Solutions

Solution 1.1

1.1.1 Computer used to run large problems and usually accessed via a network:
5 supercomputers

1.1.2 10" or 2°° bytes: 7 petabyte

1.1.3 Computer composed of hundreds to thousands of processors and terabytes
of memory: 3 servers

1.1.4 Today’s science fiction application that probably will be available in near
future: 1 virtual worlds

1.1.5 Akind of memory called random access memory: 12 RAM
1.1.6 Part of a computer called central processor unit: 13 CPU
1.1.7 Thousands of processors forming a large cluster: 8 datacenters

1.1.8 A microprocessor containing several processors in the same chip: 10 multi-
core Processors

1.1.9 Desktop computer without screen or keyboard usually accessed via a net-
work: 4 low-end servers

1.1.10 Currently the largest class of computer that runs one application or one
set of related applications: 9 embedded computers

1.1.11 Special language used to describe hardware components: 11 VHDL

1.1.12 Personal computer delivering good performance to single users at low
cost: 2 desktop computers

1.1.13 Program that translates statements in high-level language to assembly
language: 15 compiler

$2

Chapter 1 Solutions

1.1.14 Program that translates symbolic instructions to binary instructions:
21 assembler

1.1.15 High-level language for business data processing: 25 cobol

1.1.16 Binary language that the processor can understand: 19 machine language
1.1.17 Commands that the processors understand: 17 instruction

1.1.18 High-level language for scientific computation: 26 fortran

1.1.19 Symbolic representation of machine instructions: 18 assembly language

1.1.20 Interface between user’s program and hardware providing a variety of
services and supervision functions: 14 operating system

1.1.21 Software/programs developed by the users: 24 application software
1.1.22 Binary digit (value 0 or 1): 16 bit

1.1.23 Software layer between the application software and the hardware that
includes the operating system and the compilers: 23 system software

1.1.24 High-level language used to write application and system software: 20 C
1.1.25 Portable language composed of words and algebraic expressions that
must be translated into assembly language before run in a computer: 22 high-level

language

1.1.26 10'2 or 2 bytes: 6 terabyte

Solution 1.2

1.2.1 8bits X 3 colors =24 bits/pixel = 4 bytes/pixel. 1280 x 800 pixels = 1,024,000
pixels. 1,024,000 pixels X 4 bytes/pixel = 4,096,000 bytes (approx 4 Mbytes).
1.2.2 2 GB =2000 Mbytes. No. frames = 2000 Mbytes/4 Mbytes = 500 frames.

1.2.3 Network speed: 1 gigabit network ==> 1 gigabit/per second = 125 Mbytes/
second. File size: 256 Kbytes = 0.256 Mbytes. Time for 0.256 Mbytes = 0.256/125 =
2.048 ms.

Chapter 1 Solutions

S3

1.2.4 2 microseconds from cache => 20 microseconds from DRAM. 20 micro-
seconds from DRAM ==> 2 seconds from magnetic disk. 20 microseconds from
DRAM ==> 2 ms from flash memory.

Solution 1.3
1.3.1 P2 has the highest performance

performance of P1 (instructions/sec) =2 X 10%/1.5=1.33 x 10°
performance of P2 (instructions/sec) = 1.5 X 10%/1.0 = 1.5 x 10°
performance of P3 (instructions/sec) = 3 X 10°2.5=1.2x 10°
1.3.2 No. cycles = time x clock rate

cycles(P1) =10x 2 x 107 =20 x 10°s
cycles(P2) =10x 1.5x 10° = 15 x 10% s
cycles(P3) =10x 3 x 107 =30 x 10°s

time = (No. instr. X CPI)/clock rate, then No. instructions = No. cycles/CPI

instructions(P1) = 20 x 10%/1.5 = 13.33 x 10°

instructions(P2) = 15 x 10%/1 = 15 x 10°

instructions(P3) = 30 x 10%/2.5 = 12 x 10°

1.3.3 time, =time 4 x0.7=7s

CPI = CPI X 1.2, then CPI(P1) = 1.8, CPI(P2) = 1.2, CPI(P3) = 3
f = No. instr. X CPI/time, then

£(P1)=13.33x 10’ x 1.8/7 = 3.42 GHz

f(P2) =15x%x10° x 1.2/7 =2.57 GHz
f(P3)=12x10° x 3/7 =5.14 GHz

1.3.4 IPC = 1/CPI = No. instr./(time X clock rate)

IPC(P1) = 1.42
IPC(P2) =2
IPC(P3) = 3.33

1.3.5 Time,,/Time 3 =7/10=0.7.50 f e, = fo1a/0.7 = 1.5 GHz/0.7 = 2.14 GHz.

1.3.6 Time,/Time q=9/10=0.9.
So Instructions,,, = Instructionsy X 0.9 = 30 x 10° x 0.9 = 27 x 10°.

$4

Chapter 1 Solutions

Solution 1.4
1.4.1 P2

Class A: 10° instr.

Class B: 2 x 10° instr.
Class C: 5 x 10° instr.
Class D: 2 x 10° instr.

Time = No. instr. X CPI/clock rate

P1: Time class A = 0.66 X 10°*
Time class B=2.66 x 10
Time class C=10 x 10*
Time class D=5.33 x 10°*

Total time P1 = 18.65 x 10™*

P2: Time class A= 10"
Time classB=2x 10"*
Time class C=5x107*
Time classD=3x 10*

Total time P2 =11 x 10°*

1.4.2 CPI = time X clock rate/No. instr.
CPI(P1) = 18.65 % 10 *x 1.5 x 10°/10° = 2.79
CPI(P2)=11x 104 x2x10%710°=2.2
143

clock cycles(P1) =10° X 1+2x 10° X2 +5X 10° X 3+2 % 10° x 4 =28 x 10°
clock cycles(P2) = 10°x 2 +2 X 10° X 2 +5x 10° X 2+ 2 x 10° x 3 =22 x 10°

144

‘ (500><1+50><5+100><5+50><2)><0.5><10’9=675ns

1.4.5 CPI = time X clock rate/No. instr.

‘ CPI=675%x109 x 2 x 10%/700 = 1.92

146

Time=(500><1+50><5+50><5+5O><2)><O.5><10’9=550ns
Speed-up = 675 ns/550 ns = 1.22
CPI=550x107° x 2 x 10%/700 = 1.57

Chapter 1 Solutions

S5

Solution 1.5

1.5.1
a. | 1G, 0.75G inst/s
b. | 1G, 1.5G inst/s
1.5.2
a. | P2is 1.33 times faster than P1
b. | P1is 1.03 times faster than P2
1.5.3
a. | P2is 1.31 times faster than P1
b. | P1is 1.00 times faster than P2
154
a. | 2.05pus
b. | 1.93 us
1.5.5
a. | 0.71 ps
b. | 0.86 ps
1.5.6
a. | 1.30 times faster
b. | 1.40 times faster

Solution 1.6
1.6.1

. Compiler A CPI Compiler B CPI

1.00

1.17

0.80

0.58

$6

Chapter 1 Solutions

1.6.2
a. | 0.86
b. | 1.37

1.6.3

. Compiler A speed-up Compiler B speed-up
a. 1.52 1.77
b. 1.21 0.88

1.6.4

. P1 peak P2 peak
a. 4G Inst/s 3G Inst/s
b. 4G Inst/s 3G Inst/s

1.6.5 Speed-up, P1 versus P2:

a. | 0.967105263

b. | 0.730263158

1.6.6

a. | 6.204081633

b. | 8.216216216

Solution 1.7
1.7.1

Geometric mean clock rate ratio = (1.28 x 1.56 X 2.64 X 3.03 x 10.00 x 1.80 x
0.74)"7 =2.15

Geometric mean power ratio = (1.24 X 1.20 X 2.06 x 2.88 x 2.59 x 1.37 x 0.92)/7 =
1.62

1.7.2

Largest clock rate ratio = 2000 MHz/200 MHz = 10 (Pentium Pro to Pentium 4
Willamette)
Largest power ratio = 29.1 W/10.1 W = 2.88 (Pentium to Pentium Pro)

Chapter 1 Solutions

§7

1.7.3

Clock rate: 2.667 X 10%/12.5 x 10° = 212.8
Power: 95 W/3.3 W =28.78

1.7.4 C=P/V?*x clockrate

80286: C =0.0105x 10°°

80386: C =0.01025x 10°°

80486: C = 0.00784 x 10°°

Pentium: C = 0.00612 x 10 °

Pentium Pro: C=0.0133 x 10°©

Pentium 4 Willamette: C = 0.0122 x 10°°
Pentium 4 Prescott: C = 0.00183 x 10°°
Core 2: C=10.0294x 10°®

1.7.5 3.3/1.75 = 1.78 (Pentium Pro to Pentium 4 Willamette)

1.7.6

Pentium to Pentium Pro: 3.3/5 =0.66

Pentium Pro to Pentium 4 Willamette: 1.75/3.3 = 0.53
Pentium 4 Willamette to Pentium 4 Prescott: 1.25/1.75 =0.71
Pentium 4 Prescott to Core 2: 1.1/1.25 = 0.88

Geometric mean = 0.68

Solution 1.8

1.8.1 Power, = V? x clock rate x C. Power, = 0.9 Power,

‘ C,/Cy=0.9x52x0.5x10%3.32x 1 x 10° = 1.03

1.8.2 Power,/Power; = V,> x clock rate,/V;%x clock rate,

‘ Power,/Power; = 0.87 => Reduction of 13%

1.8.3

Power, = V5,2 x 1 x 10° x 0.8 x C; = 0.6 x Power;

Power; = 52 x 0.5 x 10° x C4

V5,2 x 1% 10%x 0.8 x C; = 0.6 x 52 x 0.5 x 10° x C4

V, = ((0.6 x 52 x 0.5 x 109)/(1 x 10° x 0.8))¥2 =3.06 V

S8

Chapter 1 Solutions

1.8.4 Power,,, = 1 X Cyq X V2 4/(27*%)? x clock rate x 22 = Power,4. Thus,

new
power scales by 1.

1.8.5 1/271/2=712

1.8.6 Voltage = 1.1 x 1/27/4=10.92 V. Clock rate = 2.667 x 2'/> = 3.771 GHz

Solution 1.9
1.9.1

a. | 1/49 x100=2%

b. | 45/120 x 100 = 37.5%

1.9.2

a | I =1/3.3=0.3

b. | I = 45/1.1 = 40.9

193

a. | Powerg/Powery, = 1/49 = 0.02

b. | Powerg/Powery, = 45/57 = 0.6

1.9.4 Powery/Powery,, = 0.6 => Powery = 0.6 X Powerg,,

a. | Powerg=0.6 x40W=24 W

b. | Powerg =0.6 Xx30W=18W

195

a. | 1,=24/0.8=30A

b. | I,=18/0.8=225A

Chapter 1 Solutions

1.9.6
119 W 119 A 136 W 113.3A lat1.0V
b. 935 W 93.5A 110.5 W 92.1A lxat1.0V

Solution 1.10

1.10.1
H Instructions per processor Total instructions
1 4096 4096
2 2048 4096
4 1024 4096
8 512 4096
u Instructions per processor Total instructions
1 4096 4096
2 2278 4556
4 1464 5856
8 1132 9056
1.10.2
o] e | Ecomtentmeqm
1 4.096
2 2.048
4 1.024
8 0.512
(0] e | Ecomtentmeqm
1 4.096
2 3.203
4 3.164
8 3.582

$10 Chapter 1 Solutions

1.10.3

o] roosan | Exetamtme

5376

2.688

1.344

0|~ IN|P

0.672

0] roosan | Exetmtme

5.376

3.878

3.564

0|~ IN |-

3.882

1.104

T em T o amesesom

4.00

2.17
1.25
0.75

o] om | eemtomemeson

4.00

0| IN |-

2.00

1.00

| IN |

0.50

Chapter 1 Solutions

1.10.5
Power (W) per core | Power (W) per core Power (W) Power (W)
@ 3 GHz @ 500 MHz @ 3 GHz @ 500 MHz
1 0.625 15 0.625
2 15 0.625 30 1.25
4 15 0.625 60 2.5
8 15 0.625 120 5
Power (W) per core | Power (W) per core Power (W) Power (W)
@ 3 GHz @ 500 MHz @ 3 GHz @ 500 MHz
1 15 0.625 15 0.625
2 15 0.625 30 1.25
4 15 0.625 60 2.5
8 15 0.625 120 5

1.10.6

[[Pocossos | By 02ats | ey osoomn
60 15

1

2 65 16.25
4 75 18.75
8 90 225

Lo | Proceser

1 60 15
2 60 15
4 60 15
8 60 15

$12

Chapter 1 Solutions

Solution 1.11
1.11.1 Wafer area = 1t x (d/2)?

Wafer area =1t x 7.5%= 176.7 cm?

b.

Wafer area = 1t x 12.52 = 490.9 cm?

Die area = wafer area/dies per wafer

Die area = 176.7/90 = 1.96 cm?

Die area = 490.9/140 = 3.51 cm?

Yield = 1/(1 + (defect per area x die area)/2)?

Yield = 0.97

Yield = 0.92

1.11.2 Cost per die = cost per wafer/(dies per wafer X yield)

a. | Cost perdie =0.12
b. | Cost perdie =0.16
1.11.3

a. | Dies per wafer=1.1 x 90 =99
Defects per area = 1.15 x 0.018 = 0.021 defects/cm?
Die area = wafer area/Dies per wafer = 176.7/99 = 1.78 cm?
Yield = 0.97

b. | Dies per wafer = 1.1 x 140 = 154
Defects per area = 1.15 x 0.024 = 0.028 defects/ch
Die area = wafer area/Dies per wafer = 490.9/154 = 3.19 cm?
Yield = 0.93

1.11.4 Yield = 1/(1 + (defect per area x die area)/2)?
Then defect per area = (2/die area)(y_” Z-)

Replacing values for T1 and T2 we get
T1: defects per area = 0.00085 defects/mm” = 0.085 defects/cm

T3: defects per area = 0.00043 defects/mm” = 0.043 defects/cm

2

T2: defects per area = 0.00060 defects/mm? = 0.060 defects/cm
2
2

T4: defects per area = 0.00026 defects/mm” = 0.026 defects/cm

1.11.5 no solution provided

Chapter 1 Solutions

$13

Solution 1.12
1.12.1 CPI = clock rate x CPU time/instr. count
clock rate = 1/cycle time = 3 GHz

a. | CPI(pearl) = 3 x 10° x 500/2118 x 10° = 0.7

b. | CPI(mcf) = 3 x 10° x 1200/336 x 10° = 10.7

1.12.2 SPECratio = ref. time/execution time.

a. | SPECratio(pearl) = 9770/500 = 19.54

b. | SPECratio(mcf) = 9120/1200 = 7.6

1.12.3

(19.54 x 7.6)%2 = 12.19

1.12.4 CPU time = No. instr. x CPI/clock rate

If CPI and clock rate do not change, the CPU time increase is equal to the increase
in the number of instructions, that is, 10%.

1.12.5 CPU time(before) = No. instr. X CPI/clock rate

CPU time(after) = 1.1 X No. instr. X 1.05 x CPI/clock rate
CPU times(after)/CPU time(before) = 1.1 x 1.05 = 1.155. Thus, CPU time is
increased by 15.5%

1.12.6 SPECratio = reference time/CPU time
SPECratio(after)/SPECratio(before) = CPU time(before)/CPU time(after) =
1/1.1555 = 0.86. That, the SPECratio is decreased by 14%.

Solution 1.13
1.13.1 CPI = (CPU time X clock rate)/No. instr.

a. | CPI =450 x4 x 10%/(0.85 x 2118 x 10%) = 0.99

b. | CPl=1150 x 4 x 10%/(0.85 x 336 x 10% = 16.10

S14

Chapter 1 Solutions

1.13.2 Clock rate ratio = 4 GHz/3 GHz = 1.33.

a. | CPl@4 GHz =0.99, CPl @ 3 GHz = 0.7, ratio = 1.41

b. | CPl@ 4 GHz = 16.1, CPl @ 3 GHz = 10.7, ratio = 1.50

They are different because although the number of instructions has been reduced
by 15%, the CPU time has been reduced by a lower percentage.

1.133

a. | 450/500 = 0.90. CPU time reduction: 10%.

b. | 1150/1200 = 0.958. CPU time reduction: 4.2%.

1.13.4 No. instr. = CPU time X clock rate/CPI.

a. | No. instr. = 820 x 0.9 x 4 x 109/0.96 = 3075 x 10°

b. | No. instr. = 580 x 0.9 x 4 x 10%/2.94 = 710 x 10°

1.13.5 Clock rate = No. instr. x CPI/CPU time.
Clock rate,.,, = No. instr. x CP1/0.9 x CPU time = 1/0.9 clock rate)y = 3.33 GHz.

1.13.6 Clock rate = No. instr. x CPI/CPU time.

Clock rate,,,, = No. instr. x 0.85 x CPI/0.80 CPU time = 0.85/0.80 clock rate ;4 =
3.18 GHz.

Solution 1.14
1.14.1 No.instr. = 10°

Tepu(P1) = 10° x 1.25/4 x 10° = 0.315 x 103 s
Tepu(P2) = 10° x 0.75/3 x 109 =0.25 x 103 s

clock rate(P1) > clock rate(P2), but performance(P1) < performance(P2)

1.14.2

P1: 10° instructions, Tg,,(P1) = 0.315 x 103 s
P2: Tgpu(P2) = N x 0.75/3 x 10° then N = 1.26 x 10°

Chapter 1 Solutions §15

1.14.3 MIPS = Clock rate x 107°/CPI

MIPS(P1) = 4 x 10° x 1076/1.25 = 3200
MIPS(P2) = 3 x 10° x 10°6/0.75 = 4000
MIPS(P1) < MIPS(P2), performance(P1) < performance(P2) in this case (from 1.14.1)

1144

a. | FPop=10°x 0.4 = 4 x 10°, clock cylesg, = CPI x No. FP instr. = 4 x 10°
Tr, =4 % 10°x 0.33 x 10° = 1.32 x 10°* then MFLOPS = 3.03 x 103

b. | FPop=3x10%x 0.4 =1.2 x 105, clock cylesg, = CPl x No. FP instr. = 0.70 x 1.2 x 10°
Ty, =0.84 x 10° x 0.33 x 1077 = 2.77 x 10~ then MFLOPS = 4.33 x 10°

1.14.5 CPU clock cycles =FP cycles+ CPI(L/S) x No. instr. (L/S) + CPI(Branch) x
No. instr. (Branch)

a. | 5x10° L/S instr.,, 4 x 10° FP instr. and 10° Branch instr.

CPU clock cycles = 4 x 10° + 0.75 x 5 x 10°% + 1.5 x 10% = 9.25 x 10°
Topu = 9:25 X 10° x 0.33 x 10° = 3.05 x 104

MIPS = 10%/(3.05 x 10 x 10°) = 3.2 x 10°

b. | 1.2 x 10° L/S instr., 1.2 x 108 FP instr. and 0.6 x 10° Branch instr.

CPU clock cycles = 0.84 x 108 + 1.25 x 1.2 x 10° + 1.25 x 0.6 x 10°% = 3.09 x 108
Tepu = 3-09 X 106x 0.33 x 1079 = 1.01 x 1073

MIPS = 3 x 106/(1.01 x 1072 x 10°) = 2.97 x 10°

1.14.6

a. | performance = 1/Ty, = 3.2 x 10°

b. | performance = 1/Tg,, = 9.9 x 102

The second program has the higher performance and the higher MFLOPS figure, but the first program
has the higher MIPS figure.

Solution 1.15
1.15.1

a. | T, =35%x0.8=28s,T, =28+ 85+ 50+ 30 =193 s. Reduction: 3.5%

b. | T;;=50x0.8=40s,T,, =40+ 80 + 50 + 30 = 200 s. Reduction: 4.7%

S16

Chapter 1 Solutions

1.15.2

a. | T, =200%0.8=160S, Ty, + Tg + Toanen = 115 8, Ty = 45 5. Reduction time INT: 47%

b. | Tps=210x 0.8 =168 S, Ty + T/ + Torancn = 130 s, T;n = 38 s. Reduction time INT: 52.4%

1.153

a. | Ty =200x0.8=160s, Ty, + Ty + Ts = 170 5. NO

b. | T,,=210x0.8=168s, Tty + Tjy; + Tjys = 180 s. NO

1.154
Clock cyles = CPIg, X No. FP instr. + CPIj, X No. INT instr. + CPl;;; x No. L/S

nt

instr. + CPI;, ., X No. branch instr.

T pu = clock cycles/clock rate = clock cycles/2 x 10°

a. | 1 processor: clock cycles = 8192; T, = 4.096 s

b. | 8 processors: clock cycles = 1024; T;,, = 0.512 s

To half the number of clock cycles by improving the CPI of FP instructions:

CPI x No. FP instr. + CPI,; X No. INT instr. + CPI;;; X No. L/S instr. +
CPIy anch X No. branch instr. = clock cycles/2

CPLproved fp = (clock cycles/2 — (CPI; X No. INT instr. + CPIjs X No. L/S instr. +
CPIy anch X No. branch instr.))/No. FP instr.

improved fp

a. | 1 processor: CPliy;oved fp = (4096 — 7632)/560 < O ==> not possible

b. | 8 processors: CPliyproved ip = (512 — 944)/80 < 0 ==> not possible

1.15.5 Using the clock cycle data from 1.15.4:
To half the number of clock cycles improving the CPI of L/S instructions:
CPIg, X No. FP instr. + CPL;, x No. INT instr. + CPJ;

int improved /s

x No. L/S instr. +
CPIyanen X No. branch instr. = clock cycles/2

CPLiproved 1s = (clock cycles/2 — (CPIg, X No. FP instr. + CPI
CPIy anch X No. branch instr.))/No. L/S instr.

X No. INT instr. +

int

Chapter 1 Solutions

$17

a. | 1 processor: CPliyproved iys = (4096 — 3072)/1280 = 0.8

b. | 8 processors: CPlinproved i7s = (512 — 384)/160 = 0.8

1.15.6

Clock cyles = CPIg, X No. FP instr. + CPI
CPIy,;aneh X No. branch instr.

Tep
CPlip = 0.6 X 1 =0.6; CPIg, = 0.6 X 1= 0.6; CPI ;g = 0.7 X 4 = 2.8; CPl 1y, = 0.7 X

2=14

x No. INT instr. + CPI},; X No. L/S instr. +

int

. = clock cycles/clock rate = clock cycles/2 x 10°

a. | 1 processor: Ty, (before improv.) = 4.096 s; T, (after improv.) = 2.739 s

b. | 8 processors: Tcpu(before improv.) = 0.512 s; Tcpu(after improv.) = 0.342 s

Solution 1.16

1.16.1 Without reduction in any routine:

a. | total time 2 proc = 185 ns

b. | total time 16 proc = 34 ns

Reducing time in routines A, C and E:

a. | 2 proc: T(A) =17 ns, T(C) = 8.5 ns, T(E) = 4.1 ns, total time = 179.6 ns ==> reduction = 2.9%

b. | 16 proc: T(A) = 3.4 ns, T(C) = 1.7 ns, T(E) = 1.7 ns, total time = 32.8 ns ==> reduction = 3.5%

1.16.2

a. | 2 proc: T(B) = 72 ns, total time = 177 ns ==> reduction = 4.3%

b. | 16 proc: T(B) = 12.6 ns, total time = 32.6 ns ==> reduction = 4.1%

1.16.3

a. | 2 proc: T(D) = 63 ns, total time = 178 ns ==> reduction = 3.7%

b. | 16 proc: T(D) = 10.8 ns, total time = 32.8 ns ==> reduction = 3.5%

s18

Chapter 1 Solutions

1.16.4
Computing time
Processors Computing time ratio Routing time ratio
2 176
96 0.55 1.18
49 0.51 1.31
16 30 0.61 1.29
32 14 0.47 1.05
64 6.5 0.46 1.13

1.16.5 Geometric mean of computing time ratios = 0.52. Multiply this by the
computing time for a 64-processor system gives a computing time for a 128-
processor system of 3.4 ms.

Geometric mean of routing time ratios = 1.19. Multiply this by the routing time for
a 64-processor system gives a routing time for a 128-processor system of 30.9 ms.

1.16.6 Computing time = 176/0.52 = 338 ms. Routing time = 0, since no com-
munication is required.

Solutions

Solution 2.1

2.1.1
a add f, g, h
add f, f, i
add f, f, j
b addi f, h, 5
addi f, f, g
2.1.2
a 3
b. | 2
2.1.3
a 14
b. | 10
2.1.4
a f=9g+h
b. f=g+h
215
5
5

Solution 2.2

2.2.1
a. | add f, f, f
add f, f, i
b. | addi f, j, 2
add f, f, g

$20

Chapter 2 Solutions

2.2.2

a 2

b. | 2
2.2.3

a 6

b. | 5
2.24

a f +=

b f=1-f
2.2.5

a. | 4

b. | O

Solution 2.3
2.3.1

a. | add f, f, g
add f, f, h
add f, f, i
add f, f, j
addi f, f, 2

b. | addi f, f, 5
sub f, g, f

2.3.2

a 5

b. | 2

2.3.3

a 17

Chapter 2 Solutions

s21

h - g;

)
—
I

2.3.5
a. |1
b. |0

Solution 2.4
2.4.1

a. | 1w $s0, 16($s7)
add $s0, $s0, $sl1
add $s0, $s0, $s2

b. | 1w $t0, 16($s7)
Tw $s0, 0($t0)
sub $s0, $sl1, $s0O

2.4.2
a 3
b. | 3

243
a. | 4
b. | 4

24.4

fH=g+h+1+];

f =A[1];

$22

Chapter 2 Solutions

2.4.5

a. | no change

b. | no change

2.4.6

a. | 5 as written, 5 minimally

b. | 2 as written, 2 minimally

Solution 2.5
2.5.1

a. Address Data temp = Array[3];
12 1 Array[3] = Arrayl[2];
8 6 Array[2] = Array[1];
1 4 Arrayl[1l] = Array[0];
0 2 Array[0] = temp;
b. Address Data temp = Arrayl[4];
16 1 Array[4] = Array[0];
12 2 Array[0] = temp;
8 3 temp = Array[3];
4 4 Array[3] = Arrayl[l];
0 5 Array[1l] = temp;
2.5.2
a. Address Data temp = Array[3]; Tw $t0, 12($s6)
12 1 Array[3] = Arrayl[2]; Tw $tl, 8(%s6)
8 6 Array[2] = Array[1]; Sw $t1, 12($s6)
4 4 Array[1] = Array[0]; Tw $tl, 4($s6)
0 2 Array[0] = temp; sw $tl, 8($s6)
Tw $t1, 0($s6)
Sw $t1, 4($s6)
Sw $t0, 0($s6)
b. Address Data temp = Array[4]; Tw $t0, 16($s6)
16 1 Arrayl[4]1 = Array[07; Tw $t1, 0($s6)
12 2 Array[0] = temp; sw $tl, 16($s6)
8 3 Sw $t0, 0($s6)
1 4 temp = Array[3];
0 5 Array[3] = Array[1]; Tw $t0, 12($s6)
Array[1] = temp; Tw $t1, 4($s6)
Sw $t1, 12($s6)
Sw $t0, 4($s6)

Chapter 2 Solutions

$23

2.5.3
a. Address Data temp = Array[3]; Tw $t0, 12($s6) 8 mips instructions, +1
12 1 Array[3]1 = Arrayl[2]; Tw $t1, 8($s6) mips inst. for every non-
8 6 Array[2] = Array[1]; Sw $t1, 12(%$s6) zero offset Iw/sw pair
4 4 Array[1] = Array[0]; Tw $tl, 4($s6) (11 mips inst.)
0 2 Array[0] = temp; sw $tl, 8($s6)
Tw $t1, 0($s6)
Sw $t1, 4($s6)
Ssw $t0, 0($s6)
b. Address Data temp = Array[4]; Tw $t0, 16($s6) 8 mips instructions, +1
16 1 Array[4] = Array[0]; Tw $tl, 0($s6) mips inst. for every non-
12 2 Array[0] = temp; Sw $tl, 16(%$s6) zero offset lw/sw pair
8 3 Sw $t0, 0($s6) (11 mips inst.)
4 4 temp = Array[3];
0 5 Array[3] = Array[1]; Tw $t0, 12($s6)
Array[1l] = temp; Tw $tl, 4($s6)
Sw $tl, 12($s6)
Sw $t0, 4($s6)
2.5.4
a. | 305419896
b. | 3199070221
2.5.5

I T S R

a. Address Data Address Data
12 12 12 78
8 34 8 56
4 56 4 34
0 78 0 12
b. Address Data Address Data
12 be 12 0d
8 ad 8 fO
4 fO 4 ad
0 Od 0 be

Solution 2.6

2.6.1
a. | 1w $s0, 4(%$s7)
sub $s0, $s0, $sl
add $s0, $s0, $s2
b. | add $t0, $s7, $sl

Tw $t0, 0($t0)

add $t0, $tO,

$s6

Tw $s0, 4($t0)

S$24 Chapter 2 Solutions

2.6.2
a. | 3
b. | 4
2.6.3
a. | 4
b. | 5
2.6.4
a. | f =2 +h;
b. | f = A[g - 31;
2.6.5
a. | $s0 =110
b. | $s0 =300
2.6.6

add $s0, $s0, $s1 R-type
add $s0, $s3, $s2 R-type 0 19 18 16
add $s0, $s0, $s3 R-type 0 16 19 16

R ﬂnnm

addi $s6, $s6, -20 Itype
add $s6, $s6, $sl R-type 0 22q 17 22

Tw $s0, 8(%s6) Itype 35 22 16 8

Chapter 2 Solutions

$25

Solution 2.7
2.71

a. | —1391460350

b. | -19629

2.7.2

a. | 2903506946

b. | 4294947667

2.7.3

a. | AD100002

b. | FFFFB353

2.7.4

a. | 01111111111111111111111111111111

b. | 1111101000

2.7.5
a. | 7FFFFFFF
b. | 3E8
2.7.6
a. | 80000001
b. | FFFFFC18

Solution 2.8
2.8.1

a. | /FFFFFFF, no overflow

b. | 80000000, overflow

$26

Chapter 2 Solutions

2.8.2

a. | 60000001, no overflow

b. | 0, no overflow

2.8.3

a. | EFFFFFFF, overflow

b. | C0000000, overflow

2.8.4

a. | overflow

b. | no overflow

2.8.5

a. | no overflow

b. | no overflow

2.8.6

a. | overflow

b. | no overflow

Solution 2.9
2.9.1

a. | overflow

b. | no overflow

2.9.2

a. | overflow

b. | no overflow

Chapter 2 Solutions S§27

2.9.3

a. | no overflow

b. | overflow

2.9.4

a. | no overflow

b. | no overflow

2.9.5

a. | 10100002

b. | 6FFFB353

2.9.6

a. | 487587842

b. | 1879028563

Solution 2.10
2.10.1

a. | sw $t3, 4($s0)
b. | Tw $t0, 64($t0)

2.10.2

a. | ltype

b. | Itype

2.10.3

a. | AEOBO00O4
b. | 80080040

$28

Chapter 2 Solutions

2.10.4

a. | 0x01004020

b. | 0x8E690004

2.10.5

a. | Rtype

b. | Itype

2.10.6

a. | op=0x0, rd=0x8, rs=0x8, rt=0x0, funct=0x0

b. | op=0x23, rs=0x13, rt=0x9, imm=0x4

Solution 2.11
2.11.1

a. | 1010 1110 0000 1011 1111 1111 1111 11004y,

b. | 1000 1101 0000 1000 1111 1111 1100 00004,

2.11.2

a. | 2920022012

b. | 2366177216

2.11.3

a. | sw $t3, -4($s0)

b. | Tw $t0, -64($t0)

2.11.4

a. | Rtype

b. Itype

Chapter 2 Solutions

2.11.5

a. | add $v1, $at,

b. | sw $al, 4($s0)

2.11.6

a. | 0x00221820

b. | 0xAD450004

Solution 2.12
2.12.1

-nnnmm—

R-type total bits = 26
b. R-type 6 6 total bits = 32
2.12.2
-—“-m—
Itype total bits = 28
b. Itype 10 total bits = 26

2.12.3

a. | less registers — less bits per instruction — could reduce code size
less registers — more register spills — more instructions

b. | smaller constants — more lui instructions — could increase code size
smaller constants — smaller opcodes — smaller code size

2.124

a. | 17367056

b. | 2366177298

2.12.5

a. | add $t0, $t1,

b. | Tw $tl, 12($t0)

$30

Chapter 2 Solutions

2.12.6

a. | Rtype, op=0x0, rt=0x9

b. | ltype, op=0x23, rt=0x8

Solution 2.13
2.13.1

a. | 0x57755778

b. | OxFEFFFEDE

2.13.2

a. | 0x55555550

b. | OXEADFEEDO

2.13.3

a. | OxO000AAAA

b. | 0x0000BFCD

2.13.4

a. | 0x00015B5A

b. | 0x00000000

2.135

a. | 0x5b5a0000

b. | 0x000000f0

2.13.6

a. | OXEFEFFFFF

b. | 0x000000F0

Chapter 2 Solutions

S31

Solution 2.14
2.14.1

add
srl
andi

$tl,
$tl,
$tl,

$t0,
$tl,
$tl,

$0

5
0x0001fFfff

add
sl
andi

$tl,
$tl,
$tl,

$t0,
$tl,
$tl,

$0
10
Oxffff8000

2.14.2

add
andi

$tl,
$tl,

$t0,
$tl,

$0
0x0000000f

add
srl
andi

$tl,
$tl,
$tl,

$t0,
$tl,
$tl,

$0
14
0x0003c000

2.14.3

add
srl

$tl,
$tl,

$t0,
$tl,

$0
28

add
srl
andi

$tl,
$tl,
$tl,

$t0,
$tl,
$tl,

$0
14
0x0001c000

2.14.4

add
srl
and
and
ori

$tz,
$te,
$tz,
$tl,
$tl,

$t0,
$t2,
$t2,
$tl,
$tl,

$0

11
0x0000003f
Oxffffffco
$t2

add
sl
and
and
ori

$tz,
$t2,
$tz,
$tl,
$tl,

$t0,
$t2,
$t2,
$tl,
$tl,

$0
3
0x000c000
OxFFO3FFF
$t2

$32 Chapter 2 Solutions
2.14.5
a. | add $t2, $t0, $0
and $t2, $t2, 0x0000001f
and $tl, $tl, Oxffffffel
ori $tl, $tl, $t2
b. | add $t2, $t0, $0
s11 $t2, $t2, 14
and $t2, $t2, 0x0007c000
and $t1, $tl1, Oxfff83fff
ori $tl1, $tl1, $t2
2.14.6
a. | add $t2, $t0, $0
srl $t2, $t2, 29
and $t2, $t2, 0x00000003
and $tl1, $tl, Oxfffffffc
ori $t1, $t1, $t2
b. | add $t2, $t0, $0
srl $t2, $t2, 15
and $t2, $t2, 0x0000c000
and $tl, $tl, Oxffff3fff
ori $t1, $t1, $t2
Solution 2.15
2.15.1
a. | 0x0000a581
b. | 0x00ff5a66
2.15.2
a. | nor $t1, $t2, $t2
and $t1, $tl1, $t3
b. | xor $t1, $t2, $t3
nor $t1, $t1, $t1
2.15.3
a. | nor $tl, $t2, $t2 000000 01010 01010 01001 00000 100111
and $t1, $tl1, $t3 000000 01001 01011 01001 00000 100100
b. | xor $tl, $t2, $t3 000000 01010 01011 01001 00000 100110
nor $t1, $tl, $tl 000000 01001 01001 01001 00000 100111

Chapter 2 Solutions

$33

2.15.4
a. | 0x00000220
b. | 0x00001234

2.15.5 Assuming $t1 = A, $t2 =B, $s1 = base of Array C

a. Tw $t3, 0($s1)
and $t1, $t2, $t3
b. beq $tl, $0, ELSE
add $t1, $t2, $0
beq $0, $0, END
ELSE: Tw $t2, 0($s1)
END:
2.15.6
a. Tw $t3, 0($s1) 100011 10001 01011 0000000000000000
and $tl, $t2, $t3 000000 01010 01011 01001 00000 100100
b. beq $t1, $0, ELSE 000100 01001 00000 0000000000000010
add $tl, $t2, $0 000000 01010 00000 01001 00000 100000
beq $0, $0, END 000100 00000 00000 0000000000000001
ELSE: Tw $t2, 0($sl) 100011 10001 01010 0000000000000000
END:

Solution 2.16

2.16.1
a. | $t2=1
b. | $t2=1
2.16.2
a. | all, 0x8000 to Ox7FFFF
b. | 0x8000 to OxFFFE
2.16.3
a. | jump—no, beq—no
b. | jump—no, begq—no

$34 Chapter 2 Solutions

2.16.4
a. | $t2=2
b. | $t12=2
2.16.5
a. | $t2=0
b. $t2=1
2.16.6

a. | jump—yes, beq—no

b. | jump—yes, beq—yes

Solution 2.17

2.17.1 The answer is really the same for all. All of these instructions are either
supported by an existing instruction, or sequence of existing instructions. Looking
for an answer along the lines of, “these instructions are not common, and we are
only making the common case fast”.

