo, y en particular de todos los bus macros
 - Ligaduras de área
 - Lógica de alto nivel
 - Bus macro
 - Ligadura de tiempo globales

181

Herramientas para reconfiguración dinámica

Herramientas para reconfiguración dinámica