2.17.2

a. | could be either R-type of I-type

b. R-type
2.17.3
a. | ABS: sub $t2,%$zero,$t3 #t2 =- 13
ble $t3,%$zero,done # if t3 < 0, result is t2
add $t2,$t3,$zero #if t3 > 0, result is t3
DONE:
b. | s1t $tl1, $t3, $t2

2.17.4

a. | 20
b. | 200

Chapter 2 Solutions

$35

2.17.5
a i =10;
do {
B +=
i=1-1;
} while (i > 0)
b. | i =10;
do {
temp = 10;
do {

B += 2;
temp = temp - 1;
} while (temp > 0)
i=1-1;
} while (i > 0)

2.17.6
a. | 5xXxN+3
b. | 33xN

Solution 2.18
2.18.1

—

A+=
A
i+=1

b. l__________

Dlal]=b+a

A
A+=1

$36

Chapter 2 Solutions

2.18.2

a. addi $t0, $0, O
beq $0, $0, TEST

LOOP: add $s0, $s0, $sl
addi $t0, $t0, 1

TEST: s1ti $t2, $t0, 10
bne §$t2, $0, LOOP

b. | LOOP: s1ti $t2, $s0, 10
beq $t2, $0, DONE
add $t3, $s1, $s0
s11 $t2, $s0, 2
add $t2, $s2, $t2
sw $t3, ($t2)
addi $s0, $s0, 1
J LOOP

DONE :

2.18.3

a. | 6 instructions to implement and 44 instructions executed

b. | 8 instructions to implement and 2 instructions executed

2.18.4

a. | 501

b. | 301

2.18.5

a. | for(i=100; i>0; i--){
result += MemArray[s0];
sO0 += 1;

}

b. | for(i=0; i<100; i+=2){
result += MemArray[s0 + i1;
result += MemArray[sO + i + 11];

2.18.6

a. addi $t1, $s0, 400

LOOP: Tw $s1, 0($s0)
add $s2, $s2, $sli
addi $s0, $s0, 4
bne $s0, $t1, LOOP

b. | already reduced to minimum instructions

Chapter 2

Solutions

§37

Solution 2.19

2.19.1
a. | compare:

addi $sp, $sp, -4
sw $ra, 0($sp)
add $s0, $a0, $0
add $s1, $al, $0
jal sub
addi $tl, $0, 1
beq $v0, $0, exit
st $t2, $0, $vO
bne $t2, $0, exit
addi $t1, $0, $0

exit:
add $vO0, $t1, $0
Tw $ra, 0($sp)
addi $sp, $sp, 4
jr $ra

sub:
sub $v0, $a0, $al
jr $ra

b. | fib_iter:

addi $sp, $sp, -16
sw $ra, 12($sp)
Sw $s0, 8($sp)
sw $s1, 4($sp)
Sw $s2, 0($sp)
add $s0, $a0, $0
add $s1, $al, $0
add $s2, $a2, $0
add $vO0, $s1, $0,
bne $s2, $0, exit
add $a0, $s0, $s1
add $al, $s0, $0
add $a2, $s2, -1
jal fib_iter

exit:
Tw $s2, 0($sp)
Tw $s1, 4($sp)
Tw $s0, 8($sp)
Tw $ra, 12($sp)
addi $sp, $sp., 16
jr $ra

$38

Chapter 2 Solutions

2.19.2
a. | compare:
addi $sp, $sp, -4
sw $ra, 0($sp)
sub $t0, $a0, $al
addi $t1, $0, 1
beq $t0, $0, exit
slt $t2, $0, $tO
bne $t2, $0, exit
addi $t1, $0, $0
exit:
add $v0, $t1, $0
Tw $ra, 0($sp)
addi $sp, $sp., 4
jr $ra
b. | Due to the recursive nature of the code, not possible for the
compiler to in-line the function call.

2.19.3
a. | after calling function compare:
old $sp => Ox7ffffffc 2727
$sp => -4 contents of register $ra
after calling function sub:
old $sp => Ox7ffffffc 2727
-4 contents of register $ra
$sp => -8 contents of register $ra freturn to
compare
b. | after calling function fib_iter:
old $sp => Ox7ffffffc 2727
-4 contents of register $ra
-8 contents of register $s0
-12 contents of register $sl
$sp => -16 contents of register $s2
2.194
a. | f: addi $sp,$sp.-8
sw $ra,4($sp)
Sw $s0,0($sp)
move $s0,%a2
jal func
move $a0,$v0
move $al,$s0
Jal func
Tw $ra,4($sp)
Tw $s0,0($sp)
addi $sp,$sp.8
jr $ra

Chapter 2 Solutions S$39

b. | f: addi $sp,$sp,-12
sw $ra,8($sp)
sw $s1,4($sp)
sw $s0,0($sp)
move $s0,%al
move $s1,%a2
jal func
move $a0,9$s0
move $al,$sl
move $s0,$v0
jal func
add $v0,$v0,$s0
Tw $ra,8($sp)
Tw $s1,4($sp)
Tw $s0,0($sp)
addi $sp,$sp,12
jr ra

2.19.5

a. | We can use the tail-call optimization for the second call to func, but then we must restore $ra
and $sp before that call. We save only one instruction (jr $ra).

b. | We can NOT use the tail call optimization here, because the value returned from f is not equal
to the value returned by the last call to func.

2.19.6 Register $ra is equal to the return address in the caller function, registers
$sp and $s3 have the same values they had when function f was called, and register
$t5 can have an arbitrary value. For register $t5, note that although our function
f does not modify it, function func is allowed to modify it so we cannot assume
anything about the of $t5 after function func has been called.

Solution 2.20
2.20.1

a. | FACT: addi $sp, $sp, -8
Sw $ra, 4($sp)
Sw $a0, 0($sp)
add $s0, $0, $a0

sTti $t0, $al, 2
beq $t0, $0, L1

addi $v0, $0, 1
addi $sp, $sp, 8

jr $ra
L1: addi $a0, $al, -1
jal FACT

mul $v0, $s0, $vO

Tw $a0, 0($sp
Tw $ra, 4($sp
addi $sp, $sp, 8
jr $ra

$40

Chapter 2 Solutions

b. | FACT: addi $sp,
SwW $ra,
Sw $a0,
add $s0,
s1ti $t0,
beq $t0,
addi $vO0,
addi $sp,
jr $ra
L1: addi $a0,
jal FACT
mul $v0,
Tw $a0,
Tw $ra,
addi $sp,
jr $ra

$sp, -8
4($sp)
0($sp)
$0, $a0

$al, 2
$0, L1

$0, 1
$sp, 8
$a0, -1

$s0, $vO0

0($sp)
4($sp)
$sp, 8

2.20.2

a. | 25 MIPS instructions to execute nonrecursive vs. 45 instructions to execute (corrected version

of) recursion

Nonrecursive version:

FACT: addi $sp,

SW $ra,
add $s0,
add $s2,
LOOP: slti $t0,
bne $t0,
mul $s2,
addi $s0,
j LooP
DONE: add $v0,
Tw $ra,
addi $sp,
jr $ra

$sp, -4
4($sp)
$0, $a0
$0, $1

$s0, 2
$0, DONE
$s0, $s2?
$s0, -1

$0, $s2
4($sp)
$sp, 4

b. | 25 MIPS instructions to execute nonrecursive vs. 45 instructions to execute (corrected version

of) recursion

Nonrecursive version:

Jjr $ra

FACT: addi $sp,

SwW $ra,
add $s0,
add $s2,
LOOP: slti $t0,
bne $t0,
mul $s2,
addi $s0,
j LOOP
DONE : add $v0,
Tw $ra,
addi $sp,

$sp, -4
4($sp)
$0, $a0
$0, $1

$s0, 2
$0, DONE
$s0, $s2
$s0, -1

$0, $s2
4($sp)
$sp, 4

Chapter 2 Solutions S$41

2.20.3

a. | Recursive version

FACT: addi $sp, $sp, -8
Sw $ra, 4($sp)
SwW $a0, 0($sp)
add $s0, $0, $a0

HERE : slti $t0, $a0, 2
beq $t0, $0, L1
addi $v0, $0, 1
addi $sp, $sp, 8

jr $ra
L1: addi $a0, $a0, -1
jal FACT

mul $v0, $s0, $vO
Tw $a0, 0($sp)
Tw $ra, 4($sp)
addi $sp, $sp, 8
jr $ra

at label HERE, after calling function FACT with input of 4:

old $sp => Oxnnnnnnnn 77?7
-4 contents of register $ra
$sp => -8 contents of register $a0
at label HERE, after calling function FACT with input of 3:
old $sp => Oxnnnnnnnn 2?7
-4 contents of register $ra
-8 contents of register $al
-12 contents of register $ra
$sp => -16 contents of register $a0
at label HERE, after calling function FACT with input of 2:
old $sp => Oxnnnnnnnn 77?7
-4 contents of register $ra
-8 contents of register $al
-12 contents of register $ra
-16 contents of register $al
-20 contents of register $ra
$sp => =24 contents of register $a0
at Tabel HERE, after calling function FACT with input of 1:
old $sp => Oxnnnnnnnn 2?7
-4 contents of register $ra
-8 contents of register $a0
-12 contents of register $ra
-16 contents of register $a0
-20 contents of register $ra
-24 contents of register $al
-78 contents of register $ra

$sp => -32 contents of register $a0

$42 Chapter 2 Solutions

b. Recursive version

FACT: addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
add $s0, $0, $a0

HERE: slti $t0, $a0, 2
beq $t0, $0, L1
addi $v0, $0, 1
addi $sp, $sp, 8

jr $ra
L1: addi $a0, $a0, -1
jal FACT

mul $v0, $s0, $vO
Tw $a0, 0($sp)
Tw $ra, 4($sp)
addi $sp, $sp, 8
jr $ra

at Tabel HERE, after calling function FACT with input of 4:

old $sp => Oxnnnnnnnn 277
-4 contents of register $ra
$sp => -8 contents of register $a0
at label HERE, after calling function FACT with input of 3:
old $sp => Oxnnnnnnnn 7?7
-4 contents of register $ra
-8 contents of register $a0
-12 contents of register $ra
$sp => -16 contents of register $a0
at Tabel HERE, after calling function FACT with input of 2:
old $sp => Oxnnnnnnnn 277
-4 contents of register $ra
-8 contents of register $a0
-12 contents of register $ra
-16 contents of register $a0
=20 contents of register $ra
$sp => -24 contents of register $a0
at Tabel HERE, after calling function FACT with input of 1:
old $sp => Oxnnnnnnnn 7?7
-4 contents of register $ra
-8 contents of register $a0
-12 contents of register $ra
-16 contents of register $a0
-20 contents of register $ra
-24 contents of register $a0
-28 contents of register $ra

$sp => -32 contents of register $a0

Chapter 2 Solutions

$43

2.20.4
a FIB addi $sp, $sp, -12
Sw $ra, 8($sp)
Sw $s1, 4($sp)
Sw $a0, 0($sp)
s1ti $t0, $a0, 3
beq $t0, $0, L1
addi $v0, $0, 1
j EXIT
L1: addi $a0, $a0, -1
jal FIB
addi $sl1, $v0, $0
addi $a0, $a0, -1
jal FIB
add $v0, $v0, $s1
EXIT: Tw $a0, 0($sp)
Tw $s1, 4($sp)
Tw $ra, 8($sp)
addi $sp, $sp, 12
jr $ra
b FIB addi $sp, $sp, -12
Sw $ra, 8($sp)
Sw $s1, 4($sp)
Sw $a0, 0($sp)
slti $t0, $a0, 3
beq $t0, $0, L1
addi $v0, $0, 1
j EXIT
L1: addi $a0, $a0, -1
jal FIB
addi $s1, $v0, $0
addi $a0, $a0, -1
jal FIB
add $v0, $v0, $sli
EXIT: Tw $al0, 0($sp)
Tw $s1, 4($sp)
Tw $ra, 8($sp)
addi $sp, $sp, 12
jr $ra

$44

Chapter 2 Solutions

a. | 23 MIPS instructions to execute nonrecursive vs. 73 instructions to execute (corrected version

of) recursion

Nonrecursive version:

FIB: addi $sp,
SW $ra,
addi $s1,
addi $s2,

LOOP: s1ti $t0,
bne $t0,
add $s3,
add $s1,
add $s2,
addi $a0,
j LOOP

EXIT: add $v0,
Tw $ra,
addi $sp,
Jjr $ra

$sp, -4
($sp)
$0, 1
$0, 1
$a0, 3
$0, EXIT
$s1, $0
$s1, $s2
$s3, $0
$a0, -1

sl, $0
($sp)
$sp, 4

b. | 23 MIPS instructions to execute nonrecursive vs. 73 instructions to execute (corrected version

of) recursion

Nonrecursive version:

jr $ra

FIB: addi $sp,
sw $ra,
addi $s1,
addi $s2,

LOOP: s1ti $t0,
bne $t0,
add $s3,
add $s1,
add $s2,
addi $a0,
j LoOP

EXIT: add $v0,
Tw $ra,
addi $sp,

$sp, -4
($sp

$0, 1
$0, 1
$a0, 3
$0, EXIT
$s1, $0
$s1, $s2
$s3, $0
$a0, -1
sl, $0
($sp)
$sp, 4

Chapter 2

Solutions

$45

2.20.6
a. | recursive version

FIB: addi $sp,
Sw $ra,
Sw $s1,
Sw $al,

HERE : slti $t0,
beq $t0,
addi $vO0,
J EXIT

(i addi $a0,
jal FIB
addi $s1,
addi $a0,
jal FIB
add $vO0,

EXIT: Tw $a0,
Tw $s1,
Tw $ra,
addi $sp,
jr $ra

$sp, -12
8($sp)
4($sp)
0($sp)

$a0, 3
$0, L1
$0, 1

$a0, -1

$v0, $0
$a0, -1

$v0, $sl

0($sp)
4($sp)
8($sp)
$sp, 12

at label HERE, after calling function FIB with input of 4:

-4
-8

$sp => -12

old $sp => Oxnnnnnnnn 2?7
-4 contents of register $ra
-8 contents of register $sl
$sp => -12 contents of register $a0
b. | recursive version
FIB: addi $sp, $sp, -12
Sw $ra, 8($sp)
Sw $s1, 4($sp)
Sw $a0, 0($sp)
HERE : slti $t0, $a0, 3
beq $t0, $0, L1
addi $v0, $0, 1
J EXIT
L1: addi $a0, $a0, -1
jal FIB
addi $sl1, $v0, $0
addi $a0, $a0, -1
jal FIB
add $v0, $v0, $si
EXIT: Tw $a0, 0($sp)
Tw $s1, 4($sp)
Tw $ra, 8($sp)
addi $sp, $sp, 12
jr $ra

at label HERE, after calling function FIB with input of 4:
old $sp => Oxnnnnnnnn 2727

contents of register $ra
contents of register $sl
contents of register $a0

$46

Chapter 2 Solutions

Solution 2.21

2.21.1
a. after entering function main:
old $sp => Ox7ffffffc 2727
$sp => -4 contents of register $ra
after entering function Teaf_function:
old $sp => Ox7ffffffc 2?7
-4 contents of register $ra
$sp => -8 contents of register $ra (return to main)
b. after entering function main:
old $sp => Ox7ffffffc 227
$sp => -4 contents of register $ra
after entering function my_function:
old $sp => Ox7ffffffc 227
-4 contents of register $ra
$sp => -8 contents of register $ra (return to main)
global pointers:
0x10008000 100 my_global

2.21.2

a. | MAIN: addi $sp, $sp, -4
sw $ra, ($sp)

addi $a0, $0, 1
Jjal LEAF

Tw $ra, ($sp)
addi $sp, $sp, 4
Jjr $ra

LEAF: addi $sp, $sp, -8
Sw $ra, 4($sp)
Sw $s0, 0($sp)

addi $s0, $a0, 1
slti $t2, 5, $a0
bne $t2, $0, DONE
add $a0, $s0, $0
jal LEAF

DONE: add $v0, $s0, $0
Tw $s0, 0($sp)
Tw $ra, 4($sp)
addi $sp, $sp, 8
jr $ra

Chapter 2 Solutions

$47

b. | MAIN:

FUNC:

addi
Sw

addi
addi
Tw
Jal
add

addi
jr

sub
jr

$sp,
$ra,

$a0,
$tl,
$al,
FUNC
$t2,

$ra,
$sp,
$ra

$v0,
$ra

$sp, -4
($sp)

$0, 10
$0, 20
($s0)

$v0 $0

($sp)
$sp, 4

$a0, $al

#assume $s0 has global variable base

2.21.3

a. | MAIN:

LEAF:

DONE:

$sp,
$ra,

$a0,
LEAF

$ra,
$sp,
$ra

$sp,
$ra,
$s0,

$s0,
$t2,
$t2,
$a0,
LEAF

$v0,
$s0,
$ra,
$sp,
$ra

$sp, -4
($sp)

$0, 1

($sp)
$sp, 4

$sp, -8
4($sp)
0($sp)

$al0, 1
5, $a0
$0, DONE
$s0, $0

$s0, $0
0($sp)
4($sp)
$sp, 8

b. | MAIN:

FUNC:

$sp,
$ra,

$al,
$t1,
$al,
FUNC
$t2,

$ra,
$sp,
$ra

$vO,
$ra

$sp, -4
($sp)

$0, 10
$0, 20
($s0)

$v0 $0

($sp)
$sp, 4

$al0, $al

J#fassume $s0 has global variable base

$48

Chapter 2 Solutions

2.21.4

a. Register $s0 is used to hold a temporary result without saving $s0 first. To correct this
problem, $tO (or $v0) should be used in place of $s0 in the first two instructions. Note that a
sub-optimal solution would be to continue using $s0, but add code to save/restore it.

b. | The two addi instructions move the stack pointer in the wrong direction. Note that the MIPS
calling convention requires the stack to grow down. Even if the stack grew up, this code would
be incorrect because $ra and $s0 are saved according to the stack-grows-down convention.

2.21.5
a. | int f(int a, int b, int c, int d){
return 2*(a-d)+c-b;
}
b. | int f(int a, int b, int c){
return g(a,b)+c;
}
2.21.6
a. | The function returns 842 (which is 2 x (1 — 30) + 1000 — 100)
b. | The function returns 1500 (g(a, b) is 500, so it returns 500 + 1000)

Solution 2.22

2.22.1

a. | 65 20 98 121 116 101

b. | 99 111 109 112 117 116 101 114

2.22.2

a. | U+0041, U+0020, U+0062, U+0079, U+0074, U+0065

b. | U+0063, U+006f, U+006d, U+0070, U+0075, U+0074, U+0065, U+0072
2.22.3

a. | add

b. | shift

Chapter 2 Solutions

$49

Solution 2.23
2.23.1

MATN:

LOOP:

FIRST:

DONE:

addi
Sw
add
add
add
add

1b

s1t
bne
s1t
bne
sub

beq
mul
add
addi

$sp,
$ra,
$t6,
$t7,
$s0,
$t0,

$tl,
$t2,
$t2,
$t2,
$t2,
$tl,

$s0,
$s0,
$s0,
$t0,

J LOooP

add
Tw
addi
jr

$v0,
$ra,
$sp,

$ra

$sp, -4
($sp)
$0, 0x30
$0, 0x39
$0, $0
$a0, $0

($t0)

$tl, $t6
$0, DONE
$t7, $tl
$0, DONE
$tl, $t6

$0, FIRST
$s0, 10
$s0, $tl
$t0, 1

$s0, $0
($sp)
$sp, 4

0
'9

MAIN:

LOOP:

DEC:

FIRST:

DONE:

addi
Sw
add
add
add
add
add
add

1b

slt
bne
slt
bne
sub

j DEC

slt
bne
slt
bne
sub
addi
beq
mul
add
addi

$sp,
$ra,
$ta,
$t5,
$t6,
$t7,
$s0,
$t0,

$tl,
$t2,
$t2,
$t2,
$t2,
$tl,

$t2,
$t2,
$t2,
$t2,
$tl,
$tl,
$s0,
$s0,
$s0,
$t0,

i LOOP

add
Tw
addi
jr

$vO,
$ra,
$sp,

$ra

A
'F
0
9

$50 Chapter 2 Solutions

Solution 2.24
2.24.1

a. | 0x00000012
b. | Ox12ffffff

2.24.2

a. | 0x00000080
b. | 0x80000000

2.24.3

a. | 0x00000011
b. | 0x11555555

Solution 2.25

2.25.1 Generally, all solutions are similar:

Tui $t1, top_l16_bits
ori $tl, $tl, bottom_16_bits

2.25.2 Jump can go up to OxOFFFFFFC.

a. no

b. | no

2.25.3 Range is 0x604 + 0x1FFFC = 0x0002 0600 to 0x604 — 0x20000 = OxFFFE

0604.
a. | no
b. | yes

2.25.4 Range is 0x0042 0600 to 0x003E 0600.

a. no

b. | no

Chapter 2 Solutions S51

2.25.5 Generally, all solutions are similar:

add $tl, $zero, $zero ffclear $t1

addi $t2, $zero, top_8_bits Jset top 8b

sl $tz2, $t2, 24 #shift left 24 spots

or $tl, $tl1, $t2 #fplace top 8b into $tl
addi $t2, $zero, nxtl_8_bits #set next 8b

s11 $t2, $t2, 16 #shift left 16 spots

or $tl, $tl, $t2 #place next 8b into $tl
addi $t2, $zero, nxt2_8 bits #set next 8b

s1T $t2, $t2, 24 #shift left 8 spots

or $tl, $tl1, $t2 #place next 8b into $tl

ori $tl, $tl, bot_8 bits J#for in bottom 8b

2.25.6

a. | 0x12345678
b. | 0x12340000

2.25.7

a. | t0

b. | t0 = (t0 || 0x5678);
t0 = 0x1234 << 16;

(0x1234 << 16) || 0x5678;

Solution 2.26
2.26.1 Branch range is 0x00020000 to OxFFFE0004.

a. | one branch

b. | three branches

2.26.2

a. one

b. | can’t be done

2.26.3 Branch range is 0x00000200 to OxFFFFFEO04.

a. | eight branches

b. | 512 branches

$§52 Chapter 2 Solutions

2.26.4

a. | branch range is 16x larger

b. | branch range is 16x smaller

2.26.5

a. | no change

b. | jump to addresses O to 212 instead of 0 to 228, assuming the PC<0x08000000

2.26.6

a. | rs field now 3 bits

b. | no change

Solution 2.27

2.27.1

a. | jump register

b. | beq
2.27.2

a. | Rtype

b. | Itype
2.27.3

a. | + canjump to any 32b address
— need to load a register with a 32b address, which could take multiple cycles

b. | + allows the PC to be set to the current PC + 4 +/- BranchAddr, supporting quick forward and
backward branches
—range of branches is smaller than large programs

2.27.4

a. | 0x00000000 Tui $s0, 100 0x3c100100
0x00000004 ori $s0, $s0, 40 0x36100028

b. | 0x00000100 addi $t0, $0, 0x0000 0x20080000
0x00000104 Tw $tl, 0x4000($t0) 0x8d094000

Chapter 2 Solutions

§53

2.27.5
a. addi $s0, $zero, 0x80
sl $s0, $s0, 17
ori $s0, $s0, 40
b. addi $t0, $0, 0x0040
s11 $t0, $t0, 8
Tw $tl, 0($t0)
2.27.6
a 1
b. | 1

Solution 2.28

2.28.1

‘ a.‘ 4 instructions

2.28.2

‘ a. ‘ One of the locations specified by the LL instruction has no corresponding SC instruction. ‘

2.28.3

a. | try: MOV R3,R4
MOV R6,R7
LL R2,0(R2)
adjustment or test code here
SC R3,0(R2)
BEQZ R3,try

try2:

LL R5,0(R1)
adjustment or test code here
SC R6,0(R1)
BEQZ R6,try2
MOV R4 ,R2

MOV R7,R5

$54 Chapter 2 Solutions

2.28.4
Processor 1 Processor 2 m“
0 1 2 99
11 $t1, 0($sl) 11 $tl1, 0($sl) 1 99 2 99 99 40
sc $t0, 0($sl) 2 99 1 99 40
sc $t0, 0($sl) 3 99 1 99 0

b.
Processor 1 Processor 2 m m m m m m

[¢] 4
try: add $t0, $0, $s4 1 2 3 4 99 10 20 10
try: add $t0, $0, $s4 11 $t1, 0($sl) 2 2 3 2 99 10 99 10
11 $t1, 0($sl) 3 2 99 2 929 10 99 10
sc $t0, 0($sl) 4 2 99 1 10 99 10
beqz $t0, try sc $t0, 0($sl) 5 2 99 1 10 99
add $s4, $0, $t1 beqz $t0, try 6 99 99 1 10 99

Solution 2.29

2.29.1 The critical section can be implemented as:

trylk: 11 $tl1,1
11 $t0,0(%$a0)
bnez $t0,trylk
sC $t1,0(%a0)
beqz $tl,trylk

operation

SW $zero,0(%$a0)

Where operation is implemented as:

a. Tw $t0,0(%al)
add $t0,$t0,%a2
Sw $t0,0(%al)

b. Tw $t0,0(%al)
sge $t1,%$t0,%a2
bnez $tl,skip

Sw $a2,0(%al)

skip:

Chapter 2 Solutions

S§55

2.29.2 The entire critical section is now:

a. | try: 11 $t0,0(%al)
add $t0,$t0,%a2
sc $t0,0(%al)
beqz $t0,try

b. | try: 11 $t0,0(%al)
sge $t1,$t0,%a2
bnez $t1,skip
mov $t0,%a2

sc $t0,0(%al)
beqz $t0,try

skip:

2.29.3 The code that directly uses 11/sc to update shvar avoids the entire lock/
unlock code. When SC is executed, this code needs 1) one extra instruction to
check the outcome of SC, and 2) if the register used for SC is needed again we need
an instruction to copy its value. However, these two additional instructions may
not be needed, e.g., if SC is not on the best-case path or f it uses a register whose
value is no longer needed. We have:

B Lock-based T m———

a. 6+3
b. 6+3
2.29.4

a. | Both processors attempt to execute SC at the same time, but one of them completes the write
first. The other’s SC detects this and its SC operation fails.

b. | Itis possible for one or both processors to complete this code without ever reaching the SC
instruction. If only one executes SC, it completes successfully. If both reach SC, they do so in
the same cycle, but one SC completes first and then the other detects this and fails.

2.29.5 Every processor has a different set of registers, so a value in a register can-
not be shared. Therefore, shared variable shvar must be kept in memory, loaded
each time their value is needed, and stored each time a task wants to change the
value of a shared variable. For local variable x there is no such restriction. On the
contrary, we want to minimize the time spent in the critical section (or between
the LL and SC, so if variable x is in memory it should be loaded to a register before
the critical section to avoid loading it during the critical section.

2.29.6 If we simply do two instances of the code from 2.29.2 one after the other
(to update one shared variable and then the other), each update is performed
atomically, but the entire two-variable update is not atomig, i.e., after the update
to the first variable and before the update to the second variable, another process
can perform its own update of one or both variables. If we attempt to do two LLs

$56

Chapter 2 Solutions

(one for each variable), compute their new values, and then do two SC instructions
(again, one for each variable), the second LL causes the SC that corresponds to
the first LL to fail (we have a LL and SC with a non-register-register instruction
executed between them). As a result, this code can never successfully complete.

Solution 2.30
2.30.1

a. | add $t1, $t2, $0

b. | add $t0, $0, small
beq $t1, $t0, LOOP

2.30.2

a. | Yes. The address of v is not known until the data segment is built at link time.

b. | No. The branch displacement does not depend on the placement of the instruction in the text
segment.

Solution 2.31

2.31.1

a.
Text Size 0x440
Data Size 0x90

Text Address Instruction
0x00400000 Tw $a0, 0x8000($gp)
0x00400004 jal 0x0400140
0x00400140 sw $al, 0x8040($gp)
0x00400144 jal 0x0400000

Data 0x10000000 (X)
0x10000040 (Y)

Chapter 2 Solutions

§57

b.

Text Size 0x440
Data Size 0x90

Text Address Instruction
0x00400000 Tui $at, 0x1000
0x00400004 ori $a0, $at, O
0x00400008 jal 0x0400140
0x00400140 sw $a0, 8040($gp)
0x00400144 Jmp 0x04002C0
0x004002C0 jr $ra

Data 0x10000000 (X)
0x10000040 (Y)

2.31.2 0x8000 data, OxFC00000 text. However, because of the size of the beq
immediate field, 218 words is a more practical program limitation.

2.31.3 The limitation on the sizes of the displacement and address fields in the
instruction encoding may make it impossible to use branch and jump instructions
for objects that are linked too far apart.

Solution 2.32

2.32.1

a. | swap:
s11 $t0,%al,2
add $t0,$t0,%a0
Tw $t2,0($t0)
sl $t1,%a2,2
add $t1,$t1,%a0
Tw $t3,0(8t1)
sw $t3,0($t0)
Sw $t2,0($t1)
jr $ra

b. | swap:
Tw $t0,0(%a0)
Tw $t1,4(%a0)
sw $t1,0(%a0)
SwW $t0,4(%a0)
jr $ra

$58

Chapter 2 Solutions

2.32.2

a. | Pass j+1 as a third parameter to swap. We can do this by adding an “addi $a2,%$a1,1”
instruction right before “jal swap”.

b. | Pass the address of v[j] to swap. Since that address is already in $t2 at the point when we
want to call swap, we can replace the two parameter-passing instructions before “jal swap”
with a simple “mov $a0,$t2”.

2.32.3

a. | swap:
add $t0,$t0,%a0 ; No s11
1b $t2,0($t0) ; Byte-sized load
add $t1,$t1,%a0 ; No s11
1b $t3,0($t1)
sb $t3,0($t0) ; Byte-sized store
sb $t2,0($t1)
jr $ra

b. | swap
1b $t0,0(%$a0) ; Byte-sized load
1b $t1,1(%a0) ; Offset is 1, not 4
sb $t1,0(%$a0) ; Byte-sized store
sb $t0,1(%$a0)
jr $ra

2.32.4

a. | Yes, we must save the additional s-registers. Also, the code for sort() in Figure 2.27 is using
5 tregisters and only 4 s-registers remain. Fortunately, we can easily reduce this number, e.g.,
by using t1 instead of tO for loop comparisons.

b. | No change to saving/restoring code is needed because the same s-registers are used in the
modified sort() code.

2.32.5 When the array is already sorted, the inner loop always exits in its first
iteration, as soon as it compares v|[j] with v[j+1]. We have:

a. | We need 4 more instructions to save and 4 more to restore registers. The number of
instructions in the rest of the code is the same, so there are exactly 8 more instructions
executed in the modified sort(), regardless of how large the array is.

b. | One fewer instruction is executed in each iteration of the inner loop. Because the array is

already sorted, the inner loop always exits during its first iteration, so we save one instruction
per iteration of the outer loop. Overall, we execute 10 instructions fewer.

2.32.6 When the array is sorted in reverse order, the inner loop always executes
the maximum number of iterations and swap is called in each iteration of the inner
loop (a total of 45 times). We have:

This change only affects the number of instructions needed to save/restore registers in swap(),
so the answer is the same as in Problem When the array is already sorted, the inner loop
always exits in its first iteration, as soon as it compares v[j] with v[j+1]. We have:.

Chapter 2 Solutions

$59

fewer.

b. | One fewer instruction is executed each time the “j>=0" condition for the inner loop is checked.
This condition is checked a total of 55 times (whenever swap is called, plus a total of 10 times
to exit the inner loop once in each iteration of the outer loop), so we execute 55 instructions

Solution 2.33
2.33.1

a. | find: move $v0,$zero

loop: beq $v0,%$al,done
s11 $t0,$v0,2
add $t0,$t0,%a0
Tw $t0,0($t0)
bne $t0,%a2,skip

jr $ra
skip: addi $v0,$v0,1
b loop
done: 11 $v0,-1
jr $ra

b. | count: move $v0,$zero
move $t0,$zero

loop: beq $t0,%al,done
sl $t1,$t0,2
add $tl1,$tl1,%a0
Tw $t1,0(8t1)
bne $tl,%a2,skip
addi $v0,$v0,1

skip: addi $t0,$t0,1
b loop

done: Jr $ra

2.33.2
a. | int find(int *a, int n, int x){
int *p;
for(p=a;pl=a+n;p++)
if(*p==x)
return p-a;
return -1;

}

b. | int count(int *a, int n, int x){
int res=0;
int *p;
for(p=a;p!=a+n;p++)
if(*p==x)
res=res+l;
return res;

}

$60 Chapter 2 Solutions

2.33.3

a. | find: move $t0,%$a0
sl $tl,%al,2
add $t1,$t1,%a0

lToop: beq $t0,$tl,done
Tw $t2,0($t0)
bne $t2,%a2,skip
sub $v0,$t0,%a0
srl $v0,$v0,2
jr $ra

skip: addi $t0,$t0,4
b Toop

done: 11 $v0,-1
jr $ra

b. | find: move $v0,%$zero
move $t0,$a0
s11 $tl1,%al,2
add $t1,$tl1,%$a0
loop: beq $t0,$tl,done
Tw $t2,0($t0)
bne $t2,%a2,skip
addi $v0,$v0,1
skip: addi $t0,$t0,4
b Toop
done: jr $ra

2.33.4
™ N R
a.

b. 8 6
2.33.5
™ N R
a.

b. 2

2.33.6 Nothing would change. The code would change to save all t-registers we
use to the stack, but this change is outside the loop body. The loop body itself
would stay exactly the same.

Chapter 2 Solutions S61

Solution 2.34
2.34.1

a. addi $s0, $0, 10

LOOP: add $s0, $s0, $s1
addi $s0, $s0, -1
bne $s0, $0, LOOP

b. s11 $s1, $s2, 28
srl $s2, $s2, 4
or $s1, $s1, $s2

2.34.2

a. | ADD, SUBS, MOV—all ARM register-register instruction format
BNE—an ARM branch instruction format

b. | ROR—an ARM register-register instruction format

2.34.3

a. CMP ro, ril
BMI FARAWAY

b. ADD ro, rl, r2

2.34.4

a. | CMP—an ARM registerregister instruction format
BMI—an ARM branch instruction format

b. | ADD—an ARM register-register instruction format

Solution 2.35
2.35.1

a. | register operand

b. | register + offset and update register

2.35.2
a. Tw $s0, ($s1)
b. Tw $s1, ($s0)

Tw $s2, 4($s0)
Tw $s3, 8($s0)

$62 Chapter 2 Solutions

2.35.3

a. addi $s0, $0, TABLEL
addi $s1, $0, 100
xor $s2, $s2, $s2

ADDLP: Tw $s4, ($s0)
addi $s2, $s2, 4
addi $s0, $s0, 4
addi $s1, $s1, -1
bne $s1, $0, ADDLP

b. s11 $s1, $s2, 28
srl $s2, $s2, 4
ar $s1, $s1, $s2

2.35.4

a. | 8 ARM vs. 8 MIPS instructions

b. | 1 ARM vs. 3 MIPS instructions

2.35.5

a. | ARM 0.67 times as fast as MIPs

b. | ARM 2 times as fast as MIPs

Solution 2.36

2.36.1
a. s11T $s1, $s1, 3
add $s3, $s2, $s1
b. s11 $s4, $s1, 29
srl $s1, $s1, 3
or $s1, $s1, $s4
add $s3, $s2, $sl
2.36.2

a. | addi $s3, $s2, 64

b. | addi $s3, $s2, 64

2.36.3
a. s11 $s1, $s1, 3
add $s3, $s2, $s1
b. s1T $s4, $s1, 29

srl $s1, $s1, 3
or $s1, $s1, $s4
add $s3, $s2, $s1

Chapter 2 Solutions

$63

2.36.4
a. | add r3, r2, #1
b. | add r3, r2, 0x8000

Solution 2.37

2.37.1
a mov edx, [esi+4*ebx] edx=memory(esi+4*ebx)
b. | START: mov ax, 00101100b char ax = 00101100b;
mov c¢x, 00000011b char bx = 11110000b;
mov bx, 11110000b char cx = 00000011b;
and ax, bx ax = ax && bx;
or ax, cx ax = ax || cx;
2.37.2
a. s11 $s2, $s2, 2
add $s4, $s4, $s2
Tw $s3, ($s4)
b. | START: addi $s0, $0, Ox2c
addi $s2, $0, 0x03
addi $s1, $0, Oxf0
and $s0, $s0, $sl1
or $s0, $s0, $s2
2.37.3
a. | mov edx, [esi+4*ebx] 6,1,1,8,8
b. | add eax, 0x12345678 4,4,1,32

2.37.4

Tw $v0, 0($

a. | addi $t0, %0, 2
s11 $a0, $a0,
add $a0, $a0, $al

a0)

$t0

b. | Tui $a0, 0x1

234

ori $a0, 0x5678

Solution 2.38

2.38.1

a. | This instruction copies ECX bytes from an array pointed to by ESI to an array pointer by EDI. An
example C library function that can easily be implemented using this instruction is memcpy.

b. | This instruction copies ECX elements, where each element is 4 bytes in size, from an array
pointed to by ESI to an array pointer by EDI.

S64

Chapter 2 Solutions

2.38.2

a. | loop: 1b $t
sh $t
addi $a
addi $a
addi $a
bnez $a

0,0(%a2)
0,0(%al)
0,%a0,-1
1,%al,1
2,%a2,1
0,Toop

b. | Toop: lw $t
Sw $t
addi $a
addi $a
addi $a
bnez $a

0,0(%a2)
0,0($al)
0,%a0,-1
1,%al.,4
2,%a2,4
0,Toop

2.38.3

a. 5 6 1.2

b. 5

1.2

2.38.4

a. | f: add $v0,%a0,%al MIPS: 2 x 4 = 8 bytes
jr $ra x86: 11 bytes

b. | f: Tw $t0,0(%a0) MIPS: 6 x 4 = 24 bytes
Tw $t1,0(%al) x86: 19 bytes
add $t0,$t0,$t1
Sw $t0,0(%a0)
sw $t0,0(%al)
jr $ra

2.38.5 In MIPS, we fetch the next two consecutive instructions by reading the
next 8 bytes from the instruction memory. In x86, we only know where the second
instruction begins after we have read and decoded the first one, so it is more difficult
to design a processor that executes multiple instructions in parallel.

2.38.6 Under these assumptions, using x86 leads to a significant slowdown (the
speed-up is well below 1):

a. 2 11

0.18

b. 6

19

0.32

Chapter 2 Solutions S$65

Solution 2.39
2.39.1

a. | 0.86 seconds

b. | 0.78 seconds

2.39.2 Answer is no in all cases. Slows down the computer.

CCT = clock cycle time

ICa = instruction count (arithmetic)
ICIs = instruction count (load/store)
ICb = instruction count (branch)

new CPU time = 0.75 x old ICa x CPIa x 1.1 x oldCCT
+ oldICls x CPIls x 1.1 x oldCCT
+ 0ldICb x CPIb x 1.1 x oldCCT

The extra clock cycle time adds sufficiently to the new CPU time such that it is not
quicker than the old execution time in all cases.

2.39.3
a. | 113.16% 121.13%
b. | 106.85% 110.64%
2.39.4
a. | 3
b. | 2.65
2.39.5
a 0.6
b. | 1.07
2.39.6
a. | 0.2

b. | 0.716666667

$66

Chapter 2 Solutions

Solution
2.40.1

2.40

a. | Inthe first iteration $tO is O and the Iw fetches a[0]. After that $tO is 1, the Iw uses a non-
aligned address triggers a bus error.

b. | Inthe first iteration $t0 and $t1 point to a[0] b[0], so the Iw and sw instructions access a[0],
b[0], and then a[0] as intended. In the second iteration $t0 and $t1 point to the next byte in

a[0] and b[1], respectively, instead of pointing to a[1] and b[1]. Thus the first lw uses a non-

aligned address and causes a bus error. Note that the computation for $t2 (address of a[n])

does not cause a bus error because that address is not actually used to access memory.

2.40.2

a. | Yes, assuming that x is a sign-extended byte value between —128 and 127. If x is simply a byte
value between O and 255, the function procedure only works if neither x nor array a contain
values outside the range of 0..127.

b. | Yes.

2.40.3

a. | f: mov
mov

add
Tw
bne
add
S: add
bne
Jjr

e $v0,%$zero

e $t0,%zero
$t1,$t0,2
$t1,$t1,%$a0
$t1,0($t1)
$t1,%a2,S

i $v0,$v0,1

i $t0,$t0,1
$t0,%al,L
$ra

; We must multiply the index by 4 before we
; add it to al[] to form the address for 1w

b. | f: move
move
sTl
add

L: Tw
Tw
add
SwW
addi
addi
bne
jr

$t0,%a0
$tl1,%al
$t2,%a2,2
$t2,$t2,%a0
$t3,0($t0)
$t4,0($t1)
$t3,$t3,%t4
$t3,0($t0)
$t0,$t0,4
$t1,$t1,4
$t0,%t2,L
$ra

; We must multiply n by 4 to get the address
; of the end of array a

; Move to next element in a
; Move to next element in b

2.40.4 At the exit frommy_alloc, the $sp register is moved to “free” the mem-
ory that is returned to main. Then my_1init () writes to this memory to initialize
it. Note that neither my_1in1it nor main access the stack memory in any other way
until sort () is called, so the values at the point where sort () is called are still the
same as those written by my_init:

a. 0,

b. 5,

Chapter 2 Solutions

$67

2.40.5 In main, register $s0 becomes 5, then my_alloc is called. The address
of the array v “allocated” by my_alloc is Oxffe8, because in my_alloc $sp was
saved at Oxfffc, and then 20 bytes (4 x 5) were reserved for array arr ($sp was dec-
remented by 20 to yield 0xffe8). The elements of array v returned to main are thus
al0] at Oxffe8, a[1] at Oxffec, a[2] at Oxfff0, a[3] at Oxfff4, and a[4] at Oxfff8. After
my_alloc returns, $sp is back to 0x10000. The value returned from my_alloc
is Oxffe8 and this address is placed into the $s1 register. The my_init function
does not modify $sp, $s0, $s1, $s2, or $s3. When sort () begins to execute, $sp is
0x1000, $s0 is 5, $s1 is Oxffe7, and $s2 and $s3 keep their original values of —10 and
1, respectively. The sort (0 procedure then changes $sp to Oxffec (0x1000 minus 20),
and writes $s0 to memory at address Oxffec (this is where a[1] is, so a[1] becomes
5), writes $s1 to memory at address 0xfff0 (this is where a[2] is, so a[2] becomes
0xffe8), writes $s2 to memory address 0xfff4 (this is where a[3] is, so a[3] becomes
—10), writes $s3 to memory address 0xfff8 (this is where a[4] is, so a[4] becomes 1),
and writes the return address to Oxfffc, which does not affect values in array v. Now
the values of array v are:

a. 0 5 Oxffeg 7 1
b. 5 5 O0xffe8 7 1

2.40.6 When the sort () procedure enters its main loop, the elements of array v
are sorted without any interference from other stack accesses. The resulting sorted
array is

a. 0, 1, 5, 7, Oxffe8
b. 1, 5, 5, 7, 0xffe8

Unfortunately, this is not the end of the chaos caused by the original bug in
my_alloc. When the sort () function begins restoring registers, $ra is read the
(luckily) unmodified location where it was saved. Then $s0 is read from memory at
address Oxffec (this is where a[1] is), $s1 is read from address 0xfff0 (this is where
a[2] is), $s2 is read from address Oxfff4 (this is where a[3] is), and $s3 is read from
address 0xfff8 (this is where a[4] is). When sort () returns to main(), registers
$s0 and $s1 are supposed to keep n and the address of array v. As a result, after
sort() returnstomain(),nand v are:

a. n=1, v=5
So v is a 1-element array of integers that begins at address 5
b. | n=5,v=5
So v is a 5-element array of integers that begins at address 5

If we were to actually attempt to access (e.g., print out) elements of array v in the
main() function after this point, the first Iw would result in a bus error due to
non-aligned address. If MIPS were to tolerate non-aligned accesses, we would print
out whatever values were at the address v points to (note that this is not the same
address to which my_init wrote its values).

Solutions

Solution 3.1

3.1.1
a. | 7620
b. | 3626
3.1.2
a. | 752
b. | 3626
3.13
a. | 2771 -723
b. | 103 103
3.14
a. | 730
b. | 1560
3.15
a. | 730
b. | 1560
3.1.6

a. | 010111110010

b. | 010110100110

The attraction is that each octal digit contains one of 8 different characters (0-7).
Since with 3 binary bits you can represent 8 different patterns, in octal each digit
requires exactly 3 binary bits. You can write down the conversion directly.

$§70 Chapter 3 Solutions

Solution 3.2

3.2.1
a. | EA4B
b. | FO34
3.2.2
a. | CFE3
b. | 8406
3.2.3
a. | 3380 3380
b. | 47645 -14877
3.24
a. | 9662
b. | 6321
3.25
a. | DE96
b. | F29D
3.2.6

a. | 1011101001111100

b. | 1010101011011111

The attraction is that each hex digit contains one of 16 different characters (0-9,
A-E). Since with 4 binary bits you can represent 16 different patterns, in hex each
digit requires exactly 4 binary bits. And bytes are by definition 8 bits long, so two
hex digits are all that are required to represent the contents of 1 byte.

Chapter 3 Solutions

S71

Solution 3.3
3.3.1

a. | Underflow (-21)

b. | Neither (58)

3.3.2

a. | Overflow (result = 159, which does not fit into an 8-bit SM format)

b. | Overflow (result = 146, which does not fit into an SM 8-bit format)

3.3.3

a. | Neither (-21)

b. | Neither (58)

3.3.4

a. | -56 + 103 =47

b. | 9-19=-28

3.3.5

a. | -56 - 103 = -128 (-159)

b. | -9+19=10

3.3.6

a. | 200 + 103 = 255 (303)

b. | 247 + 237 = 255 (484)

§72

Chapter 3 Solutions

Solution 3.4

3.4.1

a.50x23

Initial Vals 010 011 000 000 101 000 000 000 000 000
1 Prod = Prod + Mcand 010 011 000 000 101 000 000 000 101 000
Lshift Mcand 010 011 000 001 010 000 000 000 101 000
Rshift Mplier 001 001 000 001 010 000 000 000 101 000
2 Prod = Prod + Mcand 001 001 000 001 010 000 000 001 111 000
Lshift Mcand 001 001 000 010 100 000 000 001 111 000
Rshift Mplier 000 100 000 010 100 000 000 001 111 000
3 Isb = 0, no op 000 100 000 010 100 000 000 001 111 000
Lshift Mcand 000 100 000 101 000 000 000 001 111 000
Rshift Mplier 000 010 000 101 000 000 000 001 111 000
4 Isb = 0, no op 000 010 000 101 000 000 000 001 111 000
Lshift Mcand 000 010 001 010 000 000 000 001 111 000
Rshift Mplier 000 001 001 010 000 000 000 001 111 000
5 Prod = Prod + Mcand 000 001 001 010 000 000 001 011 111 000
Lshift Mcand 000 001 010 100 000 000 001 011 111 000
Rshift Mplier 000 000 010 100 000 000 001 011 111 000
6 Isb = 0, no op 000 000 001 010 000 000 001 011 111 000
Lshift Mcand 000 000 101 000 000 000 001 011 111 000
Rshift Mplier 000 000 101 000 000 000 001 011 111 000
b. 66 X 04

Initial Vals 000 100 000 000 110 110 000 000 000 000
1 Isb =0, no op 000 100 000 000 110 110 000 000 000 000
Lshift Mcand 000 100 000 001 101 100 000 000 000 000
Rshift Mplier 000 010 000 001 101 100 000 000 000 000
2 Isb =0, no op 000 010 000 001 101 100 000 000 000 000
Lshift Mcand 000 010 000 011 011 000 000 000 000 000
Rshift Mplier 000 001 000 011 011 000 000 000 000 000

Chapter 3 Solutions

Prod = Prod + Mcand 000 001 000 011 011 000 000 011 011 000
Lshift Mcand 000 001 000 110 110 000 000 011 011 000
Rshift Mplier 000 000 000 110 110 000 000 011 011 000
4 Isb =0, no op 000 000 000 110 110 000 000 011 011 000
Lshift Mcand 000 000 001 101 100 000 000 011 011 000
Rshift Mplier 000 000 001 101 100 000 000 011 011 000
5 Isb =0, no op 000 000 001 101 100 000 000 011 011 000
Lshift Mcand 000 000 011 011 000 000 000 011 011 000
Rshift Mplier 000 000 011 011 000 000 000 011 011 000
6 Isb =0, no op 000 000 011 011 000 000 000 011 011 000
Lshift Mcand 000 000 110 110 000 000 000 011 011 000
Rshift Mplier 000 000 110 110 000 000 000 011 011 000
3.4.2
a.50x23

mm Multiplicand Product/Multiplier

Initial Vals 101 000 000 000 010 011
Prod = Prod + Mcand 101 000 101 000 010 011
Rshift Product 101 000 010 100 001 001
2 Prod = Prod + Mcand 101 000 111 100 001 001
Rshift Mplier 101 000 011 110 000 100
3 Isb =0, no op 101 000 011 110 000 100
Rshift Mplier 101 000 001 111 000 010
4 Isb =0, no op 101 000 001 111 000 010
Rshift Mplier 101 000 000 111 100 001
5 Prod = Prod + Mcand 101 000 101 111 100 001
Rshift Mplier 101 000 010 111 110 000
6 Isb =0, no op 101 000 010 111 110 000
Rshift Mplier 101 000 001 011 111 000

$74 Chapter 3 Solutions

b. 66 x 04
e e s e
Initial Vals 110 110 000 000 000 100
Isb =0, no op 110 110 000 000 000 100
Rshift Mplier 110 110 000 000 000 010
2 Isb =0, no op 110 110 000 000 000 010
Rshift Mplier 110 110 000 000 000 001
3 Prod = Prod + Mcand 110 110 110 110 000 001
Rshift Product 110 110 011 011 000 000
4 Isb = 0, no op 110 110 011 011 000 000
Rshift Mplier 110 110 001 101 100 000
5 Isb = 0, no op 110 110 001 101 100 000
Rshift Mplier 110 110 000 110 110 000
6 Isb = 0, no op 110 110 000 110 110 000
Rshift Mplier 110 110 000 011 011 000

3.4.3 No solution provided
3.44
a. 54 x67=424

Initial Values 110 111 000 000 101 100 000 000 000 000
Multiplier.sign XOR
Multiplicand.sign 0
(1 XOR 1)
Make positive 010 111 000 000 001 100 000 000 000 000 0
1 Prod = Prod + Mcand 010 111 000 000 001 100 000 000 001 100 0
Lshift Mcand 010 111 000 000 011 000 000 000 001 100 0
Rshift Mplier 001 011 000 000 011 000 000 000 001 100 0
2 Prod = Prod + Mcand 001 011 000 000 011 000 000 000 100 100 0
Lshift Mcand 001 011 000 000 110 000 000 000 100 100 0
Rshift Mplier 000 101 000 000 110 000 000 000 100 100 0
3 Prod = Prod + Mcand 000 101 000 000 110 000 000 001 010 100 0
Lshift Mcand 000 101 000 001 100 000 000 001 010 100 0
Rshift Mplier 000 010 000 001 100 000 000 001 010 100 0

Chapter 3 Solutions

S$75

Isb =0, no op 000 010 000 001 100 000 000 001 010 100 0
Lshift Mcand 000 010 000 011 000 000 000 001 010 100 0
Rshift Mplier 000 001 000 011 000 000 000 001 010 100 0
Prod = Prod + Mcand 000 001 000 011 000 000 000 100 010 100 0
Lshift Mcand 000 001 000 110 000 000 000 100 010 100 0
Rshift Mplier 000 000 000 110 000 000 000 100 010 100 0
Isb =0, no op 000 000 000 110 000 000 000 100 010 100 0
Lshift Mcand 000 000 001 100 000 000 000 100 010 100 0
Rshift Mplier 000 000 001 100 000 000 000 100 010 100 0
Prod msb = sign 000 000 001 100 000 000 000 100 010 100 0

b. 30 x 7 =250

Initial Values 000 111 000 000 011 000 000 000 000 000
Multiplier.sign XOR

Multiplicand.sign 0
(0 XOR 0)

Make positive 000 111 000 000 011 000 000 000 000 000 0
Prod = Prod + Mcand 000 111 000 000 011 000 000 000 011 000 0
Lshift Mcand 000 111 000 000 110 000 000 000 011 000 0
Rshift Mplier 000 011 000 000 110 000 000 000 011 000 0
Prod = Prod + Mcand 000 011 000 000 110 000 000 001 001 000 0
Lshift Mcand 000 011 000 001 100 000 000 001 001 000 0
Rshift Mplier 000 001 000 001 100 000 000 001 001 000 0
Prod = Prod + Mcand 000 001 000 001 100 000 000 010 101 000 0
Lshift Mcand 000 001 000 011 000 000 000 010 101 000 0
Rshift Mplier 000 000 000 011 000 000 000 010 101 000 0
Isb =0, noop 000 000 000 011 000 000 000 010 101 000 0
Lshift Mcand 000 000 000 110 000 000 000 010 101 000 0
Rshift Mplier 000 000 000 110 000 000 000 010 101 000 0
Isb =0, no op 000 000 000 110 000 000 000 010 101 000 0
Lshift Mcand 000 000 001 100 000 000 000 010 101 000 0
Rshift Mplier 000 000 001 100 000 000 000 010 101 000 0

§76

Chapter 3 Solutions

I T 0 B I

Isb =0, no op 000 000 001 100 000 000 000 010 101 000

Lshift Mcand 000 000 011 000 000 000 000 010 101 000 0

Rshift Mplier 000 000 011 000 000 000 000 010 101 000 0
7 Prod msb = sign 000 000 011 000 000 000 000 010 101 000 0

3.4.5
a.54 X 67 =(—24x—11 =264)

m m Multiplicand Product/Multiplier

Initial Vals 101 100 0000 000 110 111
Prod = Prod + Mcand 101 100 1101 100 110 111
ARshift Mplier 101 100 1110 110 011 011
2 Prod = Prod + Mcand 101 100 1100 010 011 011
Rshift Product 101 100 1110 001 001 101
3 Prod = Prod + Mcand 101 100 1011 101 001 101
Rshift Mplier 101 100 1101 110 100 110
4 Isb =0, no op 101 100 1101 110 100 110
Rshift Mplier 101 100 1110111 010 011
5 Prod = Prod + Mcand 101 100 1100 011 010 011
Rshift Mplier 101 100 1110 001 101 001
6 Prod = Prod — Mcand 101 100 0000 101 101 001
Rshift Mplier 101 100 0000 010 110 100
b. 30 x 7 =250
I N N T
Initial Vals 011 000 0 000 000 000 111
Prod = Prod + Mcand 011 000 0011 000 000 111
Rshift Mplier 011 000 0001 100 000 011
2 Prod = Prod + Mcand 011 000 0100 100 000 011
Rshift Product 011 000 0010 010 000 001
3 Prod = Prod + Mcand 011 000 0101 010 000 001
Rshift Mplier 011 000 0010 101 000 000
4 Isb =0, no op 011 000 0010 101 000 000
Rshift Mplier 011 000 0001 010 100 000

Chapter 3 Solutions

§77

m m Multiplicand Product/Multiplier

Isb =0, no op 011 000 0 001 010 100 000
Rshift Mplier 011 000 0000 101 010 000
6 Isb =0, no op 011 000 0000 101 010 000
Rshift Mplier 011 000 0 000 010 101 000

3.4.6 No solution provided

Solution 3.5

3.5.1 For hardware, it takes 1 cycle to do the add, 1 cycle to do the shift, and
1 cycle to decide if we are done. So the loop takes (3 x A) cycles, with each cycle
being B time units long.

For a software implementation, it takes 1 cycle to do the add, 1 cycle to do each
shift, and 1 cycle to decide if we are done. So the loop takes (4 X A) cycles, with each
cycle being B time units long.

a. | (3 x 4)x 3tu = 36 time units for hardware
(4 x 4) x 3tu = 48 time units for software

b. | (3 X 32) x 7tu = 672 time units for hardware
(4 x 32) x 7tu = 896 time units for software

3.5.2 It takes B time units to get through an adder, and there will be A — 1
adders.

a. | Word is 4 bits wide, requiring 3 adders. 3 x 3tu = 9 time units.

b. | Word is 32 bits wide, requiring 31 adders. 31 X 7tu = 217 time units.

3.5.3 It takes B time units to get through an adder, and the adders are arranged in
a tree structure. It will require log2(A) levels.

a. | 4 bits wide word requires 3 adders in 2 levels. 2 x 3tu = 6 time units.

b. | 32 bits word requires 31 adders in 5 levels. 5 X 7tu = 35 time units.

Solution 3.6
3.6.1

a. | 0x24 x 0xC9 = 0x1C44. 0x24 = 36, and 36 = 32 + 4, so we can shift OxC9 left 5 places, then
add to that value (0x1920) 0xC9 shifted left 2 places (0x324) = 0x1C44. Total 2 shifts, 1 add.

b. | Ox41 x Ox18 = 0x618 0x41 = 64 + 1, 0x18 = 16 + 2. Best way would be to shift 0x18 left 6
places, and then add 0x18. 1 shift, 1 add.

$78

Chapter 3 Solutions

3.6.2

0x24 x 0xC9 = 0x24 x —0x49 = —-0xA44 = 8A44 0x24 = 36, and 36 = 32 + 4, so we can shift
0x49 left 5 places (0x920), then add to that value 0x49 shifted left 2 places (0x124) = OxA44.
We need to keep track of the sign ... one of the two is negative, so the result will be negative.
Total 2 shifts, 1 add.

0x41 x 0x18 = 0x618 0x41 = 64 + 1, 0x18 = 16 + 2. Best way would be to shift Ox18 left 6

places, and then add 0x18. 1 shift, 1 add.

3.6.3 No solution provided

3.6.4 Quoting the wikipedia entry directly:

Booth’s algorithm involves repeatedly adding one of two predetermined values A
and S to a product P, then performing a rightward arithmetic shift on P. Let x and
y be the multiplicand and multiplier, respectively; and let x and y represent the
number of bits in x and y.

1.

Determine the values of A and S, and the initial value of P. All of these
numbers should have a length equal to (x +y +1).

a. A: Fill the most significant (leftmost) bits with the value of x. Fill the
remaining (y + 1) bits with zeros.

b. S:Fill the most significant bits with the value of (—x) in two’s complement
notation. Fill the remaining (y + 1) bits with zeros.

c. P:Fill the most significant x bits with zeros. To the right of this, append
the value of y. Fill the least significant (rightmost) bit with a zero.

Determine the two least significant (rightmost) bits of P.

a. Iftheyare01, find the value of P + A. Ignore any overflow.

b. Iftheyare 10, find the value of P + S. Ignore any overflow.

c. Iftheyare 00 or 11, do nothing. Use P directly in the next step.

Arithmetically shift the value obtained in the previous step by a single place
to the right. Let P now equal this new value.

Repeat steps 2 and 3 until they have been done y times.

Drop the least significant (rightmost) bit from P. This is the product of
xandy.

Chapter 3 Solutions

$79

3.6.5
a. 0x42 x 0x36 = 0xODEC

“ Multiplicand Product/Multiplier

Initial Vals 0100 0010 0000 0000 0011 01100
00, nop shift 0100 0010 0000 0000 0011 01100
0100 0010 0000 0000 0001 1011 0
10, subtract shift 0100 0010 1011 1110 0001 1011 0
0100 0010 1101 1111 0000 1101 1
11, nop shift 0100 0010 1101 1111 0000 1101 1
0100 0010 1110 1111 1000 0110 1
01, add shift 0100 0010 0011 0001 1000 0110 1
0100 0010 0001 1000 1100 0011 0
10, subtract shift 0100 0010 1101 0110 1100 0011 O
0100 0010 1110 1011 0110 0001 1
11, nop shift 0100 0010 1110 1011 0110 0001 1
0100 0010 1111 0101 1011 0000 1
01, add shift 0100 0010 0011 0111 1011 0000 1
0100 0010 0001 1011 1101 1000 0
00, nop shift 0100 0010 0001 1011 1101 1000 0
0100 0010 0000 1101 1110 11000

b. 0x9F x 0x8E =—-0x61 x —-0x72 = 2B32

“ Multiplicand Product/Multiplier

Initial Vals 1001 1111 0000 0000 1000 11100
00, nop shift 1001 1111 0000 0000 1000 11100
1001 1111 0000 0000 0100 0111 0
10, subtract shift 1001 1111 0110 0001 0100 0111 0
1001 1111 0011 0000 1010 0011 1
11, nop shift 1001 1111 0011 0000 1010 0011 1
1001 1111 0001 1000 0101 0001 1
11, nop shift 1001 1111 0001 1000 0101 0001 1
1001 1111 0000 1100 0010 1000 1
01, add shift 1001 1111 1010 1011 0010 1000 1
1001 1111 1101 0101 1001 0100 O
00, nop shift 1001 1111 1101 0101 1001 0100 O
1001 1111 1110 1010 1100 10100

S80

Chapter 3 Solutions

“ Multiplicand Product/Multiplier

00, nop shift 1001 1111 1110 1010 1100 10100
1001 1111 1111 0101 0110 0101 O
10, subtract shift 1001 1111 0101 0110 0110 0101 0
1001 1111 0010 1011 0011 0010 1

3.6.6 No solution provided

Solution 3.7

3.7.1

a. 50/23 = 2 remainder 2

I N T T

Initial Vals 000 000 010 011 000 000 000 000 101 000
Rem = Rem — Div 000 000 010 011 000 000 101 101 101 000
Rem < 0, R + D, Q<< 000 000 010 011 000 000 000 000 101 000
Rshift Div 000 000 001 001 100 000 000 000 101 000
2 Rem = Rem - Div 000 000 001 001 100 000 110 111 001 000
Rem < 0, R + D, Q<< 000 000 001 001 100 000 000 000 101 000
Rshift Div 000 000 000 100 110 000 000 000 101 000
3 Rem = Rem - Div 000 000 000 100 110 000 111 011 111 000
Rem < 0, R + D, Q<< 000 000 000 100 110 000 000 000 101 000
Rshift Div 000 000 000 010 011 000 000 000 101 000
4 Rem = Rem - Div 000 000 000 010 011 000 111 110 010 000
Rem < 0, R + D, Q<< 000 000 000 010 011 000 000 000 101 000
Rshift Div 000 000 000 001 001 100 000 000 101 000
5 Rem = Rem — Div 000 000 000 001 001 100 111 110 111 100
Rem < 0,R + D, Q<< 000 000 000 001 001 100 000 000 101 000
Rshift Div 000 000 000 000 100 110 000 000 101 000
6 Rem = Rem - Div 000 000 000 000 100 110 000 000 000 010
Rem>0,Q<<1 000 001 000 000 100 110 000 000 000 010
Rshift Div 000 001 000 000 010 011 000 000 000 010
7 Rem = Rem - Div 000 000 000 000 010 011 111111101111
Rem < 0, R + D, Q<< 000 010 000 000 010 011 000 000 000 010
Rshift Div 000 010 000 000 001 101 000 000 000 010

Chapter 3 Solutions

S81

b. 25/44 = 0 remainder 25

Initial Vals 000 000 100 100 000 000 000 000 010 101
Rem = Rem - Div 000 000 100 100 000 000 100 011 101 011
Rem <0, R + D, Q<< 000 000 100 100 000 000 000 000 010 101
Rshift Div 000 000 010 010 000 000 000 000 010 101
Rem = Rem — Div 000 000 010 010 000 000 101 110 010 101
Rem < 0, R+ D, Q<< 000 000 010 010 000 000 000 000 010 101
Rshift Div 000 000 001 001 000 000 000 000 010 101
Rem = Rem — Div 000 000 001 001 000 000 110 111 010 101
Rem < 0,R + D, Q<< 000 000 001 001 000 000 000 000 010 101
Rshift Div 000 000 000 100 100 000 000 000 010 101
Rem = Rem — Div 000 000 000 100 100 000 111 011 110 101
Rem <0, R+ D, Q<< 000 000 000 100 100 000 000 000 010 101
Rshift Div 000 000 000 010 010 000 000 000 010 101
Rem = Rem - Div 000 000 000 010 010 000 111 110 000 101
Rem < 0, R+ D, Q<< 000 000 000 010 010 000 000 000 010 101
Rshift Div 000 000 000 001 001 000 000 000 010 101
Rem = Rem — Div 000 000 000 001 001 000 111 111 001 101
Rem > 0, R + D, Q<< 000 000 000 001 001 000 000 000 010 101
Rshift Div 000 000 000 000 100 100 000 000 010 101
Rem = Rem — Div 000 000 000 000 100 100 111 111 110 001
Rem < 0,R+ D, Q<< 000 000 000 000 100 100 000 000 010 101
Rshift Div 000 000 000 000 010 010 000 000 010 101

3.7.2 In these solutions a 1 or a 0 was added to the Quotient if the remainder
was greater than or equal to 0. However, an equally valid solution is to shift ina 1
or 0, but if you do this you must do a compensating right shift of the remainder
(only the remainder, not the entire remainder/quotient combination) after the
last step.

a. 50/23 = 2 remainder 2

T e e et

Initial Vals 010 011 000 000 101 000
R<< 010 011 000 001 010 000
Rem = Rem — Div 010 011 111 110 010 000

Rem<O,R+D 010 011 000 001 010 000

$82 Chapter 3 Solutions

I T T 7 S,

010 011 000 010 100 000

Rem = Rem - Div 010 011 101 111 100 000
Rem<0O,R+D 010 011 000 010 100 000

3 R<< 010 011 000 101 000 000
Rem = Rem - Div 010 011 110 010 000 000
Rem<0O,R+D 010 011 000 101 000 000

4 R<< 010 011 001 010 000 000
Rem = Rem - Div 010 011 111 001 000 000
Rem<0O,R+D 010 011 001 010 000 000

5 R<< 010 011 010 100 000 000
Rem = Rem - Div 010 011 000 001 000 000

Rem >0,RO=1 010 011 000 001 000 001

6 R<< 010 011 000 010 000 010
Rem = Rem - Div 010 011 101 111 000 010
Rem<O,R+D 010 011 000 010 000 010

b. 25/44 = 0 remainder 25

I N I

Initial Vals 100 100 000 000 010 101
R<< 100 100 000 000 101 010
Rem = Rem — Div 100 100 100 100 101 010
Rem <0,R+D 100 100 000 000 101 010
2 R<< 100 100 000 001 010 100
Rem = Rem - Div 100 100 100 011 010 100
Rem<0O,R+D 100 100 000 001 010 100
3 R<< 100 100 000 010 101 000
Rem = Rem — Div 100 100 100 010 101 000
Rem<O,R+D 100 100 000 010 101 000
4 R<< 100 100 000 101 010 000
Rem = Rem — Div 100 100 100 001 010 000
Rem <0,R+D 100 100 000 101 010 000

Chapter 3 Solutions

$83

I T o BT

100 100 001 010 100 000

Rem = Rem - Div 100 100 100 110 100 000

Rem <0,R + D 100 100 001 010 100 000

6 R<< 100 100 010 101 000 000
Rem = Rem — Div 100 100 110 001 000 000

Rem >0,RO0=1 100 100 010 101 000 000

3.7.3 No solution provided

3.7.4

a. 55/24 =0 remainder 15: Dividend negative

Sign of Quotient = (Sign bit of Divisor) XOR (Sign bit of Dividend) = negative

Sign of Remainder = Sign of Dividend = negative

I T T

Initial Vals 000 000 010 100 000 000 000 000 001 101
1 Rem = Rem — Div 000 000 010 100 000 000 101 100 001 101
Rem < 0, R + D, Q<< 000 000 010 100 000 000 000 000 001 101
Rshift Div 000 000 001 010 000 000 000 000 001 101
2 Rem = Rem — Div 000 000 001 010 000 000 110 110 001 101
Rem < 0,R + D, Q<< 000 000 001 010 000 000 000 000 001 101
Rshift Div 000 000 000 101 000 000 000 000 001 101
3 Rem = Rem — Div 000 000 000 101 000 000 111 011 001 101
Rem < 0,R + D, Q<< 000 000 000 101 000 000 000 000 001 101
Rshift Div 000 000 000 010 100 000 000 000 001 101
4 Rem = Rem — Div 000 000 000 010 100 000 111 101 101 101
Rem < 0,R + D, Q<< 000 000 000 010 100 000 000 000 001 101
Rshift Div 000 000 000 001 010 000 000 000 001 101
5 Rem = Rem — Div 000 000 000 001 010 000 111 110 111 101
Rem < 0,R + D, Q<< 000 000 000 001 010 000 000 000 001 101
Rshift Div 000 000 000 000 101 000 000 000 001 101
6 Rem = Rem — Div 000 000 000 000 101 000 111 111 100 101
Rem < 0,R + D, Q<< 000 000 000 000 101 000 000 000 001 101
Rshift Div 000 000 000 000 010 100 000 000 001 101

S84

Chapter 3 Solutions

Rem = Rem — Div 000 000 000 000 010 100 111111 111 001
Rem <0O,R + D, Q<< 000 000 000 000 010 100 000 000 001 101
Rshift Div 000 000 000 000 001 010 000 000 001 101
8 Set sign bits 100 000 000 000 001 010 100 000 001 101

b. 36/51 = 3 remainder 3: Dividend positive

Sign of Quotient = (Sign bit of Divisor) XOR (Sign bit of Dividend) = negative
Sign of Remainder = Sign of Dividend = positive

Initial Vals 000 000 001 001 000 000 000 000 011 110
Rem = Rem - Div 000 000 001 001 000 000 110 111 011 110
Rem <0, R+ D, Q<< 000 000 001 001 000 000 000 000 011 110
Rshift Div 000 000 000 100 100 000 000 000 011 110
2 Rem = Rem — Div 000 000 000 100 100 000 111 110111 110
Rem <0, R+ D, Q<< 000 000 000 100 100 000 000 000 011 110
Rshift Div 000 000 000 010 010 000 000 000 011 110
3 Rem = Rem — Div 000 000 000 010 010 000 111 110 001 110
Rem <0, R+ D, Q<< 000 000 000 010 010 000 000 000 011 110
Rshift Div 000 000 000 001 001 000 000 000 011 110
4 Rem = Rem — Div 000 000 000 001 001 000 111 111 010 110
Rem <0, R+ D, Q<< 000 000 000 001 001 000 000 000 011 110
Rshift Div 000 000 000 000 100 100 000 000 011 110
5 Rem = Rem - Div 000 000 000 000 100 100 111111 111 010
Rem < 0, R+ D, Q<< 000 000 000 000 100 100 000 000 011 110
Rshift Div 000 000 000 000 010 010 000 000 011 110
6 Rem = Rem — Div 000 000 000 000 010 010 000 000 001 100
Rem >0,Q<<1 000 001 000 000 010 010 000 000 001 100
Rshift Div 000 001 000 000 001 001 000 000 001 100
7 Rem = Rem — Div 000 010 000 000 001 001 000 000 000 011
Rem>0,Q<<1 000 011 000 000 001 001 000 000 000 011
Rshift Div 000 011 000 000 000 100 000 000 000 011
8 Set sign bits 100 011 000 000 000 100 000 000 000 011

Chapter 3 Solutions

$85

3.7.5
a. 55/24 =0 remainder 15: Dividend negative

Sign of Quotient = (Sign bit of Divisor) XOR (Sign bit of Dividend) = negative
Sign of Remainder = Sign of Dividend = negative

I N T

Initial Vals 010 100 000 000 001 101
R<< 010 100 000 000 011 010
Rem = Rem — Div 010 100 101 100 011 010
Rem <0,R+D 010 100 000 000 011 010
2 R<< 010 100 000 000 110 100
Rem = Rem - Div 010 100 101 100 110 100
Rem<0,R+D 010 100 000 000 110 100
3 R<< 010 100 000 001 101 000
Rem = Rem — Div 010 100 101 101 110 100
Rem < 0O,R+D 010 100 000 001 101 000
4 R<< 010 100 000 011 010 000
Rem = Rem - Div 010 100 101 111 010 000
Rem <0,R+D 010 100 000 011 010 000
5 R<< 010 100 000 110 100 000
Rem = Rem - Div 010 100 110 010 100 000
Rem <0,R+D 010 100 000 110 100 000
6 R<< 010 100 001 101 000 000
Rem = Rem - Div 010 100 111 001 000 000
Rem >0,R0O =1 010 100 001 101 000 000
7 Adjust signs 010 100 101 101 100 000
(Q =-0, Rem =-15)

b. 36/51 = 3 remainder 3: Dividend positive

Sign of Quotient = (Sign bit of Divisor) XOR (Sign bit of Dividend) = negative
Sign of Remainder = Sign of Dividend = positive

I S S

Initial Vals 001 001 000 000 011 110
R<< 001 001 000 000 111 100
Rem = Rem - Div 001 001 110 111 111 100

Rem<O,R+D 001 001 000 000 111 100

$86 Chapter 3 Solutions

e e

001 001 000 001 111 000

Rem = Rem - Div 001 001 111 000 111 000

Rem <0,R+D 001 001 000 001 111 000

3 R<< 001 001 000 011 110 000
Rem = Rem - Div 001 001 111 010 110 000

Rem <0O,R+D 001 001 000 011 110 000

4 R<< 001 001 000 111 100 000
Rem = Rem - Div 001 001 111 110 100 000

Rem <0O,R+D 001 001 000 111 100 000

5 R<< 001 001 001 111 000 000
Rem = Rem - Div 001 001 000 110 000 000
Rem>0,RO=1 001 001 000 110 000 001

6 R<< 001 001 001 100 000 010
Rem = Rem - Div 001 001 000 011 000 010
Rem>0,R0=1 001 001 000 011 000 011

7 Adjust signs 001 001 000 011 100 011
(Q=-3,Rem =3)

3.7.6 No solution provided

Solution 3.8

3.8.1 In these solutions a 1 will be shifted into the quotient and a compensating
right shift of the remainder will be performed. This is the alternate approach men-
tioned in Solution 3.7.2.

a. 75/12 = 6 remainder 1

I N I T

Initial Vals 001 010 000 000 111 101
R<< 001 010 000 001 111 010
Rem = Rem - Div 001 010 110 111 111 010
1 Rem < 0, Q << 0, Addnext 001 010 101 111 110 100
Rem = Rem + Div 001 010 111 001 110 100
2 Rem < 0, Q << 0, Addnext 001 010 110 011 101 000
Rem = Rem + Div 001 010 111 101 101 000

Chapter 3 Solutions S87

mmm

Rem < 0, Q << 0, Addnext 001 010 111 011 010 000

Rem = Rem + Div 001 010 000 101 010 000

4 Rem > 0, Q << 1, Subnext 001 010 001 010 100 001
Rem = Rem — Div 001 010 000 000 100 001

5 Rem > 0, Q << 1, Subnext 001 010 000 001 000 011
Rem = Rem - Div 001 010 110 111 000 011

6 Rem < 0, Q << 0, Addnext 001 010 101 110 000 110
Rem = Rem + Div 001 010 111 000 000 110

7 Rem < O, Rem = Rem + Div 001 010 000 010 000 110
Shift Rem >> 1 001 010 000 001 000 110
(Q=6,Rem=1)

b. 52/41 = 1, remainder 11

mmm

Initial Vals 100 001 000 000 101 010

R<< 100 001 000 001 010 100

Rem = Rem — Div 100 001 100 000 010 100

1 Rem < 0, Q << 0, Addnext 100 001 000 000 101 000
Rem = Rem + Div 100 001 100 001 101 000

2 Rem < 0, Q << 0, Addnext 100 001 000 011 010 000
Rem = Rem + Div 100 001 100 100 010 000

3 Rem < 0, Q << 0, Addnext 100 001 001 000 100 000
Rem = Rem + Div 100 001 101 001 100 000

4 Rem < 0, Q << 0, Addnext 100 001 010 011 000 000
Rem = Rem + Div 100 001 110 100 000 000

5 Rem < 0, Q << 0, Addnext 100 001 101 000 000 000
Rem = Rem + Div 100 001 001 001 000 000

6 Rem > 0, Q << 1, Subnext 100 001 010 010 000 001
Rem = Rem — Div 100 001 110 001 000 001

7 Rem < O, Rem = Rem + Div 100 001 010 010 000 001
Shift Rem >> 1 100 001 001 001 000 001
(Q=1,Rem = 11)

3.8.2 No solution provided
3.8.3 No solution provided

$88

Chapter 3 Solutions

3.84

a.17/14 =1 remainder 3

I N T A

Initial Vals 000000 | 000000 000000 | 001100 000000 | 000000 001111
1 Temp = Rem — Div 000000 | 110100 000111 | 001100 000000 | 000000 001111
Temp<0,Q<<0 000000 | 110100 000111 | 001100 000000 | 000000 001111
Rshift Div 000000 | 110100 000111 | 000110 000000 | 0OO0000 001111
2 Temp = Rem — Div 000000 | 111010 001111 | 000110 000000 | 000000 001111
Temp<0,Q<<0 000000 | 111010 001111 | 000110 000000 | 000000 001111
Rshift Div 000000 | 111010 001111 | 000011 000000 | 000000 001111
3 Temp = Rem — Div 000000 | 111101 001111 | 000011 000000 | 000000 001111
Temp<0,Q<<0 000000 | 111101 001111 | 000011 000000 | 000000 001111
Rshift Div 000000 | 111101 001111 | 000001 100000 | 000000 001111
4 Temp = Rem — Div 000000 | 111110101111 | 000001 100000 | 000000 001111
Temp<0,Q<<0 000000 | 111110101111 | 000001 100000 | 000000 001111
Rshift Div 000000 | 111110101111 | 000000 110000 | 000000 001111
5 Temp = Rem — Div 000000 | 111111 010111 | 000000 110000 | 000000 001111
Temp<0,Q<<0 000000 | 111111010111 | 000000 110000 | 000000 001111
Rshift Div 000000 | 111111010111 | 000000 011000 | 000000 001111
6 Temp = Rem — Div 000000 | 111111110111 | 000000 011000 | 000000 001111
Temp < 0, Q<< 000000 | 111111110111 | 000000 011000 | 000000 001111
Rshift Div 000000 | 111111110111 | 000000 001100 | 000000 001111
7 Temp = Rem — Div 000000 | 000000 000011 | OO0000 001100 | 000000 001111
T>0,Q<<1,R=T | 000001 | 000000 000011 | 000000 001100 | OOOO00O 000011
Rshift Div 000001 | 000000 000011 | OO0000 000110 | 000000 000011

b. 70/23 = 2 remainder 22

I S) S T

Initial Vals

000000

000000 000000

010011 000000

000000 111000

Temp = Rem — Div

000000

101101 111000

010011 000000

000000 111000

Temp <0,Q<<0

000000

101101 111000

010011 000000

000000 111000

Rshift Div

000000

101101 111000

001001 100000

000000 111000

Temp = Rem — Div

000000

110111 011000

001001 100000

000000 111000

Temp <0,Q<<0

000000

110111 011000

001001 100000

000000 111000

Rshift Div

000000

110111 011000

000100 110000

000000 111000

Chapter 3 Solutions

S$89

I3) T

Temp = Rem - Div

000000

111100 001000

000100 110000

000000 111000

Temp<0,Q<<0

000000

111100 001000

000100 110000

000000 111000

Rshift Div

000000

111100 001000

000010 011000

000000 111000

Temp = Rem — Div

000000

111110 001000

000010 011000

000000 111000

Temp<0,Q<<0

000000

111110 001000

000010 011000

000000 111000

Rshift Div

000000

111110 001000

000001 001100

000000 111000

Temp = Rem — Div

000000

111110 110100

000001 001100

000000 111000

Temp<0,Q<<0

000000

111110 110100

000001 001100

000000 111000

Rshift Div

000000

111110 110100

000000 100110

000000 111000

Temp = Rem — Div

000000

000000 010010

000000 100110

000000 111000

T>0,Q<<1,R=T

000001

000000 010010

000000 100110

000000 010010

Rshift Div

000001

000000 010010

000000 010011

000000 010010

Temp = Rem — Div

000001

111111 111111

000000 010011

000000 010010

Temp<0,Q<<0

000010

111111 111111

000000 010011

000000 010010

Rshift Div

000010

111111 111111

000000 001001

000000 010010

3.8.5 No solution provided

3.8.6 No solution provided

Solution 3.9
3.9.1 No solution provided

3.9.2 No solution provided

3.9.3 No solution provided

Solution 3.10

3.10.1
a. | 614858756 614858756
b. | -1346437120 2948530176
3.10.2

addiu $6,9$5,4

sw $31, 0($29)

$90 Chapter 3 Solutions

3.10.3

a. | sign is positive

exp = 0x49 = -0xb7 =73 - 128 = 55

there is a hidden 1

mantissa = Ox580008 =5 x 161 + 8 x 162 + 8 x 167° = (.25) + (.0625) + (.03125) +
(.0000002384185791)

answer = +1.343750476837158203125 x 2755

b. | sign is negative

exp = OxbF = 95 - 128 = -33

there is a hidden 1

mantissa = Ox7D0000 = 7 x 16~ + 13 x 162 = .4375 + .05078125
answer = —1.48828125 x 2733

3.104

a. | 1609.5 x 10° =110 0100 1001.10 x 2°

normalize, move binary point 10 to the left

110 0100 1001.10 x 2° = 1.10010010011 x 210

sign = negative, exp = 128 + 10 = 138

Final bit pattern: 11000101010010010011000000000000

b. | 938.8125 x 10° = 1110101010.1101 x 2°

normalize, move binary point 9 to the left
1.1101010101101 x 2°

sign = negative, exp = 128 + 9 = 137

Final bit pattern: 11000100111010101011010000000000

3.10.5

a. | 1609.5 x 10°= 110 0100 1001.10 x 2°

normalize, move binary point 10 to the left

110 0100 1001.10 x 2° = 1.10010010011 x 21°

sign = negative, exp = 1024 + 10 = 1034

Final bit pattern: 11000000101010010010011000000000000000000000000000000000
00000000

b. | 938.8125 x 10°=1110101010.1101 x 2°

normalize, move binary point 9 to the left

1.1101010101101 x 2°

sign = negative, exp = 1024 + 9 = 1033

Final bit pattern: 11000000100111010101011010000000000000000000000000000000
00000000

Chapter 3 Solutions

S91

3.10.6

a. | 1609.5 x 10° = 011001001001.10 x 2° = 649.8 x 16°
move hex point 3 hex digits to the left

0110 0100 1001.10 x 2° = .0110010010011 x 16°

sign = negative, exp =64 + 3 =67

Final bit pattern: 11000011011001001001100000000000

b. | —938.8125 x 10° = 1110101010.1101 x 2° = 3AA.B x 16°
normalize, move hex point 3 to the left

00011 1010 1010 1101 x 163

sign = negative, exp =64 + 3 =67

Final bit pattern: 11000011001110101010110100000000

Solution 3.11
3.11.1

a. | 5.00736125 x 10° = 500736.125 x 10° = 0x7A400.2 x 16° =
1111010010000000000.0010 x 2°

move the binary point 19 to the left = .1111010010000000000001 x 210011
exponent = +19, mantissa = +.111101001000000000000100000

answer: 000000010011011110100100000000000010

b. | —2.691650390625 x 1072 = —.02691650390625 x 10° = —-.,00000110111001 x 2°
move the binary point 5 to the right = -.110111001 x 25

exponent = -5, mantissa =-.110111001

answer: 111111111011100100011100000000000000

3.11.2

a. | 5.00736125 x 10° = 500736.125 x 10° = 0x7A400.2 x 16° =
1111010010000000000.0010 x 2°

move the binary point 18 to the left = 1.1110100100000000000010 x 210010
exponent = +18, mantissa = +1110100100000000000010

answer: Cannot represent +18, use biggest possible (11111)

answer: 0111111110100100

b. | —2.691650390625 x 1072 = —,02691650390625 x 10° = -.00000110111001 x 2°
move the binary point 6 to the right = -1.10111001 x 276

exponent = -6 = -6 + 16 = 10, mantissa = -.10111001

answer: 1010101011100100

3.11.3

a. | 5.00736125 x 10% = 500736.125 x 10° = 0x7A400.2 x 16° =
1111010010000000000.0010 x 2°

move the binary point 19 to the left = .11110100100000000000010 x 210011
exponent = +19, mantissa = +.11110100100000000000010

answer: 0111101001000000000000100010110

$92

Chapter 3 Solutions

b. | —2.691650390625 x 102 = —.02691650390625 x 10° = —.00000110111001 x 2°
move the binary point 5 to the right = -.110111001 % 25

exponent = -5, mantissa = -.110111001

answer: 10010001110000000000000000001011

3.114

a. | -1.278 x 10% + -3.90625 x 107*

-1.278 x 103=-1278 =-10011111110 = -1.0011111110 x 21°
-3.90625 x 1071 = —.390625 = -1.1001000000 x 272

Shift binary point 12 to the left to align exponents,
-1.1001000000 x 272 —> —0.0000000000011 x 212

GR

-1.0011111110 00
-0.0000000000 01 1 (Guard = 0, Round = 1, Sticky = 1)

-1.0011111101 11 Guard = 1, Round = 1, Round up.
-1.0011111110 x 210 = -1.278 x 103

b. | 2.3109375 x 10* + 6.391601562 x 107*
2.3109375 x 101 = 23.109375 = 1.0111000111 x 24
6.391601562 x 10 = .6391601562 = 1.0100011101 x 2°*
Shift binary point 5 to the left and align exponents,
GR
1.0111000111 00
0.0000101000 11 101 (Guard = 1, Round = 1, Sticky = 1)

1.0111101111 11
In this case Guard and Round are both 1, so we round up.
1.0111110000 x 2% = 10111.110000 x 2° = 23.75 = 2.375 x 10*

3.11.5 No solution provided
3.11.6 No solution provided

Chapter 3 Solutions

$93

Solution 3.12
3.12.1

5.66015625 x 8.59375

5.66015625 = 1.0110101001 x 22
8.59375 = 1.0001001100 x 23

Exp: 2 +3=5,5+ 16 =21 (10101)
Signs: both positive, result positive

Mantissa:
1.0110101001
X 1.0001001100
00000000000
00000000000
10110101001
10110101001
00000000000
00000000000
10110101001
00000000000
00000000000
00000000000
10110101001
1.10000101001000101100

1.1000010100 10 00101100 Guard = 1, Round = 0, Sticky = 1: Round up
1.1000010101 x 2% = 011010100010101 (110000.10101 = 48.65625)
5.66015625 x 8.59375 = 48.6419677734375

Some information was lost because the result did not fit into the available 10-bit field. Answer

off by .0142822265625

$94

Chapter 3 Solutions

6.18 x 10 x 5.796875 x 10*
6.18 x 10% = 618 = 1.0011010100 x 2°

5.796875 x 10* = 57.96875 = 1.1100111111 x 2°

Exp: 9+ 5=14,16 + 14 = 30 (11110)
Signs: both positive, result positive

Mantissa:
1.0011010100
X 1.1100111111
10011010100
10011010100
10011010100
10011010100
10011010100
10011010100
00000000000
00000000000
10011010100
10011010100
10011010100

1000101111110000101100 Must Normalize, add one to exponent
1.0001011111 10 000101100 Guard = 1, Round = O, Sticky = 1: round
1.0001100000 x 215 = 0111110001100000(1000110000000000 = 35840)

618 x 57.96875 = 35824.6875

Some information was lost because the result did not fit into the available 10-bit field. Answer

off by 15.3125

3.12.2 No solution provided
3.12.3 No solution provided

Chapter 3 Solutions

$95

3.124

a. | 3.264 x 10%/6.525 x 102

3.264 x 10° = 3264 = 1.1001100000 x 21*
6.525 x 10% = 652.5 = 1.0100011001 x 2°
Exponent=11-9=2,2+ 16 = 18 (10010)
Signs: both positive, result positive
Mantissa:
1
10100011001. | 11001100000
-10100011001

101000111
101000111
-101000110

1.0100000000 10 0101 Guard = 1, Round =0
1.0100000001 x 22 = 0100100100000001 =
3264/652.5 = 5.002298850575

off by .001607399425

.0100000000100101
.0000000000000000

.0

.00

.01

.11000000000
.10100011001
.00011100111000
.00010100011001
.0000100001111100
.0000010100011001

.0000001101100011

, Sticky = 1: Round up

101.00000001 = 5.00390625

Some information was lost because the result did not fit into the available 10-bit field. Answer

$96

Chapter 3 Solutions

—2.27734375 x 10%/1.154375 x 102

-2.27734375 x 10° = —2.27734375 = -1.0010001110 x 2%
1.154375 x 10% = 115.4375 = 1.1100110111 x 2°
Exponent=1-5=-5,-5+ 16 = 11 (01011)
Signs: one negative, one positive, result negative
Mantissa:
0.1010000110011101
11100110111. | 10010001110.0000000000000000
- 1110011011.1
11110010.100
- 11100110.111
1011.10100000
- 111.00110111
100.011010010
- 11.100110111
.110011011001
-.011100110111
.0101101000010
-.0011100110111
.00100000010110
-.00011100110111
.0000101111110101
-.0000011100110111

0.1010000110011101 need to normalize, decrement exponent, fix sign
-1.0100001100 11 101 Guard = 1, Round = 1, Sticky = 1: Round up

-1.0100001101 x 278 = 1010100100001101 = .0000010100001101 =
-.0197296142578125

—-2.27724375/115.4375 = -.0197284499001598308997743

Some information was lost because the result did not fit into the available 10-bit field. Answer
off by .0000011643576527

3.12.5 No solution provided
3.12.6 No solution provided

Chapter 3 Solutions

$97

Solution 3.13
3.13.1

a. | (-1.6360 x 10* + 1.6360 x 10%) + 1.0 x 10°

-1.6360 x 10* =-1.1111111010 x 23 =-11111111010000.
1.6360 x 10% = 1.1111111010 x 2*% = 11111111010000.
1.0 x 10°= 1.0 = 1.0000000000 x 2° = 1.0000000000

(A) -1.1111111010
(B) +1.1111111010
(A+B) 0.0000000000
(C) +1.0000000000

(A+B)+C 1.0000000000 = 0100000000000000 =1

b. | (2.865625 x 10t + 4.140625 x 10°1) + 1.2140625 x 10*

-2.865625 x 101 = 1.1100101010 x 2*
4.140625 x 1071 = 1.1010100000 x 272
1.2140625 x 10 = 1.1000010010 x 23

shift binary point of smaller left 6 so exponents match

(A) 1.1100101010

(B) .0000011010 10 0000 Guard=1, Round=0, Sticky=0
(A+B) 1.1101000100 No round

(A+B) 1.1101000100

(C) + .1100001001 00 Guard=0, Round=0, Sticky=0

(A+B)+C 10.1001001101 Normalize, add 1 to exponent
(A+B)+C = 1.0100100110 x 2° = 0101010100100110 = 41.1875

3.13.2

a. | —-1.6360 x 10* + (1.6360 x 10* + 1.0 x 10°)

-1.6360 x 10* =-1.1111111010 x 23 =-11111111010000.
1.6360 x 10% = 1.1111111010 x 213 = 11111111010000.
1.0 x 10° = 1.0 = 1.0000000000 x 2° = 1.0000000000

(B) 1.1111111010

(C) + .0000000000 00 10000000000 Guard=0, Round=0, Sticky=1
(B+C) 1.1111111010 Do not round

(A) -1.1111111010

A+(B+C) 0.0000000000
A+(B+C) 0.0000000000 = 0000000000000000 = 0

$98

Chapter 3 Solutions

b. | 2.865625 x 10 + (4.140625 x 101 + 1.2140625 x 10%)
-2.865625 x 101 = 1.1100101010 x 24
4.140625 x 1071 = 1.1010100000 x 272
1.2140625 x 10* = 1.1000010010 x 23
shift binary point of smaller left 6 so exponents match
(C) 1.1000010010
(B) .0000110101 00 000 Guard=0, Round=0, Sticky=0
(C+B) 1.1001000111 No round
(A) 1.1100101010
(C+B) .1100100011 10 Guard=1, Round=0, Sticky=0
A+(B+C) 10.1001001101 10 Normalize, add 1 to exponent
1.0100100110 11 0 Guard=1l, Round=1, Sticky=0, Round up
A+(B+C) = 1.0100100111 x 2° = 0101010100100111 = 41.21875
3.13.3
a. | No, they are not equal: (A+B)+C=1,A+ (B + C) =0 (steps shown above).
Exact: -16360 + 16360 + 1 =1
b. | No, they are not equal: (A + B) + C = 41.1875, A + (B + C) = 41.21875 (steps shown above).
Exact answer is 41.2109375

Chapter 3

Solutions

$99

3.13.4

4.8828125 x 107 x 1.768 x 10°%) x 2.50125 x 102

(
(A) 4.8828125 x 10~ = 1.0000000000 x 2711
(B) 1.768 x 10° = 1.1011101000 x 210

(C) 2.50125 x 102 = 1.1111010001 x 27

Exp: -11+10=-1

Signs: both positive, result positive

Mantissa:

(A) 1.0000000000
(B) x 1.1011101000
10000000000
10000000000
10000000000
10000000000
10000000000
10000000000

1.10111010000000000000

AxB 1.1011101000 00 00000000 Guard = 0, Round = O, Sticky = O: No Round
AxB 1.1011101000 x 27*

Exp: 1+7=8

Signs: both positive, result positive

Mantissa:

(AXB) 1.1011101000
(C) x 1.1111010001
11011101000
11011101000
11011101000
11011101000
11011101000
11011101000
11011101000

11.0101111110110110100 Normalize, add 1 to exponent

(AXB)xC 1.1010111111 01 101101000 Guard = O, Round = 1, Sticky = 1: No Round

(AxB)x C 1.1010111111 x 28 = 431.75

$100

Chapter 3 Solutions

721875 x 10* x 2.809375 x 10%) x 3.575 x 10*

4

A) 4.721875 x 10 = 1.0111100111 x 2°
B) 2.809375 x 10% = 1.1100000110 x 2*
C) 3.575 x 101 = 1.0001111000 x 2°
Exp: 5+4=9

Signs: both positive, result positive

(
(
(
(

Mantissa:
(A) 1.0111100111
(B) X 1.1100000110
10111100111
10111100111
10111100111
10111100111
10111100111
10.10010111010001101010 Normalize, add 1 to exponent
1.0100101110 10 001101011 Guard=1, Round=0, Sticky=1:
Round up
AxB 1.0100101111 x 210

Exp: 10+5=15
Signs: both positive, result positive

Mantissa:

(A x B) 1.0100101111
() X 1.0001111000
10100101111
10100101111
10100101111
10100101111
10100101111
1.01110010101000001000
1.0111001010 10 000010000 Guard=1, Round=0, Sticky=1:
Round up
(AxB)xC 1.0111001011 x 2°

Chapter 3 Solutions $101

3.13.5

a. | 4.8828125 x 1074 x (1.768 x 10° x 2.50125 x 10?)

(A) 4.8828125 x 1074 = 1.0000000000 x 2-1*
(B) 1.768 x 10% = 1.1011101000 x 2%°
(C) 2.50125 x 10%= 1.1111010001 x 27

Exp: 10 + 7 = 17
Signs: both positive, result positive
Mantissa:

(B) 1.1011101000
(C) X 1.1111010001
11011101000
11011101000
11011101000
11011101000
11011101000
11011101000
11011101000
11.01011111101101101000 Normalize, add 1 to exponent
1.1010111111 01 101101000 Guard=0, Round=1, Sticky=1: No Round

BxC 1.1010111111 x 28 OVERFLOW: Cannot be represented

$102

Chapter 3 Solutions

4.721875 x 10 x (2.809375 x 10* x 3.575 x 10%)

(A) 4.721875 x 10* = 1.0111100111 x 2°
(B) 2.809375 x 10* = 1.1100000110 x 24
(C) 3.575 x 101 = 1.0001111000 x 2°
Exp:4+5=9

Signs: both positive, result positive

Mantissa:
(B) 1.1100000110
(C) x 1.0001111000
11100000110
11100000110
11100000110
11100000110
11100000110
1.1111011000101101
1.1111011000 10 11010000 Guard=1, Round=0, Sticky=1:
Round up
BxC 1.1111011001 x 2°

Exp: 5+9=14
Signs: both positive, result positive
Mantissa:

(A) 1.0111100111
(B x C) X 1.1111011001
10111100111
10111100111
10111100111
10111100111
10111100111
10111100111
10111100111
10111100111
10.11100101000111001111 Normalize, add 1 to exponent
1.0111001010 00 111001111 Guard=0, Round=0, Sticky=1:
No Round

Ax(BxC) 1.0111001010 x 215

Chapter 3 Solutions

$103

3.13.6

a. | a) No:
(AxB)xC=1.1010111111 x 28 = 431.75
Bx C=1.1010111111 x 28 OVERFLOW: Cannot be represented

used.

B and C are both large, so their product does not fit into the 16-bit floating point format being

b. | d) No:

(A xB)x C=1.0111001011 x 2% = 47456

Ax (B xC)=1.0111001010 x 215 = 47424

“Exact”: 47.21875 x 28.09375 x 35.75 = 47424.225341796875

Solution 3.14
3.14.1

a. | 1.5234375 x 1071 x (2.0703125 x 107* + 9.96875 x 10%)

(A) 1.5234375 x 1071 = 1.0011100000 x 273
(B) 2.0703125 x 101 = 1.1010100000 x 23
(C) 9.96875 x 10 = 1.1000111011 x 2°

Shift binary point 9 to the left, match exponents
(C) 1.1000111011

(B+C) 1.1000111110 x 2°

Exp: -3+6=3
Signs: both positive, result positive

Ax(B+C) 1.1110011100 x 23

Mantissa:
(A) 1.0011100000
(B+C) X 1.1000111110
10011100000
10011100000
10011100000
10011100000
10011100000
10011100000
10011100000
A X (B+C) 1.1110011011 10 01000000 Guard=1, Round=0,
Round up

(B) .0000000011 01 0100000 Guard=0, Round=1, Sticky=1

Sticky=1:

$104

Chapter 3 Solutions

—2.7890625 x 10* x (-8.088 x 10° + 1.0216 x 10%)

(A) =2.7890625 x 10 = -1.1011111001 x 2*
(B) -8.088 x 10% = -1.1111100110 x 212
(C) 1.0216 x 10*=1.0011111101 x 213 = 10216

Shift binary point 4 to the left, match exponents
(C) 1.0011111101

(B) -.1111110011 0 Guard = 0, Round = 0, Sticky = 0:

(B+C) 0.0100001010 Normalize, subtract 2 from exponent
(B + C) 1.0000101000 x 211

Exp: 4 + 11 = 15
Signs: one negative, one positive — sign negative

Mantissa:
(A) 1.1011111001
(B+C) X 1.0000101000
11011111001
11011111001
11011111001

1.1100111110 10 11101000 Guard=1, Round=0, Sticky=1:

Ax(B+C)-1.1100111111
Ax(B+C)-1.1100111111 x 21°

no round

Round up

Chapter 3 Solutions

$105

3.14.2

a. | 1.5234375 x 1071 x (2.0703125 x 107 + 9.96875 x 10%)

(A) 1.5234375 x 107% = 1.0011100000 x 273
(B) 2.0703125 x 1071 = 1.1010100000 x 223
(C) 9.96875 x 10* = 1.1000111011 x 26
Exp: -3 -3 =-6

Signs: both positive, result positive

Mantissa:
(A) 1.0011100000
(B) x 1.1010100000
10011100000
10011100000

10011100000

10011100000
AXB 10.0000010011 00 00000000 Normalize, add 1 to exponent

A x B 1.0000001010 x 27°

Exp: -3+6=3
Signs: both positive, result positive

Mantissa:

(A) 1.0011100000
(C) x 1.1000111011
10011100000
10011100000
10011100000
10011100000
10011100000
10011100000
10011100000

AxC 1.1110011000 x 23

Shift binary point 8 to the left, match exponents

AxC +1.1110011000
AXB .0000000100 00 001010 Guard=0, Round=0, Sticky=1: No Round

1.1110011100
(A X B)+ (AxC)=1.1110011100 x 23

AxB 1.0000001001 10 0 0...0 Guard=1, Round=0, Sticky=0: Round to even

AXC 1.1110010111 11 10100000 Guard=l, Round=1, Sticky=1: round up

$106 Chapter 3 Solutions

b. | —2.7890625 x 10 x (-8.088 x 10° + 1.0216 x 10%)

(A) =2.7890625 x 101 = -1.1011111001 x 24
(B) -8.088 x 10%=-1.1111100110 x 212
(C) 1.0216 x 10%=1.0011111101 x 213 = 10216

Exp: 4 + 12 =16 OVERFLOW: Cannot Represent
Signs: both negative, result positive

Mantissa:

(A) 1.1011111001
(B) x 1.1111100110
11011111001
11011111001
11011111001
11011111001
11011111001
11011111001
11011111001
11011111001

11.01110001001010110110 Normalize, add 1 to exponent

AXB 1.1011100010 01 010110110 Guard=0, Round=1, Sticky=1: No Round
AxB 1.1011100010 x 27 OVERFLOW: Cannot Represent

Exp: 4 + 13 = 17 OVERFLOW: Cannot Represent
Signs: one negative, one positive, result negative

Mantissa:
(A) 1.1011111001
(C) x 1.,0011111101
11011111001
11011111001
11011111001
11011111001
11011111001
11011111001
11011111001
11011111001

10.00101100100000010101 Normalize, add 1 to exponent
AXC -1.0001011001 00 000010101 Guard=0, Round=0, Sticky=1: No Round
AxC -1.0001011001 x 218 OVERFLOW: Cannot Represent

AXC -1.1011011111 x 2'® QVERFLOW: Cannot Represent
AXB .1101110001 x 2'8 QVERFLOW: Cannot Represent

-0.1101101110 x 2'8 (QVERFLOW: Cannot Represent
-1.1011011100 x 2'7 OQVERFLOW: Cannot Represent

AXxB+AxC -1.1011011100 x 217 OVERFLOW: Cannot Represent

Chapter 3 Solutions

$107

3.14.3
a. | a) Yes:
Ax(B+C)=1.1110011100 x 23 = 15.21875, and (A x B) + (A X C) = 1.1110011100 x 23 =
15.21875
Exact: .15234375 X (.20703125 + 99.6875) = 15.2183074951171875
b. | d) No:

While it is possible to calculate A x (B + C), it is not possible to calculate A X B or A x C—the
intermediate steps are not representable in this FP format.

Ax (B+C)=-1.1100111111 x 2*° = 59360

AxB+AxC=-1.1011011100 x 217 OVERFLOW: Cannot Represent

Exact: —27.890625 x (-8088 + 10216) = 59351.25

3.14.4

S S X B

001111110 01010101010101010101011

b. | 101111101 00100100100100100100101 - -3 No

3.14.5

a. | a+a+a=1.000000000000000000001
a x 3 =1.000000000000000000001
They are the same, but they should be 1.0000000000000000000000

b. | d+d+d+d+d+d+d=1.00000000000000000000011
d x 7 =1.00000000000000000000011

3.14.6 No solution provided

Solution 3.15

3.15.1
a. | 1000 0000 0000 0000 0000 0000 0x.800000 Yes
b. | 0001 1100 0111 0001 1100 0111 .1C71C7 No
3.15.2
a. | 0101 0000 0000 0000 0000 0000 .50000 Yes

b. | 0001 0001 0001 0001 0001 0001 111111 No

$108

Chapter 3 Solutions

3.15.3
a. | 0111 0111 0111 0111 0111 0111 TTTTT7 No
b. | 0001 1010 0000 0000 0000 0000 .1A0000 Yes
3.15.4
a. | 01111 00000 00000 00000 .FO0O0 Yes
b. | 00011 01010 00000 00000 .3A00 Yes

Solutions

Solution 4.1

4.1.1 The values of the signals are as follows:

| Rogrte | MomRead | ALuMax | memvirite | ALuop | Reghux | Branch
a. 1 0

0 (Reg) 0 Add 1 (ALU) 0

b. 1 1 1 (Imm) 0 Add 1 (Mem) 0

ALUMux is the control signal that controls the Mux at the ALU input, 0 (Reg)
selects the output of the register file and 1 (Imm) selects the immediate from the
instruction word as the second input to the ALU.

RegMux is the control signal that controls the Mux at the Data input to the regis-
ter file, 0 (ALU) selects the output of the ALU and 1 (Mem) selects the output of
memory.

A value of X is a “don’t care” (does not matter if signal is 0 or 1)

4.1.2 Resources performing a useful function for this instruction are:

a. | All except Data Memory and branch Add unit

b. | All except branch Add unit and second read port of the Registers

4.1.3
a. | Branch Add Data Memory
b. | Branch Add, second read port of Registers None (all units produce outputs)

4.1.4 One long path for and instruction is to read the instruction, read the reg-
isters, go through the ALUMux, perform the ALU operation, and go through the
Mux that controls the write data for Registers (I-Mem, Regs, Mux, ALU, and Mux).
The other long path is similar, but goes through Control while registers are read
(I- Mem, Control, Mux, ALU, Mux). There are other paths but they are shorter,
such as the PC increment path (only Add and then Mux), the path to prevent
branching (I-Mem, Control, Mux uses Branch signal to select the PC + 4 input as
the new value for PC), the path that prevents a memory write (only I-Mem and
then Control, etc).

$110

Chapter 4 Solutions

a. | Control is faster than registers, so the critical path is I-'Mem, Regs, Mux, ALU, Mux.

b. | Control is faster than registers, so the critical path is -Mem, Regs, Mux, ALU, Mux.

4.1.5 One long path is to read instruction, read registers, use the Mux to select the
immediate as the second ALU input, use ALU (compute address), access D-Mem,
and use the Mux to select that as register data input, so we have I-Mem, Regs,
Mux, ALU, D-Mem, Mux. The other long path is similar, but goes through Control
instead of Regs (to generate the control signal for the ALU MUX). Other paths are
shorter, and are similar to shorter paths described for 4.1.4.

a. | Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, D-Mem, Mux.

b. | Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, Mux.

4.1.6 This instruction has two kinds of long paths, those that determine the
branch condition and those that compute the new PC. To determine the branch
condition, we read the instruction, read registers or use the Control unit, then use
the ALU Mux and then the ALU to compare the two values, then use the Zero out-
put of the ALU to control the Mux that selects the new PC. As in 4.1.4 and 4.1.5:

a. | The first path (through Regs) is longer.

b. | The first path (through Regs) is longer.

To compute the PC, one path is to increment it by 4 (Add), add the offset (Add),
and select that value as the new PC (Mux). The other path for computing the PC is
to Read the instruction (to get the offset), use the branch Add unit and Mux. Both
of the compute-PC paths are shorter than the critical path that determines the
branch condition, because I-Mem is slower than the PC + 4 Add unit, and because
ALU is slower than the branch Add.

Solution 4.2

4.2.1 Existing blocks that can be used for this instruction are:

a. | This instruction uses instruction memory, both existing read ports of Registers, the ALU, and
the write port of Registers.

b. | This instruction uses the instruction memory, one of the existing register read ports, the path
that passed the immediate to the ALU, and the register write port.

4.2.2 New functional blocks needed for this instruction are:

a. | Another read port in Registers (to read Rx) and either a second ALU (to add Rx to Rs + Rt) or a
third input to the existing ALU.

b. | We need to extend the existing ALU to also do shifts (adds a SLL ALU operation).

Chapter 4 Solutions

Ss111

4.2.3 The new control signals are:

a. | We need a control signal that tells the new ALU what to do, or if we extended the existing ALU
we need to add a new ADD3 operation.

b. | We need to change the ALU Operation control signals to support the added SLL operation in
the ALU.

4.2.4 Clock cycle time is determined by the critical path, which for the given
latencies happens to be to get the data value for the load instruction: I-Mem
(read instruction), Regs (takes longer than Control), Mux (select ALU input),
ALU, Data Memory, and Mux (select value from memory to be written into
Registers). The latency of this path is 400ps + 200ps + 30ps + 120ps + 350ps +
30ps = 1130ps.

. New clock cycle time

a. | 1130ps (No change, Add units are not on the critical path).

b. | 1230 (1130ps + 100ps, Regs are on the critical path)

4.2.5 The speed-up comes from changes in clock cycle time and changes to the
number of clock cycles we need for the program:

™

a. | Speed-up is 1 (no change in number of cycles, no change in clock cycle time).

b. | We need 5% fewer cycles for a program, but cycle time is 1230 instead of 1130, so we have a
speed-up of (1/0.95) x (1130/1230) = 0.97, which means we actually have a small slowdown.

4.2.6 The cost is always the total cost of all components (not just those on the
critical path, so the original processor has a cost of I-Mem, Regs, Control, ALU,
D-Mem, 2 Add units and 3 Mux units, for a total cost of 1000 + 200 + 500 + 100 +
2000 +2 x 30 + 3 x 10 =3890.

We will compute cost relative to this baseline. The performance relative to this
baseline is the speed-up we computed in 4.2.5, and our cost/performance relative
to the baseline is as follows:

. m Relative cost Cost/Performance

3890 + 2 x 20 = 3930 | 3930/3890 = 1.01 1.01/1 = 1.01. We are paying a bit more for
the same performance.

b. | 3890 + 200 = 4090 4090/3890 = 1.05 1.05/0.97 = 1.08. We are paying some more
and getting a small slowdown, so out cost/
performance gets worse.

$112

Chapter 4 Solutions

Solution 4.3
4.3.1

Both. It is mostly flip-flops, but it has logic that controls which flip-flops get read or written in
each cycle

b. | Both. It is mostly flip-flops, but it has logic that controls which flip-flops get read or written in
each cycle
4.3.2
a.

A1 A0

Instruction O

Lo]

This shows the lowermost bit of each word. This schematic is repeated
7 more times for the remaining seven bits. Note that there are no connec-
tions for D and C flip-flop inputs because datapath figures do not specify
how instruction memory is written.

Chapter 4 Solutions

$113

RReg1: {>o—

Reg0_0
WData_0+ D Q
— C
./ RData1_0
Reg1_0
D Q
Clock — \
RegWrite —)" —C
RData2_0
WReg —

RReg2+ >J/

This is the schematic for the lowermost bit, it needs to be repeated 7 more times for the remaining
bits. RRegl is the Read Register 1 input, RReg2 is the Read Register 2 input, WReg is the Write Register
input, WData is the Write Data input. RDatal and RData2 are Read Data 1 and Read Data 2 outputs.
Data outputs and input have “_0” to denote that this is only bit 0 of the 8-bit signal.

s114

Chapter 4 Solutions

4.3.3

a. Al A0

Instruction 0

) L

—C

b. | No change, there are no gates with more then 2 inputs in the schematic.

4.3.4 The latency of a path is the latency from an input (or a D-element output)
to an output (or D-element input). The latency of the circuit is the latency of the
path with the longest latency. Note that there are many correct ways to design the
circuit in 4.3.2, and for each solution to 4.3.2 there is a different solution for this
problem.

4.3.5 The cost of the implementation is simply the total cost of all its compo-
nents. Note that there are many correct ways to design the circuit in 4.3.2, and for
each solution to 4.3.2 there is a different solution for this problem.

Chapter 4 Solutions

$115

4.3.6

Because multi-input AND and OR gates have the same latency as 2-input ones, we can use
many-input gates to reduce the number of gates on the path from inputs to outputs. The
schematic shown for 4.3.2 turns out to already be optimal.

A three-input or a four-input gate has a lower latency than a cascade of two 2-input gates.

This means that shorter overall latency is achieved by using 3- and 4-input gates rather than
cascades of 2-input gates. In our schematic shown for 4.3.2, we should replace the three
2-input AND gates used for Clock, RegWrite, and WReg signals with two 3-input AND gates that
directly determine the value of the C input for each D-element.

Solution 4.4

4.4.1 We show the implementation and also determine the latency (in gates)
needed for 4.4.2.

. Implementation Latency in gates

)
g —

O m>»
I

S

)
)
L/

4.4.2 See answer for 4.4.1 above.

$116

Chapter 4 Solutions

443
T pmntaton—
a.
—)
[Signal 2
S) Signal 1
C
b.
A —
Bt) E
1 Signal 1
_\ Signal 2
__J '
4.4.4

a. | There are four OR gates on the critical path, for a total of 136ps

b. | The critical path consists of OR, XOR, OR, and OR, for a total of 510ps

4.45

a. | The costis 2 AND gates and 4 OR gates, for a total cost of 16.

b. | The costis 1 AND gate, 4 OR gates, and 1 XOR gate, for a total cost of 12.

4.4.6 We already computed the cost of the combined circuit. Now we determine

the cost of the separate circuits and the savings.

22 (+2 OR gates)

(22-16)/22=27%

b. 12

14 (+1 AND gate)

(14 - 12)/14 = 14%

Chapter 4 Solutions

$117

Solution 4.5

45.1
a.
X
Start »ﬁ "J/)D—‘ Out
—1D Q
Clk c 1
Carry
b.
Start {>o T_ L .
}— Ou
X D Q) b Q
Cc
Clk —T— c r
4.5.2
a. .
X_i \z ; Out i
Start H
X i+1 J
— D Q
-
Carry_i+1
b.

Clk + C

X i+ 1t D Q

Start —I>O_Li
Xt :}—\ Qut_i

Out_i+1

$118

Chapter 4 Solutions

4.5.3
a. 90ps (OR, AND, D) 32 x 90ps = 2880ps
b. 170ps (NOT, AND, D) 32 x 170ps = 5440ps
4.5.4

a. 120ps (OR, AND, AND, D) (32 x 90ps)/(16 x 120ps) = 1.50
b. 90ps (NOT, AND) (32 x 170ps)/(16 x 90ps) = 3.78
4.5.5

a. 14 (1 AND, 1 OR, 1 XOR, 1 D) 20 (2 AND, 1 OR, 2 XOR, 1 D)
b. 29 (1 NOT, 2 AND, 2 D) 29 (1 NOT, 2 AND, 2 D)
4.5.6

Cost/Performance Cost/Performance
for Circuit 1 for Circuit 2

14 x 32 X 90 = 40320

20 x 16 x 120 = 38400

Cost/performance of Circuit 2 is
better by about 4.7%

b. | 29 x32x170= 157760

29 x 16 X 90 = 41760

Cost/performance of Circuit 2 is
better by about 73.5%

Solution 4.6

4.6.1 I-Mem takes longer than the Add unit, so the clock cycle time is equal to the

latency of the I-Mem:

a. | 400ps

b. | 500ps

4.6.2 The critical path for this instruction is through the instruction memory,
Sign-extend and Shift-left-2 to get the offset, Add unit to compute the new PC, and
Mux to select that value instead of PC + 4. Note that the path through the other

Chapter 4 Solutions

$119

Add unit is shorter, because the latency of I-Mem is longer that the latency of the
Add unit. We have:

a. | 400ps + 20ps + 2ps + 100ps + 30ps = 552ps

b. | 500ps + 90ps + 20ps + 150ps + 100ps = 860ps

4.6.3 Conditional branches have the same long-latency path that computes the
branch address as unconditional branches do. Additionally, they have a long-latency
path that goes through Registers, Mux, and ALU to compute the PCSrc condition.
The critical path is the longer of the two, and the path through PCSrc is longer for
these latencies:

a. | 400ps + 200ps + 30ps + 120ps + 30ps = 780ps

b. | 500ps + 220ps + 100ps + 180ps + 100ps = 1100ps

4.6.4

a. | All instructions except jumps that are not PC-relative (jal, jalr, j, jr)

b. | Loads and stores

4.6.5

a. | None. I-Mem is slower, and all instructions (even NOP) need to read the instruction.

b. | Loads and stores.

4.6.6 Of the two instruction (bne and add), bne has a longer critical path so it
determines the clock cycle time. Note that every path for add is shorter or equal to
than the corresponding path for bne, so changes in unit latency will not affect this.
As a result, we focus on how the unit’s latency affects the critical path of bne:

a. | This unit is not on the critical path, so changes to its latency do not affect the clock cycle time
unless the latency of the unit becomes so large to create a new critical path through this unit,
the branch add, and the PC Mux. The latency of this path is 230ps and it needs to be above
780ps, so the latency of the Add-4 unit needs to be more 650ps for it to be on the critical path.

b. | This unitis not used by BNE nor by ADD, so it cannot affect the critical path for either
instruction.

Solution 4.7

4.7.1 The longest-latency path for ALU operations is through I-Mem, Regs, Mux
(to select ALU operand), ALU, and Mux (to select value for register write). Note
that the only other path of interest is the PC-increment path through Add (PC + 4)

$120

Chapter 4 Solutions

and Mux, which is much shorter. So for the I-Mem, Regs, Mux, ALU, Mux path
we have:

a. | 400ps + 200ps + 30ps + 120ps + 30ps = 780ps

b. | 500ps + 220ps + 100ps + 180ps + 100ps = 1100ps

4.7.2 The longest-latency path for Iw is through I-Mem, Regs, Mux (to select ALU
input), ALU, D-Dem, and Mux (to select what is written to register). The only other
interesting paths are the PC-increment path (which is much shorter) and the path
through Sign-extend unit in address computation instead of through Registers.
However, Regs has a longer latency than Sign-extend, so for I-Mem, Regs, Mux,
ALU, D-Mem, and Mux path we have:

a. | 400ps + 200ps + 30ps + 120ps + 350ps + 30ps = 1130ps

b. | 500ps + 220ps + 100ps + 180ps + 1000ps + 100ps = 2100ps

4.7.3 The answer is the same as in 4.7.2 because the 1w instruction has the longest
critical path. The longest path for sw is shorter by one Mux latency (no write to
register), and the longest path for add or bne is shorter by one D-Mem latency.

4.7.4 The data memory is used by 1w and sw instructions, so the answer is:

a. | 20% + 10% = 30%

b. | 35% + 15% = 50%

4.7.5 The sign-extend circuit is actually computing a result in every cycle, but its
output is ignored for add and not instructions. The input of the sign-extend cir-
cuit is needed for addi (to provide the immediate ALU operand), beq (to provide
the PC-relative offset), and 1w and sw (to provide the offset used in addressing
memory) so the answer is:

a. | 15% + 20% + 20% + 10% = 65%

b. | 5% + 15% + 35% + 15% = 70%

4.7.6 The clock cycle time is determined by the critical path for the instruction
that has the longest critical path. This is the 1w instruction, and its critical path
goes through I-Mem, Regs, Mux, ALU, D-Mem, and Mux so we have:

a. | -Mem has the longest latency, so we reduce its latency from 400ps to 360ps, making the clock
cycle 40ps shorter. The speed-up achieved by reducing the clock cycle time is then 1130ps/
1090ps = 1.037

b. | D-Mem has the longest latency, so we reduce its latency from 1000ps to 900ps, making the
clock cycle 100ps shorter. The speed-up achieved by reducing the clock cycle time is then
2100ps/2000ps = 1.050

Chapter 4 Solutions $121

Solution 4.8

4.8.1 To test for a stuck-at-0 fault on a wire, we need an instruction that puts that
wire to a value of 1 and has a different result if the value on the wire is stuck at zero:

a. | Bit 7 of the instruction word is only used as part of an immediate/offset part of the instruction,
S0 one way to test would be to execute ADDI $1, zero, 128 which is supposed to place a value
of 128 into $1. If instruction bit 7 is stuck at zero, $1 will be zero because value 128 has all
bits at zero except bit 7.

b. | The only instructions that set this signal to 1 are loads. We can test by filling the data memory
with zeros and executing a load instruction from a non-zero address, e.g., LW $1, 1024(zero).
After this instruction, the value in $1 is supposed to be zero. If the MemtoReg signal is stuck
at O, the value in the register will be 1024 (the Mux selects the ALU output (1024) instead of
the value from memory).

4.8.2 The test for stuck-at-zero requires an instruction that sets the signal to 1
and the test for stuck-at-1 requires an instruction that sets the signal to 0. Because
the signal cannot be both 0 and 1 in the same cycle, we cannot test the same signal
simultaneously for stuck-at-0 and stuck-at-1 using only one instruction. The test
for stuck-at-1 is analogous to the stuck-at-0 test:

a. | We can use ADDI $1, zero, O which is supposed to put a value of O in $1. If Bit 7 of the
instruction word is stuck at 1, the immediate operand becomes 128 and $1 becomes 128
instead of O.

b. | We cannot reliably test for this fault, because all instructions that set the MemtoReg signal

to zero also set the ReadMem signal to zero. If one of these instructions is used as a test for
MemtoReg stuck-at-1, the value written to the destination register is “random” (whatever noise
is there at the data output of Data Memory). This value could be the same as the value already
in the register, so if the fault exists the test may not detect it.

4.8.3

a. | Itis possible to work around this fault, but it is very difficult. We must find all instructions that
have zero in this bit of the offset or immediate operand and replace them with a sequence of
“safe” instruction. For example, a load with such an offset must be replaced with an instruction
that subtracts 128 from the address register, then the load (with the offset larger by 128 to set
bit 7 of the offset to 1), then subtract 128 from the address register.

b. | We cannot work around this problem, because it prevents all instructions from storing their
result in registers, except for load instructions. Load instructions only move data from memory
to registers, so they cannot be used to emulate ALU operations “broken” by the fault.

$122

Chapter 4 Solutions

4.8.4

If MemRead is stuck at O, data memory is read for every instruction. However, for non-load
instructions the value from memory is discarded by the Mux that selects the value to be written
to the Register unit. As a result, we cannot design this kind of test for this fault, because the
processor still operates correctly (although inefficiently).

To test for this fault, we need an instruction whose opcode is zero and MemRead is 1. However,
instructions with a zero opcode are ALU operations (not loads), so their MemRead is 0. As a
result, we cannot design this kind of test for this fault, because the processor operates correctly.

4.8.5

If Jump is stuck-at-1, every instruction updates the PC as if it were a jump instruction. To test for
this fault, we can execute an ADDI with a non-zero immediate operand. If the Jump signal is stuck-
at-1, the PC after the ADDI executes will not be pointing to the instruction that follows the ADDI.

To test for this fault, we need an instruction whose opcode is zero and Jump is 1. However, the
opcode for the jump instruction is non-zero. As a result, we cannot design this kind of test for
this fault, because the processor operates correctly.

4.8.6 FEach single-instruction test “covers” all faults that, if present, result in dif-
ferent behavior for the test instruction. To test for as many of these faults as possi-
ble in a single instruction, we need an instruction that sets as many of these signals
to a value that would be changed by a fault. Some signals cannot be tested using
this single-instruction method, because the fault on a signal could still result in
completely correct execution of all instruction that trigger the fault.

Solution 4.9
4.9.1

a. | 100011 00110 00001 0000000000101000 8CC10028
b. | 000101 00001 00010 1111111111111111 1422FFFF
4.9.2

- Read register 1 Actually read? Read register 2 Actually read?

6 (00110y) 1 (00001,) Yes (but not used)

1 (00001,) Yes 2 (00010,) Yes

Chapter 4 Solutions

$123

4.9.3
- Read register 1 Register actually written?
a. 1 (00001,) Yes
b. | Either 2 (00010y) of 31 (11111,) (don’t know No
because RegDst is X)
4.9.4
- Control signal 1 Control signal 2
a. RegDst =0 MemRead = 1
b. RegWrite = O MemRead = 0

4.9.5 We use I31 through 126 to denote individual bits of Instruction[31:26],
which is the input to the Control unit:

a. | RegDst = NOT I31

b. | RegWrite = (NOT 128 AND NOT 127) OR (131 AND NOT 129)

4.9.6 If possible, we try to reuse some or all of the logic needed for one signal to
help us compute the other signal at a lower cost:

a. | RegDst = NOT I31
MemRead = 131 AND NOT 129

b. | MemRead = 131 AND NOT 29
RegWrite = (NOT 128 AND NOT 127) OR MemRead

Solution 4.10

To solve problems in this exercise, it helps to first determine the latencies of dif-
ferent paths inside the processor. Assuming zero latency for the Control unit, the
critical path is the path to get the data for a load instruction, so we have I-Mem,
Mux, Regs, Mux, ALU, D-Mem and Mux on this path.

4.10.1 The Control unit can begin generating MemWrite only after I-Mem is
read. It must finish generating this signal before the end of the clock cycle. Note
that MemWrite is actually a write-enable signal for D-Mem flip-flops, and the
actual write is triggered by the edge of the clock signal, so MemWrite need not

S$124

Chapter 4 Solutions

arrive before that time. So the Control unit must generate the MemWrite in one
clock cycle, minus the I-Mem access time:

. Critical path Maximum time to generate MemWrite

a. 400ps + 30ps + 200ps + 30ps + 1160ps — 400ps = 760ps
120ps + 350ps + 30ps = 1160ps
b. 500ps + 100ps + 220ps + 100ps + 2200ps — 500ps = 1700ps
180ps + 1000ps + 100ps = 2200ps

4.10.2 All control signals start to be generated after I-Mem read is complete. The
most slack a signal can have is until the end of the cycle, and MemWrite and Reg-
Write are both needed only at the end of the cycle, so they have the most slack.
The time to generate both signals without increasing the critical path is the one
computed in 4.10.1.

4.10.3 MemWrite and RegWrite are only needed by the end of the cycle.
RegDst, Jump, and MemtoReg are needed one Mux latency before the end of the
cycle, so they are more critical than MemWrite and RegWrite. Branch is needed
two Mux latencies before the end of the cycle, so it is more critical than these.
MemRead is needed one D-Mem plus one Mux latency before the end of the
cycle, and D-Mem has more latency than a Mux, so MemRead is more critical
than Branch. ALUOp must get to ALU control in time to allow one ALU Ctrl,
one ALU, one D-Mem, and one Mux latency before the end of the cycle. This is
clearly more critical than MemRead. Finally, ALUSrc must get to the pre-ALU
Mux in time, one Mux, one ALU, one D-Mem, and one Mux latency before the
end of the cycle. Again, this is more critical than MemRead. Between ALUOp and
ALUSrc, ALUOpP is more critical than ALUSrc if ALU control has more latency
than a Mux. If ALUOp is the most critical, it must be generated one ALU Ctrl
latency before the critical-path signals can go through Mux, Regs, and Mux. If
the ALUSrc signal is the most critical, it must be generated while the critical path
goes through Mux and Regs. We have

The most critical control Time to generate it without
signal is affecting the clock cycle time
a. ALUOp (50ps > 30ps) 30ps + 200ps + 30ps — 50ps = 210ps
b. ALUSTrc (100ps > 55ps) 100ps + 220ps = 320ps

For the next three problems, it helps to compute for each signal how much time
we have to generate it before it starts affecting the critical path. We already did this
for RegDst and RegWrite in 4.10.1, and in 4.10.3 we described how to do it for the
remaining control signals. We have:

Chapter 4 Solutions $125

e e e B Rt e

730ps 730ps 700ps 380ps 730ps 210ps 760ps 230ps 760ps

b. 1600ps 1600ps 1500ps 600ps 1600ps 365ps 1700ps 320ps 1700ps

The difference between the allowed time and the actual time to generate the signal
is called “slack”. For this problem, the allowed time will be the maximum time the
signal can take without affecting clock cycle time. If slack is positive, the signal
arrives before it is actually needed and it does not affect clock cycle time. If the
slack is positive, the signal is late and the clock cycle time must be adjusted. We now
compute the clack for each signal:

I N A) = T T T

10ps Ops 100ps —20ps 30ps 10ps 50ps 30ps -40ps

b. Ops Ops 100ps 100ps 200ps -35ps 200ps -80ps Ops

4.10.4 With this in mind, the clock cycle time is what we computed in 4.10.1,
plus the absolute value of the most negative slack. We have:

Actual clock cycle time

Control signal with the | Clock cycle time with ideal with these signal
most negative slack is Control unit (from 4.10.1) latencies

a. RegWrite (—40ps) 1160ps 1200ps

b. ALUSrc (-80ps) 2200ps 2280ps

4.10.5 [t only makes sense to pay to speed-up signals with negative slack, because
improvements to signals with positive slack cost us without improving perfor-
mance. Furthermore, for each signal with negative slack, we need to speed it up
only until we eliminate all its negative slack, so we have:

Per-processor cost to
Signals with negative slack eliminate all negative slack

a. MemRead (-20ps) 60ps at $1/5ps = $12
RegWrite (—40ps)

b. ALUOp (-35ps) 115ps at $1/5ps = $23
ALUSrc (-80ps)

$126

Chapter 4 Solutions

4.10.6 The signal with the most negative slack determines the new clock cycle
time. The new clock cycle time increases the slack of all signals until there are is
no remaining negative slack. To minimize cost, we can then slow down signals that
end up having some (positive) slack. Overall, the cost is minimized by slowing
signals down by:

I = = = e T T

50ps

40ps

140ps 20ps 70ps 50ps 90ps 70ps Ops

80ps

80ps

180ps 180ps 280ps 45ps 280ps Ops 80ps

Solution 4.11
411.1

a. 00000000000000000000000000010000 0001000011000000000001000000
b. 00000000000000000000000000001100

0000100011000000000000110000

4.11.2
T T
a. 00 010000
b. 01 001100
4.11.3

a. | PC+4 PC to Add (PC + 4) to branch Mux to jump
Mux to PC

PC to Add (PC + 4) to branch Mux, or PC to
Add (PC + 4) to Add (adds offset) to branch
Mux. After the branch Mux, we go through
jump Mux and into the PC

b. | If $1 and $3 are not equal, PC + 4
If $1 and $3 are equal, PC + 4 + 4 x 12

4.11.4

B T T Y T T

PC +4 PC +4

b. | 3 or O (RegDst is X) -3 X PC+4 PC + 4

Chapter 4 Solutions

$127

4.11.5
2 and 16 PC and 4 PC+ 4 and 16 x 4
b. -16 and -3 PC and 4 PC+4and 12 x4

4.11.6

- Read Register 1 | Read Register 2 Write Register Write Data

X (3 or0)

Solution 4.12
4.12.1

- Pipelined Single-cycle

a. 500ps 1650ps
b. 200ps 800ps
4.12.2

- Pipelined Single-cycle

a. 2500ps 1650ps

b. 1000ps 800ps
4.12.3
- Stage to split New clock cycle time

a. MEM 400ps

b. IF 190ps
4.12.4

a. | 25%

b. | 45%

$128

Chapter 4 Solutions

4.12.5
a. | 65%
b. | 60%

4.12.6 We already computed clock cycle times for pipelined and single cycle
organizations in 4.12.1, and the multi-cycle organization has the same clock cycle
time as the pipelined organization. We will compute execution times relative to the
pipelined organization. In single-cycle, every instruction takes one (long) clock
cycle. In pipelined, a long-running program with no pipeline stalls completes one
instruction in every cycle. Finally, a multi-cycle organization completes a lw in
5 cycles,a swin 4 cycles (no WB), an ALU instruction in 4 cycles (no MEM), and a
beq in 4 cycles (no WB). So we have the speed-up of pipeline

Multi-cycle execution time is X times Single-cycle execution time is X times

pipelined execution time, where X is pipelined execution time, where X is
a. 0.15x5+0.85x4=4.15 1650ps/500ps = 3.30
b. 0.30x5+0.70x 4 =4.30 800ps/200ps = 4.00

Solution 4.13

4.13.1
a. | I1: 1w $1,40(%6) RAW on $1 from 11 to 13
12: add $6,$2,%2 RAW on $6 from 12 to 13
I13: sw $6,50(%1) WAR on $6 from |1 to 12 and 13
b. | I1: Tw $5,-16(%5) RAW on $5 from 11 to 12 and 13
12: sw $5,-16(%$5) WAR on $5 from |1 and 12 to 13
13: add $5,9$5,%5 WAW on $5 from 11 to 13

4.13.2 In the basic five-stage pipeline WAR and WAW dependences do not cause
any hazards. Without forwarding, any RAW dependence between an instruction
and the next two instructions (if register read happens in the second half of the
clock cycle and the register write happens in the first half). The code that eliminates
these hazards by inserting nop instructions is:

Chapter 4 Solutions

$129

Instruction
sequence

Delay 13 to avoid RAW hazard on $1 from 11

a. | Tw $1,40(%6)
add $6,%$2,%$2
nop
sw $6,50(%1)

b. | 1w $5,-16(%$5)
nop
nop
sw $5,-16($5)
add $5,$5,%$5

Delay 12 to avoid RAW hazard on $5 from I1

Note: no RAW hazard from on $5 from 11 now

4.13.3 With full forwarding, an ALU instruction can forward a value to EX stage
of the next instruction without a hazard. However, a load cannot forward to the
EX stage of the next instruction (by can to the instruction after that). The code that

eliminates these hazards by inserting nop instructions is:

Instruction
sequence

a. | lw $1,40(%6)
add $6,%2,%2
sw $6,50(%1)

No RAW hazard on $1 from |1 (forwarded)

b. | 1w $5,-16(3$5)

nop
sw $5,-16($5)
add $5,%5,9%5

Delay 12 to avoid RAW hazard on $5 from 11
Value for $5 is forwarded from 12 now
Note: no RAW hazard from on $5 from 11 now

4.13.4 The total execution time is the clock cycle time times the number of cycles.
Without any stalls, a three-instruction sequence executes in 7 cycles (5 to complete
the first instruction, then one per instruction). The execution without forwarding
must add a stall for every nop we had in 4.13.2, and execution forwarding must add

a stall cycle for every nop we had in 4.13.3. Overall, we get:

- No forwarding With forwarding Speed-up due to forwarding

(7 + 1) x 300ps = 2400ps

7 x 400ps = 2800ps 0.86 (This is really a slowdown)

b. | (7 +2) x 200ps = 1800ps

(7 + 1) x 250ps = 2000ps 0.90 (This is really a slowdown)

$130

Chapter 4 Solutions

4.13.5 With ALU-ALU-only forwarding, an ALU instruction can forward to the
next instruction, but not to the second-next instruction (because that would be
forwarding from MEM to EX). A load cannot forward at all, because it determines
the data value in MEM stage, when it is too late for ALU-ALU forwarding. We have:

a. | 1w $1,40(9%6)
add $6,$2,%2
nop Can't use ALU-ALU forwarding, ($1 loaded in MEM)
sw $6,50(%$1)

b. | Tw $5,-16(%$5)

nop Can't use ALU-ALU forwarding ($5 loaded in MEM)
nop
sw $5,-16($5)
add $5,9$5,%5
4.13.6

With ALU-ALU Speed-up with ALU-ALU
No forwarding forwarding only forwarding

(7 + 1) x 300ps = 2400ps | (7 + 1) x 360ps = 2880ps 0.83 (This is really a slowdown)

b. | (7 +2)x200ps = 1800ps | (7 + 2) x 220ps = 1980ps 0.91 (This is really a slowdown)

Solution 4.14

4.14.1 In the pipelined execution shown below, *** represents a stall when an
instruction cannot be fetched because a load or store instruction is using the mem-
ory in that cycle. Cycles are represented from left to right, and for each instruction
we show the pipeline stage it is in during that cycle:

CE=—E Posine sng =

Tw $1,40($6) EX MEM
beq $2,$0,Lbl IF ED EX MEM WB
add $2,$3,%4 IF ID EX MEM WB
sw $3,50(%4) *** IF ID EX MEM WB
b. | 1w $5,-16($5) | IF ID EX MEM WB 12
sw $4,-16(%4) IF ED EX MEM WB
Tw $3,-200$4) IF ID EX MEM WB
beq $2,$0,Lb] FrRx okkx okkx TF O ID EX MEM WB
add $5,%1,%4 IF ID EX MEM WB

We can not add nops to the code to eliminate this hazard—nops need to be fetched
just like any other instructions, so this hazard must be addressed with a hardware
hazard detection unit in the processor.

Chapter 4 Solutions

§131

4.14.2 This change only saves one cycle in an entire execution without data
hazards (such as the one given). This cycle is saved because the last instruction fin-
ishes one cycle earlier (one less stage to go through). If there were data hazards from
loads to other instruction, the change would help eliminate some stall cycles.

Instructions Cycles with 5 Cycles with
Executed stages 4 stages Speed-up

4+4=8 3+4=7 8/7=1.14

b. 5 4+5=9 3+5=8 9/8=1.13

4.14.3 Stall-on-branch delays the fetch of the next instruction until the branch
is executed. When branches execute in the EXE stage, each branch causes two stall
cycles. When branches execute in the ID stage, each branch only causes one stall
cycle. Without branch stalls (e.g., with perfect branch prediction) there are no stalls,
and the execution time is 4 plus the number of executed instructions. We have:

Instructions Branches Cycles with Cycles with
Executed Executed branch in EXE branch in ID Speed-up

4+4+1x2=10| 4+4+1x1=9 10/9=1.11

b. 5 1 4+5+1x2=11|4+5+1x1=10| 11/10=1.10

4.14.4 The number of cycles for the (normal) 5-stage and the (combined EX/
MEM) 4-stage pipeline is already computed in 4.14.2. The clock cycle time is equal
to the latency of the longest-latency stage. Combining EX and MEM stages affects
clock time only if the combined EX/MEM stage becomes the longest-latency stage:

Cycle time Cycle time
with 5 stages with 4 stages Speed-up

130ps (MEM) 150ps (MEM + 20ps) (8 x 130)/(7 x 150) = 0.99
b. 220ps (MEM) 240ps (MEM + 20ps) (9 x 220)/(8 x 240) = 1.03
4.145
New ID New cycle Old cycle
latency time time Speed-up
180ps 80ps 180ps (ID) 130ps (MEM) | (10 x 130)/(9 x 180) = 0.80
b. 150ps 160ps 220ps (MEM) | 220ps (MEM) | (11 x 220)/(10 x 220) = 1.10

4.14.6 The cycle time remains unchanged: a 20ps reduction in EX latency has no
effect on clock cycle time because EX is not the longest-latency stage. The change

$132

Chapter 4 Solutions

does affect execution time because it adds one additional stall cycle to each branch.
Because the clock cycle time does not improve but the number of cycles increases,
the speed-up from this change will be below 1 (a slowdown). In 4.14.3 we already
computed the number of cycles when branch is in EX stage. We have:

Cycles with branch Execution time Cycles with branch Execution time
in EX (branch in EX) in MEM (branch in MEM) Speed-up

4+4+1x2=10

10 x 130ps = 1300ps 4+4+1x3=11 11 x 130ps = 1430ps 0.91

b. 4+45+1x2=11

11 x 220ps = 2420ps 4+5+1x3=12 12 x 220ps = 2640ps 0.92

Solution 4.15
4.15.1

This instruction behaves like a load with a zero offset until it fetches the value from memory.
The pre-ALU Mux must have another input now (zero) to allow this. After the value is read from
memory in the MEM stage, it must be compared against zero. This must either be done quickly
in the WB stage, or we must add another stage between MEM and WB. The result of this zero-
comparison must then be used to control the branch Mux, delaying the selection signal for the
branch Mux until the WB stage.

We need to compute the memory address using two register values, so the address
computation for SWI is the same as the value computation for the ADD instruction. However,
now we need to read a third register value, so Registers must be extended to support a another
read register input and another read data output and a Mux must be added in EX to select the
Data Memory’s write data input between this value and the value for the normal SW instruction.

4.15.2

We need to add one more bit to the control signal for the pre-ALU Mux. We also need a control
signal similar to the existing “Branch” signal to control whether or not the new zero-compare
result is allowed to change the PC.

We need a control signal to control the new Mux in the EX stage.

4.15.3

This instruction introduces a new control hazard. The new PC for this branch is computed only

after the Mem stage. If a new stage is added after MEM, this either adds new forwarding paths
(from the new stage to EX) or (if there is no forwarding) makes a stall due to a data hazard one
cycle longer.

This instruction does not affect hazards. It modifies no registers, so it causes no data hazards.
It is not a branch instruction, so it produces no control hazards. With the added third register
read port, it creates no new resource hazards, either.

Chapter 4 Solutions $133

4.15.4
a. | 1w Rtmp,0(Rs) E.g., BEZI can be used when trying to find the length of a
beq Rt,$0,Label zero-terminated array.
b. | add Rtmp,Rs,Rt E.g., SWI can be used to store to an array element, where
sw Rd,0(Rtmp) the array begins at address Rt and Rs is used as an
index into the array.

4.15.5 The instruction can be translated into simple MIPS-like micro-operations
(see 4.15.4 for a possible translation). These micro-operations can then be executed
by the processor with a “normal” pipeline.

4.15.6 We will compute the execution time for every replacement interval. The
old execution time is simply the number of instruction in the replacement interval
(CPI of 1). The new execution time is the number of instructions after we made the
replacement, plus the number of added stall cycles. The new number of instruc-
tions is the number of instructions in the original replacement interval, plus the
new instruction, minus the number of instructions it replaces:

20-(2-1)+1=20 1.00

b. 60-(3-1)+0=58 60 1.03

Solution 4.16

4.16.1 For every instruction, the IF/ID register keeps the PC + 4 and the instruc-
tion word itself. The ID/EX register keeps all control signals for the EX, MEM,
and WB stages, PC + 4, the two values read from Registers, the sign-extended low-
ermost 16 bits of the instruction word, and Rd and Rt fields of the instruction
word (even for instructions whose format does not use these fields). The EX/MEM
register keeps control signals for MEM and WB stages, the PC + 4 + Offset (where
Offset is the sign-extended lowermost 16 bits of the instructions, even for instruc-
tions that have no offset field), the ALU result and the value of its Zero output, the
value that was read from the second register in the ID stage (even for instructions
that never need this value), and the number of the destination register (even for
instructions that need no register writes; for these instructions the number of the
destination register is simply a “random” choice between Rd or Rt). The MEM/WB
register keeps the WB control signals, the value read from memory (or a “random”
value if there was no memory read), the ALU result, and the number of the destina-
tion register.

S$134

Chapter 4 Solutions

4.16.2
. Need to be read Actually read
a. $6 $6, $1
b. $5 $5 (twice)
4.16.3
a. 40 + $6 Load value from memory
b. $5 + $5 Nothing
4.16.4
a. | 2:add $5,%$5,$8 WB
2:add $6,%6,%8 MEM WB
2:sw $1,20(%$5) EX MEM UB
2:beq $1,%0,Loop ID EX MEM UWB
3:1w $1,40(%6) IF ID EX MEM WB
3:add $5,%$5,9$8 IF ID EX MEM
3:add $6,%$6,%8 IF ID EX
3:sw $1,20(%$5) IF 1D
3:beq $1,$0,Loop IF
b. | sw $0,0(%1) WB
sw $0,4(8$1) MEM WB
add $2,$2,%4 EX MEM WB
beq $2,4$0, Loop ID EX MEM WB
add $1,%$2,%3 IF ID EX MEM WB
sw $0,0($1) IF ID EX MEM
sw $0,4(%1) IF ID EX
add $2,$2,%4 IF ID
beq $2,%0, Loop IF

4.16.5 In a particular clock cycle, a pipeline stage is not doing useful work if it is
stalled or if the instruction going through that stage is not doing any useful work
there. In the pipeline execution diagram from 4.16.4, a stage is stalled if its name is
not shown for a particular cycles, and stages in which the particular instruction is
not doing useful work are marked in red. Note that a BEQ instruction is doing use-
ful work in the MEM stage, because it is determining the correct value of the next
instruction’s PC in that stage. We have:

Chapter 4 Solutions

$135

Cycles in which all stages | % of cycles in which all
Cycles per loop iteration do useful work stages do useful work
a. 5 1

20%

b. 5 2 40%

4.16.6 The address of that first instruction of the third iteration (PC + 4 for the
beq from the previous iteration) and the instruction word of the beq from the
previous iteration.

Solution 4.17

4.17.1 Of all these instructions, the value produced by this adder is actually used
only by a beq instruction when the branch is taken. We have:

a. | 15% (60% of 25%)

b. | 9% (60% of 15%)

4.17.2 Of these instructions, only add needs all three register ports (reads two
registers and write one). beq and sw does not write any register, and 1w only uses
one register value. We have:

a. | 50%

b. | 30%

4.17.3 Of these instructions, only 1w and sw use the data memory. We have:

a. | 25% (15% + 10%)

b. | 55% (35% + 20%)

4.17.4 The clock cycle time of a single-cycle is the sum of all latencies for the
logic of all five stages. The clock cycle time of a pipelined datapath is the maximum
latency of the five stage logic latencies, plus the latency of a pipeline register that
keeps the results of each stage for the next stage. We have:

- Single-cycle Pipelined Speed-up
a.

500ps 140ps 3.57

b. 730ps 230ps 3.17

4.17.5 The latency of the pipelined datapath is unchanged (the maximum stage
latency does not change). The clock cycle time of the single-cycle datapath is the

$136

Chapter 4 Solutions

sum of logic latencies for the four stages (IF, ID, WB, and the combined EX + MEM
stage). We have:

. Single-cycle Pipelined

a. 410ps 140ps

b. 560ps 230ps

4.17.6 The clock cycle time of the two pipelines (5-stage and 4-stage) as explained
for 4.17.5. The number of instructions increases for the 4-stage pipeline, so the
speed-up is below 1 (there is a slowdown):

. Instructions with 5-stage Instructions with 4-stage Speed-up

1.00 x| 1.00 x|+ 0.5 x(0.15 + 0.10) x | = 1.125 x | 0.89

b. 1.00 x | 1.00 X I + 0.5 % (0.35 +0.20) X | = 1.275 X | 0.78

Solution 4.18

4.18.1 No signals are asserted in IF and ID stages. For the remaining three stages

we have:
ALUSrc = 0 ALUOp = 10, Branch = 0, MemWrite = O, MemtoReg = 1, RegWrite =
RegDst = MemRead = 0
b. | ALUSrc = 0, ALUOp = 10, Branch = 0, MemWrite = 0, MemtoReg = 1, RegWrite = 1
RegDst =1 MemRead = 0

4.18.2 One clock cycle.

4.18.3 The PCSrc signal is 0 for this instruction. The reason against generating
the PCSrc signal in the EX stage is that the and must be done after the ALU com-
putes its Zero output. If the EX stage is the longest-latency stage and the ALU out-
put is on its critical path, the additional latency of an AND gate would increase the
clock cycle time of the processor. The reason in favor of generating this signal in the
EX stage is that the correct next-PC for a conditional branch can be computed one
cycle earlier, so we can avoid one stall cycle when we have a control hazard.

4.18.4
- Control signal 1 Control signal 2
a. Generated in ID, used in EX Generated in ID, used in WB

b. Generated in ID, used in MEM Generated in ID, used in WB

Chapter 4 Solutions

$137

4.18.5

a. | R-type instructions

b. | Loads.

4.18.6 Signal 2 goes back though the pipeline. It affects execution of instructions
that execute after the one for which the signal is generated, so it is not a time-travel
paradox.

Solution 4.19

4.19.1 Dependences to the 1% next instruction result in 2 stall cycles, and the stall
is also 2 cycles if the dependence is to both 1* and 2" next instruction. Depen-
dences to only the 2" next instruction result in one stall cycle. We have:

a. 1+0.45x2+0.05x1=1.95 49% (0.95/1.95)

b. 1+0.40x2+0.10x1=1.9 47% (0.9/1.9)

4.19.2 With full forwarding, the only RAW data dependences that cause stalls are
those from the MEM stage of one instruction to the 1% next instruction. Even this
dependences causes only one stall cycle, so we have:

a. 1+0.25=1.25 20% (0.25/1.25)

b. 1+0.20=1.20 17% (0.20/1.20)

4.19.3 With forwarding only from the EX/MEM register, EX to 1% dependences
can be satisfied without stalls but EX to 2" and MEM to 1% dependences incur a
one-cycle stall. With forwarding only from the MEM/WB register, EX to 2" depen-
dences incur no stalls. MEM to 1% dependences still incur a one-cycle stall (no time
travel), and EX to 1% dependences now incur one stall cycle because we must wait
for the instruction to complete the MEM stage to be able to forward to the next
instruction. We compute stall cycles per instructions for each case as follows:

. EX/MEM MEM/WB Fewer stall cycles with

0.10 + 0.05 + 0.25 = 0.40 0.10 +0.10 + 0.25=0.45 EX/MEM

b. 0.05 +0.10 + 0.20=0.35 0.15 + 0.05 + 0.20 = 0.40 EX/MEM

$138

Chapter 4 Solutions

4.19.4 [n4.19.1 and 4.19.2 we have already computed the CPI without forwarding
and with full forwarding. Now we compute time per instruction by taking into
account the clock cycle time:

. Without forwarding With forwarding

1.95 x 100ps = 195ps 1.25 x 110ps = 137.5ps 1.42

b. 1.90 x 300ps = 570ps 1.20 x 350ps = 420ps 1.36

4.19.5 We already computed the time per instruction for full forwarding in
4.19.4. Now we compute time-per instruction with time-travel forwarding and the
speed-up over full forwarding:

. With full forwarding Time-travel forwarding Speed-up

1.25 x 110ps = 137.5ps 1 x 210ps = 210ps 0.65
b. 1.20 x 350ps = 420ps 1 x 450ps = 450ps 0.93
4.19.6
- EX/MEM MEM/WB Shorter time per instruction with
1.40 x 100ps = 140ps | 1.45 x 100ps = 145ps EX/MEM
b. | 1.35x 320ps =432ps | 1.40 x 310ps = 434ps EX/MEM

Solution 4.20

4.20.1
I T I
$1,4 ($1) 1110 13 ($2) 1110 12 ($1) 11 t0 13

12: add $2,$3,$3 ($2) 121013, 14
13: add $1,%$1,$2 ($1) 1310 14
I4: sw $1,20(%2)

b. | 11: add $1.$2.$3 ($1) 1110 I2 ($2)11,12,13t0 14 ($1) 11 t0 13
I2: sw $2,0($1) ($1) 13 to 14 ($1) 11,12 t0 13

I[3: 1w $1,4($2)
I4: add $2,$2,%1

4.20.2 Only RAW dependences can become data hazards. With forwarding,
only RAW dependences from a load to the very next instruction become hazards.

Chapter 4 Solutions

$139

Without forwarding, any RAW dependence from an instruction to one of the
following three instructions becomes a hazard:

. Instruction sequence With forwarding Without forwarding

$1,40($2) ($1) 11 t0 13

12: add $2,$3,9$3 ($2) 1210 13, 14
13: add $1,%$1,%$2 ($1) 13 to 14
T4: sw $1,20(%2)

b. | I1: add $1,$2.$3 ($1) 13 to 14 ($1) 11 to 12
12: sw $2,0(%1) ($1) 13 to 14
I13: 1w $1,4(%$2)
14: add $2,$2,%1

4.20.3 With forwarding, only RAW dependences from a load to the next two
instructions become hazards because the load produces its data at the end of the
second MEM stage. Without forwarding, any RAW dependence from an instruc-
tion to one of the following 4 instructions becomes a hazard:

. Instruction sequence With forwarding “

$1,40($2) ($1) 11 t0 13 ($1) 11 to 13
12: add $2,$3,9%3 ($2) 1210 13, 14
13: add $1,%$1,%$2 ($1) 13 to 14
T4: sw $1,20(%2)

b. | I1: add $1,$2,$3 ($1) 13 to 14 ($1)11to 12
12: sw $2,0(%1) ($1) 13 to 14
13: 1w $1,4($2)

14: add $2,$2,%1

4.20.4
T et semenes | a1
a. | I1: 1w $1,40(%2) ($1) 11 to 13 (O overrides 1)
12: add $2,$3,%3 ($2) 12 to 13 (2000 overrides 31)

13: add $1,%$1,%$2
I4: sw $1,20(%2)

b. | I1: add $1,$2,%3 ($1) 11 to 12 (2563 overrides 63)
12: sw $2,0(%1)
13: 1w $1,4(%2)
I14: add $2,%$2,%1

4.20.5 A register modification becomes “visible” to the EX stage of the following
instructions only two cycles after the instruction that produces the register value
leaves the EX stage. Our forwarding-assuming hazard detection unit only adds a

$140

Chapter 4 Solutions

one-cycle stall if the instruction that immediately follows a load is dependent on
the load. We have:

Instruction sequence Execution without
with forwarding stalls forwarding Values after execution

,40($2) $1 =0 (14 and after) $0=0
12: add $2,$3,$3 $1 =32
I13: add $1,$1,%2 $2 = 2000 (after 14) $2 = 2000
T4: sw $1,20(%$2) $1 = 32 (after 14) $3 = 1000
b I1: add $1,$2,$3 $1 = 2563 (Stall and after) | $0=0
I2: sw $2,0($1) $1=0
I3: 1w $1,4(%2) $1 = O (after 14) $2 = 2626
Stall $3 = 2500
14: add $2,$2,4$1 $2 = 2626 (after 14)
4.20.6

Instruction sequence
with forwarding stalls Correct execution Sequence with NOPs

($2) Tw $1,40($2) Tw $1,40($2)

12: add $2,$3,$3 12. add $2,$3,$3 add $2,$3,%3
I3: add $1,$1,%2 Stall nop
I4: sw $1,20(%2) Stall nop

I3: add $1,$1,%2 add $1,$1,%2
Stall nop
Stall nop

I4: sw $1,20(%2) sw $1,20(%2)

b. | 11: add $1,$2,$3 I1: add $1,%$2,$3 add $1,$2,43
I12: sw $2.,0(8$1) Stall nop
I3: Tw $1,4(%2) Stall nop

Stall 12: sw $2,0($1) sw o $2,0($1)

I4: add $2,$2,$1 I3: Tw $1,4(%2) Tw $1,4($2)
Stall nop
Stall nop

I4: add $2,$2,%1 add $2,$2,%1

Chapter 4 Solutions

Ss141

Solution 4.21
4.21.1

Tw

nop
nop
add
add
nop
Sw

and

$1,40($6)

$2,
$1

$3.,%1
,$6,%4

$2,20($4)

$1

81,44

add
nop
nop
sw
Tw
nop
nop
add
sw

$1

,$5,$3

$1,0(82)
$1,4(82)

$5,

$5.%1

$1,0(82)

4.21.2 We can move up an instruction by swapping its place with another instruc-
tion that has no dependences with it, so we can try to fill some nop slots with such
instructions. We can also use R7 to eliminate WAW or WAR dependences so we can

have more instructions to move up.

a. | I1: Tw $7,40(%6) Produce $7 instead of $1
13: add $1,%6,%4 Moved up to fill NOP slot
nop
12: add $2,%$3,%7 Use $7 instead of $1
I5: and $1,$1,%4 Moved up to fill NOP slot
nop
T4: sw $2,20(%4)
b. | I1: add $7,$5,%3 Produce $7 instead of $1
I13: 1w $1,4(%2) Moved up to fill NOP slot
nop
12: sw $7,0(%2) Use $7 instead of $1
14: add $5,%$5,%1
I5: sw $1,0(%2)

$142

Chapter 4 Solutions

4.21.3 With forwarding, the hazard detection unit is still needed because it must
insert a one-cycle stall whenever the load supplies a value to the instruction that
immediately follows that load. Without the hazard detection unit, the instruction
that depends on the immediately preceding load gets the stale value the register had
before the load instruction.

a. | 12 gets the value of $1 from before 11, not from I1 as it should.

b. | 14 gets the value of $1 from |1, not from I3 as it should.

4.21.4 The outputs of the hazard detection unit are PCWrite, IF/IDWrite, and
ID/EXZero (which controls the Mux after the output of the Control unit). Note
that TF/IDWrite is always equal to PCWrite, and ED/ExZero is always the opposite
of PCWrite. As a result, we will only show the value of PCWrite for each cycle. The
outputs of the forwarding unit is ALUin1 and ALUin2, which control Muxes which
select the first and second input of the ALU. The three possible values for ALUin1
or ALUin2 are 0 (no forwarding), 1 (forward ALU output from previous instruc-
tion), or 2 (forward data value for second-previous instruction). We have:

Instruction First five cycles
sequence Signals

MEM 1: PCWrite = 1, ALUin1 = X, ALUIn2 = X

add $2,$3 $1 IF ID e EX 2: PCWrite = 1, ALUin1 = X, ALUin2 = X

add $1,%6,%4 IF *** 1D 3: PCWrite = 1, ALUin1 = 0, ALUIn2 =0

sw $2,20(%4) IF 4: PCWrite = 0, ALUin1 = X, ALUin2 = X

and $1,%$1,%4 5: PCWrite = 1, ALUin1 = 0, ALUIn2 = 2

b. | add $1,$5,9$3 IF ID EX MEM WB 1: PCWrite = 1, ALUin1 = X, ALUIn2 = X
sw $1,0(%2) IF ID EX MEM 2: PCWrite = 1, ALUiIn1 = X, ALUin2 = X

Tw $1,4(%2) IF ID EX 3: PCWrite = 1, ALUin1 = 0, ALUin2 =0

add $5,9$5,%1 IF 1D 4: PCWrite = 1, ALUin1 = 0, ALUIn2 = 1

sw $1,0(%2) IF 5: PCWrite = 1, ALUin1 = 0, ALUIn2 = 0

4.21.5 The instruction that is currently in the ID stage needs to be stalled if it
depends on a value produced by the instruction in the EX or the instruction in the
MEM stage. So we need to check the destination register of these two instructions.
For the instruction in the EX stage, we need to check Rd for R-type instructions
and Rd for loads. For the instruction in the MEM stage, the destination register
is already selected (by the Mux in the EX stage) so we need to check that reg-
ister number (this is the bottommost output of the EX/MEM pipeline register).
The additional inputs to the hazard detection unit are register Rd from the ID/EX
pipeline register and the output number of the output register from the EX/MEM

Chapter 4 Solutions $143

pipeline register. The Rt field from the ID/EX register is already an input of the
hazard detection unit in Figure 4.60.

No additional outputs are needed. We can stall the pipeline using the three output
signals that we already have.

4.21.6 As explained for 4.21.5, we only need to specify the value of the PCWrite
signal, because IF/IDWrite is equal to PCWrite and the ID/EXzero signal is its
opposite. We have:

First five cycles
Instruction sequence Signals

1,40(%6) MEM 1: PCWrite = 1
add $2,$3,$1 IF ID kK *** 2: PCWrite = 1
add $1,%6,%4 TF *xx kkk 3: PCWrite = 1
sw o $2,20(%4) HAE 4: PCWrite = 0
and $1,$1,%4 5: PCWrite = 0
b. | add $1,%$5,%3 IF ID EX MEM WB 1: PCWrite = 1
sw $1,0(%2) IF ID ***x **x% 2: PCWrite = 1
Tw $1,4(%2) IF xxx ok 3: PCWrite = 1
add $5,%$5,%1 ke 4: PCWrite = 0
sw $1,0(%2) 5: PCWrite = 0

Solution 4.22
4.22.1

Pipeline Cycles

Executed Instructions 7 8

a. | 1w $1,40(%6) IF 1D EX MEM WB

beq $2,$3,Label2 (T) IF 1D EX MEM WB

beq $1,%$2,Labell (NT) IF D EX MEM WB

sw $2,20(%4) IF 1D EX MEM WB

and $1,%$1,%4 IF D EX MEM WB
b. | add $1,%$5,%3 IF 1D EX MEM WB

sw $1,0(%2) IF ID EX MEM WB

add $2,%$2,%3 IF 1D EX MEM WB

beq $2,%4,Labell (NT) IF ID EX MEM WB

add $5,%$5,%1 IF 1D EX MEM WB

sw $1,0(%2) IF 1D EX MEM WB

$144 Chapter 4 Solutions

4.22.2

Pipeline Cycles

Executed Instructions

a | lw $1,40(%6) IF ID EX MEM WB
beq $2,$3,Label2 (T) IF ID EX MEM WB
add $1,%6,%4 IF 1D EX MEM WB
beq $1,%$2,Labell (NT) IF ID FrE EX MEM WB
sw $2,20(%4) IF HHK 1D EX MEM WB
and $1,%1,%4 IF ID EX MEM WB
b. | add $1,$5,$3 IF D EX MEM WB
sw $1,0(%2) IF 1D EX MEM WB
add $2,$2,$3 IF ID EX MEM WB
beq $2,%$4,Labell (NT) IF 1D EX MEM WB
add $5,%5,%1 IF 1D EX MEM WB
sw $1,0(%2) IF 1D EX MEM WB
4.22.3
a. | Labell: 1w $1,40(%6)
seq $8,$2,%3
bnez $8,Label2 ; Taken
add $1,$6,%4

Label2: seq $8,%1,%$2
bnez $8,Labell ; Not taken
sw $2,20(%4)
and $1,%1,%4

b. add $1,%$5,43
Labell: sw $1,0(%$2)
add $2,%$2,43
bez $8,%2,%4
bnez $8,Labell ; Not taken
add $5,%5,%1
sw $1,0($2)

4.22.4 The hazard detection logic must detect situations when the branch
depends on the result of the previous R-type instruction, or on the result of two
previous loads. When the branch uses the values of its register operands in its ID
stage, the R-type instruction’s result is still being generated in the EX stage. Thus
we must stall the processor and repeat the ID stage of the branch in the next cycle.
Similarly, if the branch depends on a load that immediately precedes it, the result
of the load is only generated two cycles after the branch enters the ID stage, so we
must stall the branch for two cycles. Finally, if the branch depends on a load that
is the second-previous instruction, the load is completing its MEM stage when the
branch is in its ID stage, so we must stall the branch for one cycle. In all three cases,
the hazard is a data hazard.

Chapter 4 Solutions

$145

Note that in all three cases we assume that the values of preceding instructions are
forwarded to the ID stage of the branch if possible.

4.22.5 For 4.22.1 we have already shows the pipeline execution diagram for the
case when branches are executed in the EX stage. The following is the pipeline dia-
gram when branches are executed in the ID stage, including new stalls due to data
dependences described for 4.22.4:

Pipeline Cycles

Executed Instructions

a. | 1w $1,40(%6) IF 1D EX MEM WB
beq $2,$3,Label2 (T) IF D EX MEM WB
beq $1,%$2,Labell (NT) IF *** 1D EX MEM WB
sw $2,20(%4) IF 1D EX MEM WB
and $1,$1,%4 IF D EX MEM WB
b. | add $1,%$5,43 IF 1D EX MEM WB
sw o $1,0(%$2) IF ID EX MEM WB
add $2,$2,%$3 IF 1D EX MEM WB
beq $2,%4,Labell (NT) IF **% 1D EX MEM WB
add $5,%$5,%1 IF ID EX MEM WB
sw o $1,0(%$2) IF 1D EX MEM WB

Now the speed-up can be computed as:

a. | 11/10=1.1

b. | 12/12=1

4.22.6 Branch instructions are now executed in the ID stage. If the branch
instruction is using a register value produced by the immediately preceding instruc-
tion, as we described for 4.22.4 the branch must be stalled because the preceding
instruction is in the EX stage when the branch is already using the stale register
values in the ID stage. If the branch in the ID stage depends on an R-type instruc-
tion that is in the MEM stage, we need forwarding to ensure correct execution of
the branch. Similarly, if the branch in the ID stage depends on an R-type of load
instruction in the WB stage, we need forwarding to ensure correct execution of
the branch. Overall, we need another forwarding unit that takes the same inputs
as the one that forwards to the EX stage. The new forwarding unit should control
two Muxes placed right before the branch comparator. Each Mux selects between
the value read from Registers, the ALU output from the EX/MEM pipeline register,
and the data value from the MEM/WB pipeline register. The complexity of the new
forwarding unit is the same as the complexity of the existing one.

$146

Chapter 4 Solutions

Solution 4.23

4.23.1 Each branch that is not correctly predicted by the always-taken predictor
will cause 3 stall cycles, so we have:

a. | 3x(1-0.40)x0.15=0.27

3X(1-0.60)x0.10=0.12

4.23.2 Each branch that is not correctly predicted by the always-not-taken predictor
will cause 3 stall cycles, so we have:

a. | 3x(1-0.60)x0.15=0.18

b. | 3x(1-0.40)x0.10 = 0.18

4.23.3 Each branch that is not correctly predicted by the 2-bit predictor will
cause 3 stall cycles, so we have:

a. | 3x(1-0.80)x0.15=0.090

b. | 3x(1-0.95)% 0.10 = 0.015

4.23.4 Correctly predicted branches had CPI of 1 and now they become ALU
instructions whose CPI is also 1. Incorrectly predicted instructions that are con-
verted also become ALU instructions with a CPI of 1, so we have:

- CPI without conversion CPI with conversion Speed-up from conversion

1+3x(1-0.80)x 0.15 = 1.090 1+3x%(1-0.80)x 0.15 x 0.5 = 1.045 1.090/1.045 = 1.043

1+3x%x(1-0.95)x0.10=1.015 1+3x%x(1-0.95)%0.10 x 0.5 =1.008 1.015/1.008 = 1.007

4.23.5 Every converted branch instruction now takes an extra cycle to execute,

so we have:
CPI without Cycles per original Speed-up from
conversion instruction with conversion conversion
a. 1.090 1+(1+3x%x(1-0.80) % 0.15% 0.5 =1.120 1.090/1.120 = 0.97

b. 1.015 1+(1+3x(1-0.95)x0.10 x0.5=1.058 1.015/1.058 = 0.96

Chapter 4 Solutions

$147

4.23.6 Let the total number of branch instructions executed in the program be B.
Then we have:

Correctly Correctly predicted Accuracy on
predicted non-loop-back non-loop-back branches

B x 0.80 B x 0.00 (B x 0.00)/(B x 0.20) = 0.00 (00%)

b. B x 0.95 B x 0.15 (B x 0.15)/(B x 0.20) = 0.75 (75%)

Solution 4.24

4.24.1
. Always-taken Always not-taken
a. 3/4 =75% 1/4 = 25%
b. 3/5 =60% 2/5 = 40%
4.24.2
Predictor value Correct or
at time of prediction Incorrect
TTNT,T 0,1,2,1 LI 0%
b. T T, T,NT 0,1,2,3 I,1,C, 1 25%

4.24.3 The first few recurrences of this pattern do not have the same accuracy as
the later ones because the predictor is still warming up. To determine the accuracy
in the “steady state”, we must work through the branch predictions until the predic-
tor values start repeating (i.e. until the predictor has the same value at the start of
the current and the next recurrence of the pattern).

Predictor value Correct or Incorrect Accuracy in
at time of prediction (in steady state) steady state

T,TNT,T 18t occurrence: 0, 1, 2, c,c I cC 75%
2" occurrence: 2, 3, 2
3 occurrence: 3, 3, 3
4% occurrence: 3, 3, 3

Www DNk

b. | T, T, T, NT,NT 18t occurrence: 0, 1, 2,
2" occurrence: 1, 2, 3,
3 occurrence: 1, 2, 3,

C,C¢c Ll 60%

N oo N

$148

Chapter 4 Solutions

4.24.4 The predictor should be an N-bit shift register, where N is the number of
branch outcomes in the target pattern. The shift register should be initialized with the
pattern itself (0 for NT, 1 for T), and the prediction is always the value in the leftmost
bit of the shift register. The register should be shifted after each predicted branch.

4.24.5 Since the predictor’s output is always the opposite of the actual outcome
of the branch instruction, the accuracy is zero.

4.24.6 The predictor is the same as in 4.24.4, except that it should compare its
prediction to the actual outcome and invert (logical not) all the bits in the shift
register if the prediction is incorrect. This predictor still always perfectly predicts
the given pattern. For the opposite pattern, the first prediction will be incorrect,
so the predictor’s state is inverted and after that the predictions are always correct.
Opverall, there is no warm-up period for the given pattern, and the warm-up period
for the opposite pattern is only one branch.

Solution 4.25

4.25.1
a. Overflow (EX) Invalid target address (EX)
b. Invalid data address (MEM) No exceptions

4.25.2 The Mux that selects the next PC must have inputs added to it. Each input
is a constant address of an exception handler. The exception detectors must be
added to the appropriate pipeline stage and the outputs of these detectors must be
used to control the pre-PC Mux, and also to convert to nops instructions that are
already in the pipeline behind the exception-triggering instruction.

4.25.3 Instructions are fetched normally until the exception is detected. When the
exception is detected, all instructions that are in the pipeline after the first instruc-
tion must be converted to nops. As a result, the second instruction never com-
pletes and does not affect pipeline state. In the cycle that immediately follows the
cycle in which the exception is detected, the processor will fetch the first instruction
of the exception handler.

4.25.4

a. | OxFFFFFOOO

b. | 0x00000010

Chapter 4 Solutions

$149

The first instruction word from the handler address is fetched in the cycle after the
one in which the original exception is detected. When this instruction is decoded in
the next cycle, the processor detects that the instruction is invalid. This exception is
treated just like a normal exception—it converts the instruction being fetched in that
cycle into a nop and puts the address of the Invalid Instruction handler into the PC
at the end of the cycle in which the Invalid Instruction exception is detected.

4.25.5 This approach requires us to fetch the address of the handler from mem-
ory. We must add the code of the exception to the address of the exception vector
table, read the handler’s address from memory, and jump to that address. One way
of doing this is to handle it like a special instruction that computer the address in
EX, loads the handler’s address in MEM, and sets the PC in WB.

4.25.6 We need a special instruction that allows us to move a value from the
(exception) Cause register to a general-purpose register. We must first save the
general-purpose register (so we can restore it later), load the Cause register into it,
add the address of the vector table to it, use the result as an address for a load that

gets the address of the right exception handler from memory, and finally jump to
that handler.

Solution 4.26

4.26.1 All exception-related signals are 0 in all stages, except the one in which the
exception is detected. For that stage, we show values of Flush signals for various
stages, and also the value of the signal that controls the Mux that supplies the PC
value.

T T

a. EX IF.Flush = ID.Flush = EX.Flush = 1, PCSel = Exc

b. MEM IF.Flush = ID.Flush = EX.Flush = MEM.Flush = 1, PCSel = Exc
This exception is detected in MEM, so we added MEM.Flush

4.26.2 The signals stored in the ID/EX stage are needed to execute the instruc-
tion if there are no exceptions. Figure 4.66 does not show it, but exception condi-
tions from various stages are also supplied as inputs to the Control unit. The signal
that goes directly to EX is EX.Flush and it is based on these exception condition
inputs, not on the opcode of the instruction that is in the ID stage. In particular, the
EX.Flush signal becomes 1 when the instruction in the EX stage triggers an excep-
tion and must be prevented from completing.

4.26.3 The disadvantage is that the exception handler begins executing one cycle
later. Also, an exception condition normally checked in MEM cannot be delayed
into WB, because at that time the instruction is updating registers and cannot be
prevented from doing so.

$150

Chapter 4 Solutions

4.26.4 When overflow is detected in EX, each exception results in a 3-cycle delay
(IE, ID, and EX are cancelled). By moving overflow into MEM, we add one more
cycle to this delay. To compute the speed-up, we compute execution time per
100,000 instructions:

New time per

Old clock New clock Old time per 100,000

cycle time cycle time 100,000 instructions instructions Speed-up
a. 350ps 350ps 350ps x 100,003 350ps x 100,004 0.99999
b. 210ps 210ps 210ps x 100,003 210ps x 100,004 0.99999

4.26.5 Exception control (Flush) signals are not really generated in the EX stage.
They are generated by the Control unit, which is drawn as part of the ID stage, but
we could have a separate “Exception Control” unit to generate Flush signals and
this unit is not really a part of any stage.

4.26.6 Flush signals must be generated one Mux time before the end of the cycle.
However, their generation can only begin after exception conditions are generated.
For example, arithmetic overflow is only generated after the ALU operation in EX
is complete, which is usually in the later part of the clock cycle. As a result, the Con-
trol unit actually has very little time to generate these signals, and they can easily be
on the critical path that determines the clock cycle time.

Solution 4.27

4.27.1 When the invalid instruction (I3) is decoded, IE.Flush and ID.Flush sig-
nals are used to convert I3 and I4 into nops (marked with *). In the next cycle, in IF
we fetch the first instruction of the exception handler, in ID we have a nop (instead
of 14, marked), in EX we have a nop (instead of I3), and 11 and 12 still continue
through the pipeline normally:

a. | I1: beq $1,%0,Label IF ID EX MEM WB
12: sw $6,50(%1) IF ID EX MEM
I13: Invalid IF ID *EX
I14: Something IF *ID
I5: Handler IF
b. I1: beq $5,%0,Label IF ID EX MEM WB
I12: nor $5,%$4,%$3 IF ID EX MEM
I13: Invalid IF ID *EX
I4: Something IF *ID
I5: Handler IF

Chapter 4 Solutions

$151

4.27.2 When 12 is in the MEM stage, it triggers an exception condition that results
in converting 12 and I5 into nops (I3 and I4 are already nops by then). In the next
cycle, we fetch 16, which is the first instruction of the exception handler for the
exception triggered by 12.

. Branch and delay slot Branch and delay slot

a. | I1: beq $1,%0,Label IF ID EX MEM WB
12: sw $6,50(%1) IF ID EX MEM *WB
I13: Invalid IF ID *EX *ME
I4: Something IF *ID *EX
I5: Handler 1 IF *ID
I16: Handler 2 IF
b. I1: beqg $5,%0,Label IF ID EX MEM WB
I12: nor $5,%4,%$3 IF ID EX MEM *WB
I13: Invalid IF ID *EX *ME
I4: Something IF *ID *EX
I5: Handler 1 IF *ID
I6: Handler 2 IF

4.27.3 The EPC is the PC + 4 of the delay slot instruction. As described in
Section 4.9, the exception handler subtracts 4 from the EPC, so it gets the address
of the instruction that generated the exception (12, the delay slot instruction). If the
exception handler decides to resume execution of the application, it will jump to
the 12. Unfortunately, this causes the program to continue as if the branch was not
taken, even if it was taken.

4.27.4 The processor cancels the store instruction and other instructions (from
the “Invalid instruction” exception handler) fetched after it, and then begins fetch-
ing instructions from the invalid data address handler. A major problem here is that
the new exception sets the EPC to the instruction address in the “Invalid instruction”
handler, overwriting the EPC value that was already there (address for continuing
the program). If the invalid data address handler repairs the problem and attempts
to continue the program, the “Invalid instruction” handler will be executed. How-
ever, if it manages to repair the problem and wants to continue the program, the
EPC it incorrect (it was overwritten before it could be saved). This is the reason why
exception handlers must be written carefully to avoid triggering exceptions them-
selves, at least until they have safely saved the EPC.

4.27.5 Not for store instructions. If we check for the address overflow in MEM,
the store is already writing data to memory in that cycle and we can no longer
“cancel” it. As a result, when the exception handler is called the memory is already
changed by the store instruction, and the handler can not observe the state of the
machine that existed before the store instruction.

$152

Chapter 4 Solutions

4.27.6 We must add two comparators to the EX stage, one that compares the
ALU result to WADDR, and another that compares the data value from Rt to
WVAL. If one of these comparators detects equality and the instruction is a store,
this triggers a “Watchpoint” exception. As discussed for 4.27.5, we cannot delay the
comparisons until the MEM stage because at that time the store is already done and
we need to stop the application at the point before the store happens.

Solution 4.28

4.28.1

a. add
Again: beq
add

add

Sw

addi

beq
End:

,$0,%0
,$2,End
,$3,%1
,0(%6)
,$4,%1
,0(%$8)
,$1,1
,$0,Again

b. add
Again: add
Tw

beq
Sw
addi
beq

End:

$4,
,$4,%6
,0081)
,1(81)
$2,
,0(81)
$4,
$0,

$0.$0

$3.End

$4,1
$0,Again

Chapter 4 Solutions

§153

4.28.2

T ™

add
beq
add
Tw
add
Sw
addi
beq
beq
add
Tw
add
Sw
addi
beq
beq

$1,$0,%0
$1,$2,End
$6,$3,%1
$7,0(%6)
$8,%$4,4%1
$7,0($8)
$1,$1,1
$0,%$0,Again
$1,$2,End
$6,$3,$1
$7,0(%6)
$8,%$4,4$1
$7,0($8)
$1,$1,1
$0,%0,Again
$1,$2,End

IF 1D
IF ID
IF
IF

EX

**
*Kx
**

WB

ME
EX

WB
ME

WB

add
add

Tw
beq
Sw
addi
bew
add
Tw

beq
Sw
addi
bew
add

Tw
beq

$4,$0,%$0
$1,%4,%$6
$2,0(%1)
$3,1(%1)
$2,$3,End
$0,0($1)
$4,%4,1
$0,%$0,Again
$1,%4,%6
$2,0(%1)
$3,1(%1)
$2,$3,End
$0,0(%1)
$4,%4,1
$0,%0,Again
$1,%4,%$6
$2,0(%1)
$3,1(%1)
$2,$3,End

IF ID
IF ID

IF

EX

**
*Kx
**

WB

**
*Kx
**

WB
ME
EX

**
*Kx

WB

ME WB

EX ME WB

ID ** EX ME WB

$154

Chapter 4 Solutions

4.28.3 The only way to execute 2 instructions fully in parallel is for a load/store to
execute together with another instruction. To achieve this, around each load/store
instruction we will try to put non-load/store instructions that have no dependences

with the load/store.
a. add $1,$0,%0
Again: beq $1,$2,End
add $6,$3,4$1
add $8,%4,41
Tw $7,0(%6)
addi $1,%1,1
SwW $7,0($8)
beq $0,%$0,Again
End:
b. add $4,%0,%0 We have not changed anything. Note that the only
Again: add $1,%4,%6 instruction without dependences to or from the two
Tw $2,0($1) loads is ADDI, and it cannot be moved above the branch
Tw $3,1(%1) (then the loop would exit with the wrong value for i).
beq $2,$3,End
Sw $0,0(%1)
addi $4,%4,1
beq $0,$0,Again
End:

Chapter 4 Solutions

$155

4.28.4

a. | add $1,%0,%0 IF ID EX ME WB
beq $1,%$2,End IF ID ** EX ME WB
add $6,$3,%$1 IF ** ID EX ME WB
add $8,%4,%1 IF ** ID ** EX ME WB
Tw $7,0(%6) IF ** ID EX ME WB
addi $1,%$1,1 IF ** ID EX ME WB
sw $7,0($8) IF ID EX ME WB
beq $0,%$0,Again IF ID EX ME WB
beq $1,%$2,End IF ID EX ME WB
add $6,%$3,9%1 IF ID ** EX ME WB
add $8,%4,%1 IF ** ID EX ME WB
Tw $7,0(%6) IF ** ID EX ME WB
addi $1,%1,1 IF ID EX ME WB
SW $7,0($8) IF ID EX ME WB
beq $0,%$0,Again IF ID EX ME WB
beq $1,%$2,End IF ID ** EX ME WB
b. | add $4,%$0,%0 IF ID EX ME WB
add $1,%4,%6 IF ID ** EX ME WB
Tw $2,0(%1) IF ** ID EX ME WB
Tw $3,1(%1) IF ** ID ** EX ME WB
beq $2,$3,End IF ** ID ** EX ME WB
SwW $0,0(%1) IF ** ID ** EX ME WB
addi $4,%4,1 IF ** ID EX ME WB
bew $0,%$0,Again IF ** ID ** EX ME WB
add $1,%4,9%6 IF ** ID EX ME WB
Tw $2,0(%1) IF ** ID ** EX ME WB
Tw $3,1(%1) IF ** ID EX ME WB
beq $2,$3,End IF ** ID ** ** EX ME WB
sw $0,0(%1) IF ** ** 1D EX ME WB
addi $4,%$4,1 IF ** ** 1D EX ME WB
bew $0,$0,Again IF ID EX ME WB
add $1,%4,%6 IF ID ** EX ME WB
Tw $2,0(%1) IF ** ID EX ME WB
Tw $3,1(%1) IF ** ID ** EX ME WB
beq $2,$3,End IF ** ID ** EX ME WB

$156

Chapter 4 Solutions

4.28.5

- CPI for 1-issue CPI for 2-issue Speed-up

1 (no data hazards)

0.86 (12 cycles for 14 instructions). In even-
numbered iterations the LW and the SW can
execute in parallel with the next instruction.

b. | 1.14 (8 cycles per 7
instructions). There is 1 stall
cycle in each iteration due
to a data hazard between
LW and the next instruction
(BEQ).

1 (14 cycles for 14 instruction). Neither LW
instruction can execute in parallel with another
instruction, and the BEQ after the second LW
is stalled because it depends on the load.
However, SW always executes in parallel with
another instruction (alternating between BEQ
and ADDI).

1.14

4.28.6

- CPI for 1-issue CPI for 2-issue Speed-up

0.64 (9 cycles for 14 instructions). In odd-
numbered iterations ADD and LW cannot
execute in the same cycle because of a data
dependence, and then ADD and SW have the
same problem. The rest of the instructions can
execute in pairs.

b. 1.14

0.86 (12 cycles for 14 instructions). In all
iterations BEQ is stalled because it depends
on the second LW. In odd-numbered BEQ and
SW execute together, and so do ADDI and the
last BEQ. In even-numbered iterations SW and
ADDI execute together, and so do the last BEQ
and the first ADD of the next iteration.

1.33

Solution 4.29

4.29.1 Note that all register read ports are active in every cycle, so 4 register reads
(2 instructions with 2 reads each) happen in every cycle. We determine the number
of cycles it takes to execute an iteration of the loop and the number of useful reads,
then divide the two. The number of useful register reads for an instruction is the
number of source register parameters minus the number of registers that are for-
warded from prior instructions. We assume that register writes happen in the first
half of the cycle and the register reads happen in the second half.

Chapter 4 Solutions $157

addi $5,%5, - 17%
beq $5,%0, Loop ID K EX ME WB (4/(6 x 4))
Tw $1,40(%6) IF ** ID EX ME WB 1
add $5,%$5,9%1 IF *#* ID ** ** EX ME WB 0 (%1, $5 fw)
sw $1,20(%$5) IF ** **x 1D EX ME WB 1 ($5 fw)
addi $6,%6,4 IF *#* ** 1D EX ME WB 1
addi $5,%5, -4 IF ID EX ME WB 0 ($5 fw)
beq $5,%0,Loop IF ID ** EX ME WB 1($5 fw)
b. | addi $2,%2,4 ID EX ME WB 25%
beq $2,%$0,Loop ID ** EX ME WB (4/(4 x 4))
add $1,%$2,43 IF ** ID EX ME WB 1 ($2 fw)
sw $0,0(%1) IF ** ID ** EX ME WB 1 ($1 fw)
addi $2,%2,4 IF ** ID EX ME WB 1
beq $2,%$0,Loop IF ** ID ** EX ME WB 1 ($2 fw)

4.29.2 The utilization of read ports is lower with a wider-issue processor:

-“ Pipeline stages Useful reads % Useful

addi $6,%6,4 5.6%
addi $5,%5,-4 ID EX ME WB (2/(6 x 6))
beq $5,%0,Loop ID ** EX ME WB

Tw $1,40(%6) IF ** ID EX ME WB 0 ($6 fw)

add $5,%$5,9$1 IF ** ID ** ** EX ME WB 0 ($1, $5 fw)

sw $1,20(%5) IF ** ID ** %% *xx FX ME WB 0 ($1, $5 fw)

addi $6,%6,4 IF ** *x %% 1D EX ME WB 1

addi $5,%5,-4 IF ** *x %% D EX ME WB 0 ($5 fw)

beq $5,%0,Loop IF *% *x %%) ** EX ME WB 1 ($5 fw)

b. | sw $0,0($1) ID EX ME WB 21%
addi $2,%2.,4 ID EX ME WB (10/(8 x 6))
beq $2,%0,Loop ID ** EX ME WB
add $1,$2,%3 IF ** ID EX ME WB 1($2 fw)
sw $0,0(%$1) IF ** ID ** EX ME WB 1($1 fw)
addi $2,%2.,4 IF ** ID ** EX ME WB 0 ($2 fw)
beq $2,%0,Loop IF ** ID EX ME WB 1($2 fw)
add $1,$2,%3 IF ** ID EX ME WB 1($2 fw)
sw $0,0(%$1) IF ** ID ** EX ME WB 1($1 fw)
addi $2,%2.,4 IF ** ID EX ME WB 1
beq $2,%0,Loop IF ** ID ** EX ME WB 1($2 fw)
add $1,$2,%3 IF ** ID ** EX ME WB 1($2 fw)
sw $0,0(%$1) IF ** ID EX ME WB 1($1 fw)
addi $2,%2.,4 IF ** ID EX ME WB 0 ($2 fw)
beq $2,%0,Loop IF ** ID ** EX ME WB 1($2 fw)

4.29.3
| zveswsed | spotswses |
a. 1 cycle out of 6 (16.7%) Never (0%)

b. 4 cycles out of 8 (50%) Never (0%)

$158

Chapter 4 Solutions

4.29.4
T unvoted na scneuuioioop | conmen |
a. | Loop: Tw $10,40(%6) The only time this code is unable to execute two
Tw $1,44(%6) instructions in the same cycle is in even-numbered
addi $5,9%5,-8 iterations of the unrolled loop when the two ADD
addi $6,%6,8 instruction are fetched together but must execute
add $11,$5,%10 in different cycles.
add $5,%11,¢1
Sw $10,28(%$11)
sw $1,24(9$5)
beq $5,%0,Loop
b. | Loop: add $1,$2,%3 We are able to execute two instructions per cycle
addi $2,%2.,8 in every iteration of this loop, so we execute two
sw $0,-8(%1) iterations of the unrolled loop every 5 cycles.
sw $0,-4($1)
beq $2,%0, Loap

4.29.5 We determine the number of cycles needed to execute two iterations of
the original loop (one iteration of the unrolled loop). Note that we cannot use CPI
in our speed-up computation because the two versions of the loop do not execute
the same instructions.

B T TN

6x2=12

b. 4x2=8 2.5(5/2) 3.2

4.29.6 On a pipelined processor the number of cycles per iteration is easily com-
puted by adding together the number of instructions and the number of stalls.
The only stalls occur when a 1w instruction is followed immediately with a RAW-
dependent instruction, so we have:

I T S

(6+1)x2=14

b. 4x2=8 5 1.6

Solution 4.30

4.30.1 Let p be the probability of having a mispredicted branch. Whenever we
have an incorrectly predicted beq as the first of the two instructions in a cycle (the
probability of this event is p), we waste one issue slot (half a cycle) and another
two entire cycles. If the first instruction in a cycle is not a mispredicted beq but the

Chapter 4 Solutions

$159

second one is (the probability of this is (1 — p) x p), we waste two cycles. Without
these mispredictions, we would be able to execute 2 instructions per cycle. We

have:

0.5+0.02x2.5+0.98 x0.02x2=0.589

0.5+0.05x2.5+0.95x0.05x2=0.720

4.30.2 Inability to predict a branch results in the same penalty as a mispredicted
branch. We compute the CPI like in 4.30.1, but this time we also have a 2-cycle
penalty if we have a correctly predicted branch in the first issue slot and another
branch that would be correctly predicted in the second slot. We have:

CPI with 2 predicted
branches per cycle CPI with 1 predicted branch per cycle Speed-up

0.589

0.5+0.02x25+0.98x0.02x2+0.18x0.18 x 2=0.654

1.11

b. 0.720

0.5+ 0.05x2.5+0.95x0.05x2+0.10 x 0.10 x 2 =0.740

1.03

4.30.3 We have a one-cycle penalty whenever we have a cycle with two instructions
that both need a register write. Such instructions are ALU and 1w instructions.
Note that beq does not write registers, so stalls due to register writes and due to
branch mispredictions are independent events. We have:

CPI with 2 register
writes per cycle

CPI with 1 register write per cycle Speed-up

0.589

0.5+0.02x25+098x%x0.02x2+0.70x0.70x 1=1.079

1.83

0.720

0.5+0.05%x25+0.95%x0.05%x2+0.75%x0.75x 1 =1.283

1.78

4.30.4 We have already computed the CPI with the given branch prediction
accuracy, and we know that the CPI with ideal branch prediction is 0.5, so:

CPI with given CPI with perfect
branch prediction branch prediction Speed-up

0.589

1.18

b. 0.720

0.5 1.44

4.30.5 The CPI with perfect branch prediction is now 0.25 (four instructions
per cycle). A branch misprediction in the first issue slot of a cycle results in 2.75
penalty cycles (remaining issue slots in the same cycle plus 2 entire cycles), in the

Chapter 4 Solutions

second issue slot 2.5 penalty cycles, in the third slot 2.25 penalty cycles, and in the
last (fourth) slot 2 penalty cycles. We have:

CPI with perfect
CPI with given branch prediction branch prediction Speed-up

0.25 + 0.02 X 2.75 + 0.98 X 0.02 x 2.5 + 0.98% x 0.02 x 2.25 + 0.98% x 0.02 x 2 = 0.435 0.25 1.74

0.25 + 0.05 x 2.75 + 0.95 x 0.05 x 2.5 + 0.952 x 0.05 x 2.25 + 0.95° x 0.05 x 2 = 0.694 0.25 2.77

The speed-up from improved branch prediction is much larger in a 4-issue proces-
sor than in a 2-issue processor. In general, processors that issue more instructions
per cycle gain more from improved branch prediction because each branch mis-
prediction costs them more instruction execution opportunities (e.g., 4 per cycle
in 4-issue versus 2 per cycle in 2-issue).

4.30.6 With this pipeline, the penalty for a mispredicted branch is 20 cycles plus
the fraction of a cycle due to discarding instructions that follow the branch in the
same cycle. We have:

CPI with perfect
CPI with given branch prediction branch prediction | Speed-up

0.25 +0.02 x 20.75 + 0.98 x 0.02 x 20.5 + 0.982 x 0.02 x 20.25 + 0.98% x 0.02 x 20 = 1.832 0.25 7.33

0.25 +0.05 x 20.75 + 0.95 x 0.05 x 20.5 + 0.95% x 0.05 x 20.25 + 0.95% x 0.05 x 20 = 4.032 0.25 16.13

We observe huge speed-ups when branch prediction is improved in a processor
with a very deep pipeline. In general, processors with deeper pipelines benefit more
from improved branch prediction because these processors cancel more instruc-
tions (e.g., 20 stages worth of instructions in a 50-stage pipeline versus 2 stages
worth of instructions in a 5-stage pipeline) on each misprediction.

Solution 4.31

4.31.1 The number of cycles is equal to the number of instructions (one
instruction is executed per cycle) plus one additional cycle for each data hazard
which occurs when a Tw instruction is immediately followed by a dependent
instruction. We have:

a. | (8+1)/8=1.13

b. | (7+1)/7=1.14

4.31.2 The number of cycles is equal to the number of instructions (one
instruction is executed per cycle), plus the stall cycles due to data hazards. Data

Chapter 4 Solutions

$161

hazards occur when the memory address used by the instruction depends on the
result of a previous instruction (EXE to ARD, 2 stall cycles) or the instruction after
that (1 stall cycle), or when an instruction writes a value to memory and one of the
next two instructions reads a value from the same address (2 or 1 stall cycles). All
other data dependences can use forwarding to avoid stalls. We have:

mov -4(esp), eax No stalls. 7/7=1
12: add (edx), eax
I3: mov eax, -4(esp)
I4: add 1, ecx
I5: add 4, edx
I6: cmp esi, ecx
17: j1 Label
b. | I1: add eax, (edx) No stalls. 4/4=1
12: mov eax, edx
I3: add 1, eax
I4: j1 Label

4.31.3 The number of instructions here is that from the x86 code, but the num-
ber of cycles per iteration is that from the MIPS code (we fetch x86 instructions, but
after instructions are decoded we end up executing the MIPS version of the loop):

9/7=1.29
b. | 8/4=2

»

4.31.4 Dynamic scheduling allows us to execute an independent “future
instruction when the one we should be executing stalls. We have:

I T T

$2,-4(%sp) 13 stalls, but we do 15 1 (no stalls)
12: 1w $3,0(%4) instead.
13: add $2,$2,4$3
14: sw $2,-4(%sp)

I5: addi $6,$6,1
I6: addi $4,%4.,4

17: slt $1,%$6,9$5
18: bne $1,%0,Label
b. | I1: Tw $2,0(%4) 12 stalls, and all (7+1)/7=1.14
12: add $2,%2,9%5 subsequent instructions
I13: sw $2,0(%4) have dependences so
I4: add $4,$5,9%0 this stall remains.
I5: addi $5,$5,1
16: slt $1,$5,%0

17: bne $1,%$0, Label

$162

Chapter 4 Solutions

4.31.5 We use t0, t1, etc. as names for new registers in our renaming. We have:

tl,-4($sp)
12: 1w $3,0(%4)
13: add $2,t1,$3
14: sw $2,-4($sp)

I5: addi $6,$6,1
16: addi $4.,%4.,4

13 would stall, but 15 is executed
instead.

1 (no stalls)

17: slt $1,$6,%$5
18: bne $1,$0, Label
b. | I1: Tw £1,0(%$4) 12 stalls, and all subsequent (7+1)/7=1.14
12: add $2,t1,$5 instructions have dependences so
I13: sw $2,0(%4) this stall remains. Note that 14 or
14: add $4,%$5,%0 15 cannot be done instead of 12
I5: addi $5,$5,1 because of WAR dependences that
16: slt $1,$5,%0 are not eliminated. Renaming $4
17: bne $1,%0, Label in 14 or $5 in 15 does not eliminate

any WAR dependences. This is a
problem when renaming is done
on the code (e.g., by the compiler).
If the processor was renaming
registers at runtime each instance
of 14 would get a new name for the
$4 it produces and we would be
able to “cover” the 12 stall.

4.31.6 Note that now every time we execute an instruction it can be renamed

differently. We have:

I S

Tw t1,-4($sp) No stalls remain. 13 1 (no stalls)
12: Tw t2,0(%4) would stall stalls, but we
I13: add £3,t1,t2 can do 15 instead.
I14: sw t3,-4($sp)
15: addi t4,%6,1
16: addi t5,$4,4
17: slt t6,t4,$5
18: bne t6,%$0, Label
In next iteration uses of $6 renamed to
t4, $4 renamed to t5.
b. | I1: lw t£1,0(%$4) No stalls remain. 12 7/7=1
12: add t2,t1,$5 would stall, but we can
13: sw t2,0(%$4) do 14 instead.
14: add t3,$5,%0
15: addi t4,$5,1
16: slt t5,t4,$0
17: bne £5,$0, Label

t3, $5 renamed to t4.

In next iteration uses of $4 renamed to

Chapter 4 Solutions

$163

Solution 4.32

4.32.1 The expected number of mispredictions per instruction is the probability
that a given instruction is a branch that is mispredicted. The number of instruc-
tions between mispredictions is one divided by the number of mispredictions per

instruction. We get:
Instructions between mispredictions

a. 0.2x(1-0.9) 50

- Mispredictions per instruction

b. 0.20 x (1 - 0.995) 1000

4.32.2 The number of in-progress instructions is equal to the pipeline depth
times the issue width. The number of in-progress branches can then be easily com-
puted because we know what percentage of all instructions are branches. We have:

ST gt |

12x4x0.20=9.6

25x4x0.20=20

4.32.3 We keep fetching from the wrong path until the branch outcome is known,
fetching 4 instructions per cycle. If the branch outcome is known in stage N of the
pipeline, all instructions are from the wrong path in N — 1 stages. In the Nth stage,
all instructions after the branch are from the wrong path. Assuming that the branch
is just as likely to be the 1%, 279, 34 or 4 instruction fetched in its cycle, we have
on average 1.5 instructions from the wrong path in the Nth stage (3 is branch is 1%,
2 is branch is 2", 1 is branch is 3", and 0 if branch is last). We have:

I

a. | (10-1)x4x15=375

(18-1)x4x 1.5=69.5

4.32.4 We can compute the CPI for each processor, then compute the speed-up.
To compute the CPI, we note that we have determined the number of useful
instructions between branch mispredictions (for 4.32.1) and the number of mis-
fetched instructions per branch misprediction (for 4.32.3), and we know how many
instructions in total are fetched per cycle (4 or 8). From that we can determine the

$164

Chapter 4 Solutions

number of cycles between branch mispredictions, and then the CPI (cycles per
useful instruction). We have:

S wewe T e

(375 +50)/4=21.9 |21.9/50 = 0.438 (10-1)x8x35= |(75.5+50)/8=15.7 | 15.7/50 = 0.314 1.39
75.5
b. | (69.5 + 1000)/4 = 267.4/1000 = 0.267 |(18-1)x8%x3.5= |(139.5 + 1000)/8 = | 142.4/1000 = 0.142 1.88
267.4 139.5 142.4

4.32.5 When branches are executed one cycle earlier, there is one less cycle needed
to execute instructions between two branch mispredivctions. We have:

- “Normal” CPI “Improved” CPI Speed-up

21.9/50 = 0.438 20.9/50 = 0.418 1.048
b. 267.4/1000 = 0.267 266.4/1000 = 0.266 1.004
4.32.6
- “Normal” CPI “Improved” CPI Speed-up
15.7/50 = 0.314 14.7/50 = 0.294 1.068
b. 142.4/1000 = 0.142 141.4/1000 = 0.141 1.007

Speed-ups from this improvement are larger for the 8-issue processor than with
the 4-issue processor. This is because the 8-issue processor needs fewer cycles to
execute the same number of instructions, so the same 1-cycle improvement repre-
sents a large relative improvement (speed-up).

Solution 4.33

4.33.1 We need two register reads for each instruction issued per cycle:

- Read ports

a. | 4x2=8

b. | 2x2=4

4.33.2 We compute the time-per-instruction as CPI times the clock cycle time.
For the 1-issue 5-stage processor we have a CPI of 1 and a clock cycle time of T. For
an N-issue K-stage processor we have a CPI of 1/N and a clock cycle of T x 5/K.
Opverall, we get a speed-up of:

Chapter 4 Solutions

$165

I ™

a. | 10/5x4=8

b. | 25/5x2=10

4.33.3 We are unable to benefit from a wider issue width (CPI is 1), so we have:

I

a. | 10/5=2
25/5=5

4.33.4 We first compute the number of instructions executed between mispre-
dicted branches. Then we compute the number of cycles needed to execute these
instructions if there were no misprediction stalls, and the number of stall cycles
due to a misprediction. Note that the number of cycles spent on a misprediction
in is the number of entire cycles (one less than the stage in which branches are
executed) and a fraction of the cycle in which the mispredicted branch instruc-
tion is. The fraction of a cycle is determined by averaging over all possibilities. In
an N-issue processor, we can have the branch as the first instruction of the cycle,
in which case we waste (N — 1) Nths of a cycle, or the branch can be the second
instruction in the cycle, in which case we waste (N — 2) Nths of a cycle, ..., or the
branch can be the last instruction in the cycle, in which case none of that cycle
is wasted. With all of this data we can compute what percentage of all cycles are
misprediction stall cycles:

Instructions between Cycles between
branch mispredictions | branch mispredictions % Stalls

/(0.30 x 0.05) = 66.7 66.7/4 = 16.7 6/(16.7 + 6.4) = 26%
1/(0.15 x 0.03) = 222.2 222.2/2=111.1 7.3 7/(111.1 + 7.3) = 5.9%

4.33.5 We have already computed the number of stall cycles due to a branch mis-
prediction, and we know how to compute the number of non-stall cycles between
mispredictions (this is where the misprediction rate has an effect). We have:

Stall cycles between Need # of instructions Allowed branch
mispredictions between mispredictions misprediction rate

6.4 x4/0.10 = 255 /(255 x 0.30) = 1.31%

b. 7.3 7.3%2/0.02 = 725 1/(725 x 0.15) = 0.92%

The needed accuracy is 100% minus the allowed misprediction rate.

$166

Chapter 4 Solutions

4.33.6 This problem is very similar to We have already computed the number of
stall cycles due to a branch misprediction, and we know how to compute the num-
ber of non-stall cycles between mispredictions (this is where the misprediction rate
has an effect). We have:, except that we are aiming to have as many stall cycles as we
have non-stall cycles. We get:

Stall cycles between Need # of instructions Allowed branch
mispredictions between mispredictions misprediction rate

6.4%x 4 =255 1/(25.5 x 0.30) = 13.1%

b. 7.3 7.3x2=145 1/(14.5 x 0.15) = 46.0%

The needed accuracy is 100% minus the allowed misprediction rate.

Solution 4.34

4.34.1 We need an IF pipeline stage to fetch the instruction. Since we will only
execute one kind of instruction, we do not need to decode the instruction but we
still need to read registers. As a result, we will need an ID pipeline stage although
it would be misnamed. After that, we have an EXE stage, but this stage is sim-
pler because we know exactly which operation should be executed so there is no
need for an ALU that supports different operations. Also, we need no Mux to select
which values to use in the operation because we know exactly which value it will
be. We have:

a. | Inthe ID stage we read two registers and we do not need a sign-extend unit. In the EXE stage
we need an Add unit whose inputs are the two register values read in the ID stage. After the
EXE stage we have a WB stage which writes the result from the Add unit into Rd (again, no
Mux). Note that there is no MEM stage, so this is a 4-stage pipeline. Also note that the PC is
always incremented by 4, so we do not need the other Add and Mux units that compute the
new PC for branches and jumps.

b. | We only read one register in the ID stage so there is no need for the second read port in the
Registers unit. We do need a sign-extend unit for the Offs field in the instruction word. In the
EXE stage we need an Add unit whose inputs are the register value and the sign-extended
offset from the ID stage. After the EXE stage we use the output of the Add unit as a memory
address in the MEM stage, and then we have a WB stage which writes the value we read in the
MEM stage into Rt (again, no Mux). Also note that the PC is always incremented by 4, so we do
not need the other Add and Mux units that compute the new PC for branches and jumps.

Chapter 4 Solutions

$167

4.34.2

a. | Assuming that the register write in WB happens in the first half of the cycle and the register
reads in ID happen in the second half, we only need to forward the Add result from the EX/WB
pipeline register to the inputs of the Add unit in the EXE stage of the next instruction (if that
next instruction depends on the previous one). No hazard detection unit is needed because
forwarding eliminates all hazards.

b. | Assuming that the register write in WB happens in the first half of the cycle and the register
read in ID happens in the second half, we only need to forward the memory value from the
MEM/WB pipeline register to the first (register) input of the Add unit in the EXE stage of the
next or second-next instruction (if one of those two instructions is dependent on the one that
has just read the value). We also need a hazard detection unit that stalls any instruction whose
Rs register field is equal to the Rt field of the previous instruction.

4.34.3 We need to add some decoding logic to our ID stage. The decoding logic
must simply check whether the opcode and funct filed (if there is a funct field)
match this instruction. If there is no match, we must put the address of the excep-
tion handler into the PC (this adds a Mux before the PC) and flush (convert to
nops) the undefined instruction (write zeros to the ID/EX pipeline register) and
the following instruction which has already been fetched (write zeros to the IF/ID
pipeline register).

4.34.4

a. | We need to add the logic that computes the branch address (sign-extend, shift-left-2, Add, and
Mux to select the PC). We also need to replace the Add unit in EXE with an ALU that supports
either an ADD or a comparison. The ALUOp signal to select between these operations must be
supplied by the Control unit.

b. | We need to add back the second register read port (AND reads two registers), add the Mux

that selects the value supplied to the second ALU input (register for AND, Offs for LW), add an
ALUOp signal to select between two ALU operations, and replace the Add unit in EXE with an ALU
that supports either an Add or an And operation. Finally, we must add to the WB stage the Mux
that select whether the value to write to the register is the value from the ALU of from memory,
and the Mux in the EX stage that selects which register to write to (Rd for AND, Rt for LW).

4.34.5

a. | The same forwarding logic used for forwarding from one ADD to another can also be used to
forward from ADD to BEQ. We still need no hazard detection for data hazards, but we must add
detection of control hazards. Assuming there is no branch prediction, whenever a BEQ is taken
we must flush (convert to NOPs) all instructions that were fetched after that branch.

b. | We need to add forwarding from the EX/MEM pipeline register to the ALU inputs in the EXE
stage (so AND can forward to the next instruction), and we need to extend our forwarding from
the MEM/WB pipeline register to the second input of the ALU unit (so LW can forward to an
AND whose Rt (input) register is the same as the Rt (result) register of the LW instruction. We
also need to extend the hazard detection unit to also stall any AND instruction whose Rs or Rt
register field is equal to the Rt field of the previous LW instruction.

$168 Chapter 4 Solutions

4.34.6 The decoding logic must now check if the instruction matches either of
the two instructions. After that, the exception handling is the same as for 4.34.3.

Solution 4.35

4.35.1 Theworst case for control hazards is if the mispredicted branch instruction
is the last one in its cycle and we have been fetching the maximum number of
instructionsin each cycle. Then the control hazard affects the remaining instructions
in the branch’s own pipeline stage and all instructions in stages between fetch and
branch execution stage. We have:

- Delay slots needed

a. | 7x4-1=27

b. | 17x2-1=33

4.35.2 If branches are executed in stage X, the number of stall cycles due to a
misprediction is (N — 1). These cycles are reduced by filling them with delay slot
instructions. We compute the number of execution (non-stall) cycles between mis-
predictions, and the speed-up as follows:

Non-stall cycles between Stall cycles without delay Stall cycles with 4 delay Speed-up due to delay
mispredictions slots slots slots
a. | 1/(020 x (1 - 0.80) x 4) = 6.25 6 5 (6.25 + 6)/(6.25 + 5) = 1.089
b. | 1/(025x(1-0.92)x2)=25 16 14 (25 + 16)/(25 + 14) = 1.051

4.35.3 For 20% of branches, we add an extra instruction, for 30% of the branches
we add two extra instructions, and for 40% of branches, we add three extra
instructions. Overall, an average branch instruction is now accompanied by 0.20 +
0.30 x 2 4+ 0.40 x 3 =2 nop instructions. Note that these nops are added for every
branch, not just mispredicted ones. These nop instructions add to the execution
time of the program, so we have:

Total cycles between

mispredictions without delay Stall cycles with 4 Extra cycles spent on Speed-up due to
slots delay slots NOPs delay slots

a. 6.25 +6=12.25 5 0.5x6.25x0.20=0.625 |12.5/(6.25+ 5 + 0.625) = 1.032

b. 25+16=41 14 1x25x%x0.25=6.25 41/(25 + 14 + 6.25) = 0.906

Chapter 4 Solutions

$169

4.35.4
a. add $2,%$0,%0 $1=0
Loop: beq $2,%$3,End
1b $10,1000(%2) Delay slot
sb $10,2000(%2)
beq $0,%0,Loop
addi $2,%2,1 Delay slot
Exit:
b. add $2,$0,%0 $1=0
Loop: 1b $10,1000(%$2)
b $11,1001(%$2)
beq $10,$11,End
addi $1,%$1,1 Delay slot
beq $0,%$0,Loop
addi $2,%$2,1 Delay slot

Exit: addi $1,$1,-1

Undo c++ from delay slot

nop
beq $0,%0,Loop
sb $10,2000(%$2)
addi $2,%2,1
Exit:

4.35.5
a. add $2,%0,%0 $1=0
Loop: beq $2,$3,End
b $10,1000(%$2) Delay slot

2" delay slot

Delay slot
2"d delay slot

b. add $2,$0,%0
b $10,1000(%$2)
b $11,1001($2)
Loop: beq $10,$11,End
addi $1,$1,1
addi $2,$2,1
beq $0,$%$),Loop
b $10,1000(%$2)
b $11,1001($2)
Exit: addi $1,$1,-1
addi $2,%2,-1

$1=0
Prepare for first iteration
Prepare for first iteration

Delay slot
2" delay slot

Delay slot, prepare for next iteration

2" delay slot, prepare for next iteration
Undo c++ from delay slot

Undo i++ from 2" delay slot

4.35.6 The maximum number of in-flight instructions is equal to the pipeline
depth times the issue width. We have:

- Instructions in flight Instructions per iteration Iterations in flight

10 x4 =40

40/5+1=9

b. 25x2=50

6 roundUp(50/6) + 1 = 10

$170

Chapter 4 Solutions

Note that an iteration is in-flight when even one of its instructions is in-flight. This
is why we add one to the number we compute from the number of instructions in
flight (instead of having an iteration entirely in flight, we can begin another one
and still have the “trailing” one partially in-flight) and round up.

Solution 4.36

4.36.1
1 et | v |
a. | lwinc Rt,0ffset(Rs) Tw Rt,0ffset(Rs)
addi Rs,Rs,4
b. | addr Rt,0ffset(Rs) Tw tmp,0ffset(Rs)
add Rt,Rt,tmp

4.36.2 The ID stage of the pipeline would now have a lookup table and a micro-
PC, where the opcode of the fetched instruction would be used to index into the
lookup table. Micro-operations would then be placed into the ID/EX pipeline
register, one per cycle, using the micro-PC to keep track of which micro-op is the
next one to be output. In the cycle in which we are placing the last micro-op of an
instruction into the ID/EX register, we can allow the IF/ID register to accept the
next instruction. Note that this results in executing up to one micro-op per cycle,
but we actually fetching instructions less often than that.

4.36.3

a. | We need to add an incrementer in the MEM stage. This incrementer would increment the value
read from Rs while memory is being accessed. We also need to change the Registers unit to
allow two writes to happen in the same cycle, so we can write the value from memory into Rt
and the incremented value of Rs back into Rs.

b. | We need another EX stage after the MEM stage to perform the addition. The result can then be
stored into Rt in the WB stage.

4.36.4 Not often enough to justify the changes we need to make to the pipeline.
Note that these changes slow down all the other instructions, so we are speeding up
a relatively small fraction of the execution while slowing down everything else.

4.36.5 Each original addm instruction now results in executing two more
instructions, and also adds a stall cycle (the add depends on the Tw). As a result,

Chapter 4 Solutions

$171

each cycle in which we executed an addm instruction now adds three more cycles
to the execution. We have:

. Speed-up from addm translation

a. |1/(1+0.05x3)=0.87

b. |1/(1+0.10 x 3) =0.77

4.36.6 Each translated addm adds the 3 stall cycles, but now half of the existing
stalls are eliminated. We have:

. Speed-up from addm translation

a. |1/(1+0.05x3-0.05/2) =0.89

b. |1/(1+0.10x3-0.10/2)=0.8

Solution 4.37

4.37.1 All of the instructions use the instruction memory, the PC + 4 adder, the
control unit (to decode the instruction), and the ALU. For the least utilized unit,
we have:

a. | The result of the branch adder (add offset to PC + 4) is only used by the BEQ instruction, the
data memory read port is only used by the LW instruction, and the write port is only used by the
last SW instruction (the first SW is not executed because the BEW is taken).

b. | The result of the branch adder (add offset to PC + 4) is never used.

Note that the branch adder performs its operation in every cycle, but its result is
actually used only when a branch is taken.

4.37.2 The read port is only used by 1w and the write port by sw instructions.

We have:

- Data memory read Data memory write
a. 25% (1 out of 4) 25% (1 out of 4)
b. 40% (2 out of 5) 20% (1 out of 5)

4.37.3 In the IF/ID pipeline register, we need 32 bits for the instruction word
and 32 bits for PC + 4 for a total of 64 bits. In the ID/EX register, we need 32 bits
for each of the two register values, the sign-extended offset/immediate value, and
PC + 4 (for exception handling). We also need 5 bits for each of the three register
fields from the instruction word (Rs, Rt, Rd), and 10 bits for all the control
signals output by the Control unit. The total for the ID/EX register is 153 bits.

$172

Chapter 4 Solutions

In the EX/MEM register, we need 32 bits each for the value of register Rt and for
the ALU result. We also need 5 bits for the number of the destination register and
4 bits for control signals. The total for the EX/MEM register is 73 bits. Finally, for
the MEM/WB register we need 32 bits each for the ALU result and value from
memory, 5 bits for the number of the destination register, and 2 bits for control
signals. The total for MEM/WB is 71 bits. The grand total for all pipeline registers
is 361 bits.

4.37.4 In the IF stage, the critical path is the I-Mem latency. In the ID stage,
the critical path is the latency to read Regs. In the EXE stage, we have a Mux and
then ALU latency. In the MEM stage we have the D-Mem latency, and in the WB
stage we have a Mux latency and setup time to write Regs (which we assume is
zero). For a single-cycle design, the clock cycle time is the sum of these per-stage
latencies (for a load instruction). For a pipelined design, the clock cycle time
is the longest of the per-stage latencies. To compare these clock cycle times, we
compute a speed-up based on clock cycle time alone (assuming the number of
clock cycles is the same in single-cycle and pipelined designs, which is not true).
We have:

e e B

400ps | 200ps | 150ps | 350ps 30ps 1130ps 400ps 2.83

b. | 500ps | 220ps | 280ps | 1000ps | 100ps 2100ps 1000ps 2.10

Note that this speed-up is significantly lower than 5, which is the “ideal” speed-up
of 5-stage pipelining.

4.37.5 If we only support add instructions, we do not need the MUX in the WB
stage, and we do not need the entire MEM stage. We still need Muxes before the
ALU for forwarding. We have:

400ps 200ps 150ps 750ps 400ps 1.88

b. 500ps 220ps 280ps Ops 1000ps 500ps 2.00

Note that the “ideal” speed-up from pipelining is now 4 (we removed the MEM
stage), and the actual speed-up is about half of that.

4.37.6 For the single cycle design, we can reduce the clock cycle time by 1ps by
reducing the latency of any component on the critical path by 1ps (if there is only
one critical path). For a pipelined design, we must reduce latencies of all stages that
have longer latencies than the target latency. We have:

Chapter 4 Solutions

$173

- Single-cycle Needed cycle time for pipelined Cost for Pipelined

0.2 x 1130 = $226 0.8 x 400ps = 320ps $80 + $30 = $130
(IF and MEM)
b. | 0.2 x 2100 = $420 0.8 x 1000ps = 800ps $200 (MEM)

Note that the cost of improving the pipelined design by 20% is lower. This is
because its clock cycle time is already lower, so a 20% improvement represents
fewer picoseconds (and fewer dollars in our problem).

Solution 4.38

4.38.1 The energy for the two designs is the same: I-Mem is read, two registers
are read, and a register is written. We have:

a. | 100pJ + 2 x 60pJ + 70pJ = 290pJ

b. | 200pJ + 2 x 90pJ + 80pJ = 460p)

4.38.2 The instruction memory is read for all instructions. Every instruction also
results in two register reads (even if only one of those values is actually used).
A load instruction results in a memory read and a register write, a store instruction
results in a memory write, and all other instructions result in either no register
write (e.g., beq) or a register write. Because the sum of memory read and register
write energy is larger than memory write energy, the worst-case instruction is a
load instruction. For the energy spent by a load, we have:

a. | 100pJ + 2 x 60pJ + 70pJ + 120pJ = 410pJ

b. | 200pJ + 2 x 90pJ + 80pJ + 300pJ = 760pJ

4.38.3 Instruction memory must be read for every instruction. However, we
can avoid reading registers whose values are not going to be used. To do this, we
must add RegRead1 and RegRead?2 control inputs to the Registers unit to enable or
disable each register read. We must generate these control signals quickly to avoid
lengthening the clock cycle time. With these new control signals, a 1w instruction
results in only one register read (we still must read the register used to generate the
address), so we have:

L | e | e

100pJ + 2 x 60pJ + 70pJ + 120pJ) = 410pJ 60pJ 14.6%

b. | 200pJ + 2 x 90pJ + 80pJ + 300pJ = 760pJ 90pJ 11.8%

S$174

Chapter 4 Solutions

4.38.4 Before the change, the Control unit decodes the instruction while register
reads are happening. After the change, the latencies of Control and Register Read
cannot be overlapped. This increases the latency of the ID stage and could affect
the processor’s clock cycle time if the ID stage becomes the longest-latency stage.
We have:

- Clock cycle time before change Clock cycle time after change

500ps (Ctl then Regs in ID stage)

a. 400ps (F-Mem in IF stage)

b. 1000ps (D-Mem in MEM stage) No change (400ps + 220ps < 1000ps).

4.38.5 If memory is read in every cycle, the value is either needed (for a load
instruction), or it does not get past the WB Mux (or a non-load instruction that
writes to a register), or it does not get written to any register (all other instructions,
including stall). This change does not affect clock cycle time because the clock cycle
time must already allow enough time for memory to be read in the MEM stage. It
does affect energy: a memory read occurs in every cycle instead of only in cycles
when a load instructions is in the MEM stage.

4.38.6

. I-Mem active energy I-Mem latency Clock cycle time Total I-Mem Energy Idle energy %

100pJ

400ps 400ps 100pJ 0%

b. 200pJ

500ps 1000ps 200pJ + 500ps x 0.1 x 20pJ/220p) = 9.1%

200pJ/500ps = 220pJ

Solution 4.39

4.39.1 The number of instructions executed per second is equal to the number of
instructions executed per cycle (IPC, which is 1/CPI) times the number of cycles per
second (clock frequency, which is 1/T where T is the clock cycle time). The IPC s he
percentage of cycle in which we complete an instruction (and not a stall), and the
clock cycle time is the latency of the maximum-latency pipeline stage. We have:

-m Clock cycle time Clock frequency Instructions per second

0.85 500ps 2.00 GHz 1.70 x 10°

b. 0.70 200ps 5.00 GHz 3.50 x 10°

Chapter 4 Solutions

$175

4.39.2 Power is equal to the product of energy per cycle times the clock frequency
(cycles per second). The energy per cycle is the total of the energy expenditures in
all five stages. We have:

. Clock Frequency Energy per cycle (in pJ) m

2.00 GHz 120 + 60 + 75 + 0.30 x 120 + 0.55 x 20 = 305 0.61
b. 5.00 GHz 150 + 60 + 50 + 0.35 x 150 + 0.50 x 20 = 322.5 1.61

4.39.3 The time that remains in the clock cycle after a circuit completes its work
is often called slack. We determine the clock cycle time and then the slack for each
pipeline stage:

500ps 200ps 100ps 150ps 400ps

b. 200ps Ops 50ps 80ps 10ps 60ps

4.39.4 All stages now have latencies equal to the clock cycle time. For each stage,
we can compute the factor X for it by dividing the new latency (clock cycle time)
by the original latency. We then compute the new per-cycle energy consumption
for each stage by dividing its energy by its factor X. Finally, we re-compute the
power dissipation:

Immmmm

500/300 500/400 500/350 500/500 500/100 0.43
b. 200/200 200/150 200/120 200/190 200/140 1.41

4.39.5 This changes the clock cycle time to 1.1 of the original, which changes the
factor X for each stage and the clock frequency. After that this problem is solved in
the same way as all stages now have latencies equal to the clock cycle time. For each
stage, we can compute the factor X for it by dividing the new latency (clock cycle
time) by the original latency. We then compute the new per-cycle energy consump-
tion for each stage by dividing its energy by its factor X. Finally, we re-compute the
power dissipation:. We get:

Immmmm

550,300 550/400 550/350 550/500 550/100 0.35
b. | 220/200 220/150 220/120 220/190 220/140 1.16

$176

Chapter 4 Solutions

4.39.6 The X factor for each stage is the same as in this changes the clock cycle
time to 1.1 of the original, which changes the factor X for each stage and the clock
frequency. After that this problem is solved in the same way as all stages now have
latencies equal to the clock cycle time. For each stage, we can compute the factor
X for it by dividing the new latency (clock cycle time) by the original latency. We
then compute the new per-cycle energy consumption for each stage by dividing its
energy by its factor X. Finally, we re-compute the power dissipation:. We get:, but
this time in our power computation we divide the per-cycle energy of each stage by
X2 instead of x. We get:

T oo | owrme | swes
a.

0.24 0.61 60.7%

b. 0.95 1.61 41.0%

Solutions

Solution 5.1

5.1.1
a. | web browser, web servers; caches can be used on both sides.
b. | web browser, bank servers; caches could be employed on either.
5.1.2
a. 1. browser cache, size = fraction of client computer disk, latency = local disk latency;
2. proxy/CDN cache, size = proxy disk, latency = LAN + proxy disk latencies;
3. server-side cache, size = fraction of server disks, latency = WAN + server disk;
4. server storage, size = server storage, latency = WAN + server storage
Latency is not directly related to cache size.
b. 1. web browser cache, size = % of client hard disk, latency = local hard disk latency;
2. server-side cache, size = % of server disk(s), latency = wide area network(WAN) + server disk
latencies;
3. server storage, size = server storage, latency = wide area network(WAN) + server storage
latencies;
Latency is not directly related to the size of cache.
5.1.3
Pages. Latency grows with page size as well as distance.
Web pages; latency grows with page size as well as distance.
514
a. | 1. browser—mainly communication bandwidth. Buying more BW costs money.
2. proxy cache—both. Buying more BW and having more proxy servers costs money.
3. server-side cache—both. Buying more BW and having larger cache costs money.
4. server storage—server bandwidth. Having faster servers costs money.
b. | 1. browser—mainly communication bandwidth; obtaining more bandwidth involves greater cost;
2. server-side cache—both communication and processing bandwidth; obtaining more cache

and more bandwidth involves greater cost;
3. server storage—processing bandwidth; obtaining faster processing servers involves greater
cost

$176

Chapter 5 Solutions

5.1.5

Depends on the proximity between client interests. Similar clients improves both spatial and
temporal locality—mutual prefetching; dissimilar clients reduces both.

b. | Client requests cannot be similar, hence not applicable to this application
5.1.6
a. | Server update the page content. Selectively caching stable content/“expires” header.

Server update to financial details; selectively cache non-financial content

Solution 5.2
5.2.1 4

5.2.2

1, J, BUJI[O]

1,J

5.2.3

Al

AU

5.24

3186 =8 x800/4x2-8x8/4+8/4

3596 =8 x 800/4 x 2 - 8 x 8/4 + 8000/4

5.25

1,J,B(J, 0)

1,J

5.2.6

Al J), A(J, 1), B(J, 0)

Al J)

Chapter 5 Solutions

$177

Solution 5.3
5.3.1

Binary address: 1,, 10000110,, 11010100,, 1,, 10000111,, 11010101,, 10100010,,
101000015, 10,, 101100,, 101001,, 11011101,

Tag: Binary address >> 4 bits

Index: Binary address mod 16

Hit/Miss: M, M, M, H, M, M, M, M, M, M, M, M

Binary address: 00000110,, 11010110,, 10101111,, 110101105, 000001105, 01010100,,
010000015, 10101110,, 01000000,, 01101001,, 01010101,, 11010111,

Tag: Binary address >> 4 bits

Index: Binary address modulus 16

Hit/Miss: M, M, M, H, M, M, M, M, M, M, M, M

5.3.2

Binary address: 1,, 10000110,, 11010100,, 1,, 10000111,, 11010101,, 10100010,,
10100001,, 10,, 101100,, 101001,, 11011101,

Tag: Binary address >> 3 bits

Index: (Binary address >> 1 bit) mod 8

Hit/Miss: M, M, M, H, H, H, M, M, M, M, M, M

Binary address: 00000110,, 11010110,, 10101111,, 110101105, 000001105, 01010100,,
01000001,, 10110000,, 01000000,, 01101001,, 01010101,, 11010111,

Tag: Binary address shift right 3 bits

Index: (Binary address shift right 1 bit) modulus 8

Hit/Miss: M, M, M, H, M, M, M, H, H, M, H, M

5.3.3

C1: 1 hit, C2: 3 hits, C4: 2 hits. C1: Stall time = 25 x 11 + 2 x 12 = 299, C2: Stall time = 25 x
9+ 3%x12=261,C3: Stall time =25 x 10 + 4 x 12 = 298

C1: 1 hit, stall time =25 x 11 + 2 x 12 = 299 cycles
C2: 4 hits, stall time =25 X 8 + 3 X 12 = 236 cycles
C3: 4 hits, stall time =25 x 8 + 5 x 12 = 260 cycles

5.3.4

Using equation on page 351, n = 14 bits, m = 0 (1 word per block)

214 % (29% 32 + (32 -14 - 0 - 2) + 1) = 802 Kbits

Calculating for 16 word blocks, m = 4, if n = 10 then the cache is 541 Kbits, and if n = 11 then
the cache is 1 Mbit. Thus the cache has 128 KB of data.

The larger cache may have a longer access time, leading to lower performance.

Using equation total cache size = 2" x (2™ X 32 + (32 -n-m-2) + 1), n = 13 bits,

m =1 (2 words per block)

218 x (21 x 32 + (32 -13 -1 -2) + 1) = 2%3 x (64 + 17) = 663 Kbits total cache size

For m = 4 (16 word blocks), if n = 10 then the cache is 541 Kbits and if n = 11 then cache is 1
Mbits. Thus the cache has 64 KB of data.

The larger cache may have a longer access time, leading to lower performance.

$178

Chapter 5 Solutions

5.3.5 For a larger direct-mapped cache to have a lower or equal miss rate than a
smaller 2-way set associative cache, it would need to have at least double the cache
block size. The advantage of such a solution is less misses for near by addresses
(spatial locality), but with the disadvantage of suffering longer access times.

5.3.6 Yes, it is possible to use this function to index the cache. However, informa-
tion about the six bits is lost because the bits are XOR’d, so you must include more
tag bits to identify the address in the cache.

Solution 5.4
5.4.1

5.4.2

64
128

5.4.3

1+ (22/8/16) = 1.172
1+ (20/8/32) = 1.078

544 3
Address 0 4 | 16 | 132 | 232 | 160 | 1024 | 30 | 140 | 3100 | 180 | 2180
Line ID 0 0 1 8 14 10 0 1 9 1 11 8
Hit/miss H M M M M M M M
Replace N N N N N N Y N Y N Y

5.4.5 0.25

5.4.6 <Index, tag, data>:
1024]>
6]>
176]>
2176]>
4]>
1>

<000001,, 0001,, mem][
<000001,, 0011,, mem([1
<001011,, 0000,, mem][
<001000,, 0010,, mem][
<001110,, 0000,, mem[22

<001010,, 0000,, mem[160

Chapter 5 Solutions

$179

Solution 5.5
5.5.1

L1 => Write-back buffer => L2 => Write buffer

L1 => Write-back buffer => L2 => Write buffer

5.5.2

[N

. Allocate cache block for the missing data, select a replacement victim;

. If victim dirty, put it into the write-back buffer, which will be further forwarded into L2 write
buffer;

. Issue write miss request to the L2 cache;

. If hit in L2, source data into L1 cache; if miss, send write request to memory;

. Data arrives and is installed in L1 cache;

. Processor resumes execution and hits in L1 cache, set the dirty bit.

N

If L1 miss, allocate cache block for the missing data, select a replacement victim;

. If victim dirty, put it into the write-back buffer, which will be further forwarded into L2 write
buffer;

. Issue write miss request to the L2 cache;

. If hit in L2, source data into L1 cache, goto (8);

If miss, send write request to memory;

. Data arrives and is installed in L2 cache;

. Data arrives and is installed in L1 cache;

. Processor resumes execution and hits in L1 cache, set the dirty bit.

MR oo s ®

ONDO AW

5.5.3

Similar to 5.5.2, except that (2) If victim clean, put it into a victim buffer between the L1 and
L2 caches; If victim dirty, put it into the write-back buffer, which will be further forwarded into L2
write buffer; (4) If hit in L2, source data into L1 cache, invalidate the L2 copy;

Similar to 5.5.2, except that

— if L1 victim clean, put it into a victim buffer between the L1 and L2 caches;

— if L1 victim dirty, put it into the write-back buffer, which will be further forwarded into L2 write
buffer;

— if hit in L2, source data into L1 cache, invalidate copy in L2;

5.5.4

0.166 reads and 0.160 writes per instruction (0.5 cycles). Minimal read/write bandwidths are
0.664 and 0.640 byte-per-cycle.

0.152 reads and 0.120 writes per instruction (0.5 cycles). Minimal read/write bandwidths are

0.608 and 0.480 byte-per-cycle.

$180

Chapter 5 Solutions

555
a. | 0.092 reads and 0.0216 writes per instruction (0.5 cycles). Minimal read/write bandwidths are
0.368 and 0.0864 byte-per-cycle.
b. | 0.084 reads and 0.0162 writes per instruction (0.5 cycles). Minimal read/write bandwidths are
0.336 and 0.0648 byte-per-cycle.
5.5.6
a. | Write-back, write-allocate cache saves bandwidth. Minimal read/write bandwidths are 0.4907
and 0.1152 byte-per-cycle.
b. | Write-back, write-allocate cache saves bandwidth. Minimal read/write bandwidths are 0.4478
and 0.0863 byte-per-cycle

Solution 5.6
5.6.1

‘ 12.5% miss rate. The miss rate doesn’t change with cache size or working set. These are cold misses.

5.6.2

‘ 25%, 6.25% and 3.125% miss rates for 16-byte, 64-byte and 128-byte blocks. Spatial locality.

5.6.3 With next-line prefetching, miss rate will be near 0%.

5.6.4

16-byte.

8-byte.

5.6.5

32-byte.

8-byte.

64-byte.

64-byte.

Chapter 5 Solutions

$181

Solution 5.7

5.7.1
a. | P1 1.61 GHz
P2 1.52 GHz
b. | P1 1.04 GHz
P2 926 MHz
5.7.2
a. | P1 8.60 ns 13.87 cycles
P2 6.26 ns 9.48 cycles
b. | P1 3.97 ns 4.14 cycles
P2 3.46 ns 3.20 cycles
5.7.3
a. | P1 5.63 P2
P2 4.05
b. | P1 2.13 P2
P2 1.79
5.7.4
8.81 ns 14.21 cycles Worse
3.65ns 3.80 cycles Better
5.7.5
5.76
2.01
5.7.6
a. | P1 with L2 cache: CPl = 5.76. P2: CPl = 4.05.
P2 is still faster than P1 even with an L1 cache
b. | P1 with L2 cache: CPI = 2.01. P2: CPI = 1.79.

P2 is still faster than P1 even with an L1 cache

$182

Chapter 5 Solutions

Solution 5.8

58.1

a. | Binary address: 1,, 10000110,, 11010100,, 1,, 10000111,, 11010101,, 10100010,
10100001,, 10,, 101100,, 101001,, 11011101,
Tag: Binary address >> 3 bits
Index: (Binary address >> 1 bit) mod 4
Hit/Miss: M, M, M, H, H, H, M, M, M, M, M, M
Final contents (block addresses):
Set 00: 0,, 10100000,, 101000,
Set 01: 10100010,, 10,
Set 10: 11010100,, 101100,
Set 11: 10000110,

b. | Binary address: {bits 7-3 tag, 2-1 index, O block offset}
00000 11 0,, Miss
11010 11 0,, Miss
10101 11 1,, Miss
11010 11 0,5, Hit
00000 11 0,, Hit
01010 10 0,5, Miss
01000 00 1,, Miss
10101 11 0,5, Hit
01000 00 0,, Miss
01101 00 1,, Miss
01010 10 1,, Hit
11010111, Hit
Tag: Binary address >> 3 bits
Index(or set#): (Binary address >> 1 bit) mod 4
Final cache contents (_block_addresses, in base 2):
set: blocks (3 slots for 2-word blocks per set)
00 : 01000000,, 01000000,, 01101000,
01:
10 : 01010100,
11 : 00000110,, 11010110,, 10101110,

5.8.2
a. | Binary address: 1,, 10000110,, 11010100,, 1,, 10000111,, 110101015, 10100010,

10100001,, 10,, 101100,, 101001,, 11011101,

Tag: Binary address

Index: None (only one set)

Hit/Miss: M, M, M, H, M, M, M, M, M, M, M, M

Final contents (block addresses):

10000111,, 110101015, 101000105, 10100001,, 105, 101100,, 101001,, 11011101,

Chapter 5 Solutions

$183

00000110,
11010110,
10101111,
11010110,
00000110,
01010100,
01000001,
10101110,
01000000,
01101001,
01010101,
11010111,

00000110,
11010110,
01010101,
11010111,
01000001,
10101110,
01000000,
01101001,
01010101,
11010111,

b. | Binary address: {bits 7-0 tag, no index or block offset}

Miss

Miss

Miss

Hit

Hit

Miss

Miss

Miss

Miss

Miss

Miss, (LRU discard block 10101111,)
Miss, (LRU discard block 01010100,)

Tag: Binary address
Final cache contents (block addresses): (8 cache slots, 1-word per cache slot)

5.8.3

a. | Binary address: 1,, 10000110,, 11010100,, 1,, 10000111,, 11010101,, 101000105,
10100001,, 10,, 101100,, 101001,, 11011101,
Hit/Miss, LRU: M, M, M, H, H, H, M, M, M, M, M, M
Hit/Miss, MRU: M, M, M, H, H, H, M, M, M, M, M, M
Given 2 word blocks, the best miss rate is 9/12.

0000011 0,,
1101011 0,,
1010111 1,
1101011 0,,
0000011 0,,
0101010 0,,
0100000 15,
1010111 0,
0100000 0,,
0110100 1,,
0101010 1,,
1101011 1,

b. | Binary address: {bits 7-1 tag, 1 block offset}
(8 cache slots, 2-words per cache slot)

Miss
Miss
Miss
Hit
Hit
Miss
Miss
Hit
Hit
Miss
Hit
Hit

No need for LRU or MRU replacement policy, hence best miss rate is 6/12.

$184

Chapter 5 Solutions

5.84

Base CPI: 2.0

Memory miss cycles: 125 cycles/(1/3) ns/clock = 375 clock cycles

1. Total CPI: 2.0 + 375 x 5% = 20.75/39.5/11.375 (normal/double/half)
2. Total CPI: 2.0 + 15 x 5% + 375 x 3% = 14/25.25/8.375

3. Total CPI: 2.0 + 25 x 5% + 375 x 1.8% = 10/16.75/6.625

Base CPI: 2.0

Memory miss cycles: 100 clock cycles

1. Total CPI = base CPl + memory miss cycles x 1st level cache miss rate

2. Total CPI = base CPI + memory miss cycles x global miss rate w/2nd level direct-mapped
cache + 2nd level direct-mapped speed x 1st level cache miss rate

3. Total CPI = base CPI + memory miss cycles X global miss rate w/2nd level 8-way set assoc
cache + 2nd level 8-way set assoc speed X 1st level cache miss rate

. Total CPI (using 1st level cache): 2.0 + 100 x 0.04 = 6.0
. Total CPI (using 1st level cache): 2.0 + 200 x 0.04 = 10.0
. Total CPI (using 1st level cache): 2.0 + 50 x 0.04 = 4.0

. Total CPI (using 2nd level direct-mapped cache): 2.0 + 100 x 0.04 + 10 X 0.04 = 6.4
. Total CPI (using 2nd level direct-mapped cache): 2.0 + 200 x 0.04 + 10 x 0.04 = 10.4
. Total CPI (using 2nd level direct-mapped cache): 2.0 + 50 x 0.04 + 10 x 0.04 = 4.4

. Total CPI (using 2nd level 8-way set assoc cache): 2.0 + 100 x 0.016 + 20 x 0.04 = 4.4
. Total CPI (using 2nd level 8-way set assoc cache): 2.0 + 200 x 0.016 + 20 x 0.04 = 6.0
. Total CPI (using 2nd level 8-way set assoc cache): 2.0 + 50 x 0.016 + 20 x 0.04 = 3.6

WWwW NNMN PP

5.85

Base CPI: 2.0

Memory miss cycles: 125 cycles/(1/3) ns/clock = 375 clock cycles
Total CPI: 2.0 + 15 X 5% + 50 x 3% + 375 x 1.3% = 9.125

This would provide better performance, but may complicate the design of the processor. This could
lead to: more complex cache coherency, increased cycle time, larger and more expensive chips.

Base CPI: 2.0

Memory miss cycles: 100 clock cycles

1. Total CPI = base CPl + memory miss cycles x global miss rate w/2nd level direct-mapped
cache + 2nd level direct-mapped speed x 1st level cache miss rate

2. Total CPI = base CPI + memory miss cycles X global miss rate w/3rd level direct-mapped
cache + 2nd level direct-mapped speed x 1st level cache miss rate + 3rd level direct-
mapped speed x 2nd level cache miss rate

1. Total CPI (using 2nd level direct-mapped cache): 2.0 + 100 x 0.04 + 10 x 0.04 = 6.4
2. Total CPI (using 3rd level direct-mapped cache): 2.0 + 100 x 0.013 + 10 x 0.04 + 50 x
0.04 =5.7

This would provide better performance, but may complicate the design of the processor. This could
lead to: more complex cache coherency, increased cycle time, larger and more expensive chips.

Chapter 5 Solutions

$185

Base CPI: 2.0

Memory miss cycles: 125 cycles/(1/3) ns/clock = 375 clock cycles
Total CPI: 2.0 + 50 x 5% + 375 x (4% — 0.7% x n) = 14/10

n =3 =>2 MB L2 cache to match DM

n=4=>25 MB L2 cache to match 2-way

Base CPI: 2.0

Memory miss cycles: 100 clock cycles

1) Total CPI (using 2nd level direct-mapped cache): 2.0 + 100 x 0.04 + 10 x 0.04 = 6.4

2) Total CPI (using 2nd level 8-way set assoc cache): 2.0 + 100 x 0.016 + 20 X 0.04 = 4.4

3) Total CPI = base CPI + cache access time x 1st level cache miss rate + memory miss
cycles x (global miss rate — 0.7% x n)
where n = further unit blocks of 512 KB cache size beyond base 512 KB cache

4) Total CPI: 2.0 + 50 x [0.04] + [100] x (0.04 — 0.007 x n)

forn=0, CPI: 8

forn=1,CPI: 7.3

forn=2, CPl: 6.6

forn=3,CPl: 5.9

forn=4,CPl: 5.7

forn=15, CPIl: 5.0

Hence, to match 2nd level direct-mapped cache CPI, n = 2 or 1.5 MB L2 cache, and to match
2nd level 8-way set assoc cache CPI, n =5 or 3 MB L2 cache

Solution 5.9

Instructors can change the disk latency, transfer rate and optimal page size for more

variants. Refer to Jim Gray’s paper on the five-minute rule ten years later.

5.9.1 32 KB.

5.9.2 Still 32 KB.

5.9.3 64 KB. Because the disk bandwidth grows much faster than seek latency,

future paging cost will be more close to constant, thus favoring larger pages.

5.9.4 1987/1997/2007: 205/267/308 seconds. (or roughly five minutes)

5.9.5 1987/1997/2007: 51/533/4935 seconds. (or 10 times longer for every 10 years).

5.9.6 (1) DRAM cost/MB scaling trend dramatically slows down; or (2) disk $/
access/sec dramatically increase. (3) is more likely to happen due to the emerging

flash technology.

$186

Chapter 5 Solutions

Solution 5.10
5.10.1

a. | Virtual page number: Address >> 12 bits
H: Hit in TLB, M: Miss in TLB hit in page table, PF: Page Fault

0,7,3,3,1,1,2 (M, H, M, H, PF, H, PF)

TLB

Valid Tag Physical Page Number
1 3 6

1 7 4

1 1 13

1 2 14

Page table

Valid Physical page or in disk
1 5

1 13

1 14

1 6

1 9

1 11

0 Disk

1 4

0 Disk

0 Disk

1 12

b. | Binary address: (all hexadecimal), {bits 15-12 virtual page, 11-0 page offset}
2 4EC, Page Fault, disk => physical page D, (=> TLB slot 3)

7 8F4, HitinTLB

4 ACO, Miss in TLB, (=> TLB slot 0)

B 5A6, Miss in TLB, (=> TLB slot 2)

9 4DE, Page Fault, disk => physical page E, (=> TLB slot 3)

4 10D, HitinTLB

B D60 Hitin TLB

TLB

Valid
1
1
1
1

Page table

Physical Page

© W~ B
oo,
©

4
C
E

Physical page
5
disk

PRPORPORRRPRRPRORS
E
©

Chapter 5 Solutions

$187

5.10.2

Virtual page number: Address >> 14 bits
H: Hit in TLB, M: Miss in TLB hit in page table, PF: Page Fault

0,3,1,1,0,0,1 (M, H, PF, H, H, H, H)

TLB

Valid Tag Physical Page Number
1 1 13
1 7 4
1 3 6
1 0 5
Page table

Valid

Physical page or in disk
1 5

1 13

0 Disk

1 6

1 9

1 11

0 Disk

1 4

0 Disk

0 Disk

1 3

1 12

Larger page sizes allow for more addresses to be stored in a single page, potentially
decreasing the amount of pages that must be brought in from disk and increasing the coverage
of the TLB. However, if a program uses addresses in a sparse fashion (for example randomly
accessing a large matrix), then there will be an extra penalty from transferring larger pages
compared to smaller pages.

$188 Chapter 5 Solutions

b. | Binary address: (all hexadecimal), {bits 15-14 virtual page, 13-0 page offset}
24EC, Miss in TLB, (=> TLB slot 3)

38F4, Page Fault, disk => physical page D, (=> TLB slot 1)

0ACO, Hitin TLB

35A6, Page Fault, disk => physical page E, (=> TLB slot 2)

14DE, Hitin TLB

010D, HitinTLB

3D60, Hitin TLB

TLB
Valid Tag Physical Page
1
1
1
1

Page table

NFENNRPR PO

ON P T
omogoo

Physical page

PROORORRRPRRERPREES
E
romOOM

Larger page sizes allow for more addresses to be stored in a single page, potentially
decreasing the amount of pages that must be brought in from disk and increasing the coverage
of the TLB. However, if a program uses addresses in a sparse fashion (for example randomly
accessing a large matrix), then there will be an extra penalty from transferring larger pages
compared to smaller pages.

Chapter 5 Solutions $189

5.10.3

a. | Virtual page number: Address >> 12 bits
0,7,3,3,1,1,2=>0,111, 011, 011, 001, 001, 010

2 way set associative:
Tag: VPN >> 1 bit

TLB

Valid Tag PPN Valid Tag PPN
1 0 5 1 01 14
1 0 13 1 01 6

Direct-mapped:
Tag: VPN >> 2 bits

TLB

Valid Tag Physical Page Number
1 0 5

1 0 13

1 0 14

1 0 6

The TLB is important to avoiding paying high access times to memory in order to translate
virtual addresses to physical addresses. If memory accesses are frequent, then the TLB will
become even more important. Without a TLB, the page table would have to be referenced upon
every access using a virtual addresses, causing a significant slowdown.

$190 Chapter 5 Solutions

b. | Binary address: (all hexadecimal), {bits 15-12 virtual page, 11-0 page offset}

2 4EC, Page Fault, disk => physical page D, (=> TLB set O, slot 1)
7 8F4, Miss in TLB, (=> TLB set 1, slot 1)

4 ACO, Miss in TLB, (=> TLB set 0, slot 0)

B 5A6, Miss in TLB, (=> TLB set 1, slot 0)

9 4DE, Page Fault, disk => physical page E, (=> TLB set 1, slot 1)
4 10D, Hitin TLB

B D60 Hitin TLB

2-way set associative TLB {bits 15-12 virtual page => bits 15-13 tag, bits 12 set}
(note: time stamps according to at start physical page numbers)

valid Tag(/Time) Physical Page
1 4 /4 9
1 2 /2 D
1 B /5 c
1 9 /4 E

Binary address: (all hexadecimal), {bits 15-12 virtual page, 11-0 page offset}
2 4EC, Page Fault, disk => physical page D, (=> TLB slot 2)

7 8F4, Hitin TLB

4 ACO, Miss in TLB, (=> TLB slot 0)

B 5A6, Miss in TLB, (=> TLB slot 3)

9 4DE, Page Fault, disk => physical page F, (=> TLB slot 1)

4 10D, Hitin TLB

B D60 Hitin TLB

directmapped TLB {bits 15-12 virtual page => bits 13-12 TLB slot}

Valid Tag Physical Page
1 4 9
1 9 F
1 2 D
1 B C

The TLB is important to avoiding paying high access times to memory in order to translate
virtual addresses to physical addresses. If memory accesses are frequent, then the TLB will
become even more important. Without a TLB, the page table would have to be referenced upon
every access using a virtual addresses, causing a significant slowdown.

Chapter 5 Solutions $191

5.10.4

a. | 4 KB page = 12 offset bits, 20 page number bits

220 = 1 M page table entries

1 M entries x 4 bytes/entry = ~4 MB (222 bytes) page table per application
222 pytes x 5 apps = 20.97 MB total

b. | virtual address size of 64 bits

16 KB (214) page size, 8 (23) bytes per page table entry

64 — 14 = 40 bits or 2%° page table entries with 8 bytes per entry, yields total of 243 bytes for
each page table

Total for 5 applications = 5 x 2%3 pytes

5.10.5

a. | 4 KB page = 12 offset bits, 20 page number bits

256 entries (8 bits) for first level => 12 bits => 4096 entries per second level
Minimum: 128 first level entries used per app

128 entries x 4096 entries per second level = ~524K (219) entries
~524K x 4 bytes/entry = ~2 MB (2%1) second level page table per app
128 entries X 6 bytes/entry = 768 bytes first level page table per app
~10 MB total for all 5 apps

Maximum: 256 first level entries used per app

256 entries x 4096 entries per second level = ~1M (220) entries

~1M X 4 bytes/entry = ~4 MB (2%2) second level page table per app
256 entries x 6 bytes/entry = 1536 bytes first level page table per app
~20.98 MB total for all 5 apps

b. | virtual address size of 64 bits

64 — 14 = 40 bits or 240 page table entries

256 (28) entries in main table at 8 (23) bytes per page table entry (6 rounded up to nearest
power of 2)

total of 21 bytes or 2 KB for main page table

40 - 8 = 32 bits or 232 page table entries for 2nd level table

with 8 bytes per entry, yields total of 23° bytes for each page table

Total for 5 applications = 5 x (2 KB + 23° bytes) [maximum, with minimum as half this figure]

$192

Chapter 5 Solutions

5.10.6

16 KB Direct-Mapped cache
2 words per blocks => 8 bytes/block => 3 bits block offset
16 KB/8 bytes/block => 2K sets => 11 bits for indexing

With a 4 KB page, the lower 12 bits are available for use for indexing prior to translation from
VA to PA. However, a 16 KB Direct-Mapped cache needs the lower 14 bits to remain the same
between VA to PA translation. Thus it is not possible to build this cache.

If the cache’s data size is to be increased, a higher associativity must be used. If the cache
has 2 words per block, only 9 bits are available for indexing (thus 512 sets). To make a 16 KB
cache, a 4-way associativity must be used.

virtual address size of 64 bits

16 KB (21%) page size, 8 (2°) bytes per page table entry

16 KB direct-mapped cache

2 words or 8 (23) bytes per block, means 3 bits for cache block offset

16 KB/8 bytes per block = 2K sets or 11 bits for indexing

With a 16 KB page, the lower 14 bits are available for use for indexing prior to translation from
virtual to physical. Considering, a 16 KB direct-mapped cache requires the lower 14 bits to
remain the same between translation. Hence, it is possible to build this cache.

Solution 5.11
5.11.1

virtual address 32 bits, physical memory 4 GB

page size 8 KB or 13 bits, page table entry 4 bytes or 2 bits
#PTE = 32 - 13 = 19 bits or 512K entries

PT physical memory = 512K x 4 bytes = 2 MB

virtual address 64 bits, physical memory 16 GB

page size 4 KB or 12 bits, page table entry 8 bytes or 3 bits
#PTE = 64 — 12 = 52 bits or 252 entries

PT physical memory = 252 x 23 = 255 pytes

5.11.2

virtual address 32 bits, physical memory 4 GB

page size 8 KB or 13 bits, page table entry 4 bytes or 2 bits

#PTE = 32 — 13 = 19 bits or 512K entries

8 KB page/4 byte PTE = 211 pages indexed per page

Hence with 21° PTEs will need 2-level page table setup.

Each address translation will require at least 2 physical memory accesses.

virtual address 64 bits, physical memory 16 GB

page size 4 KB or 12 bits, page table entry 8 bytes or 3 bits

#PTE = 64 — 12 = 52 bits or 252 entries

4 KB page/8 byte PTE = 29 pages indexed per page

Hence with 252 PTEs will need 6-level page table setup.

Each address translation will require at least 6 physical memory accesses.

Chapter 5 Solutions $193

5.11.3

a. | Since there are only 4 GB physical DRAM, only 512K PTEs are really needed to store the page
table. Common-case: no hash conflict, so one memory reference per address translation; worst
case: almost 512K memory references are needed if hash table degrade into a link list.

b. | virtual address 64 bits, physical memory 16 GB

page size 4 KB or 12 bits, page table entry 8 bytes or 3 bits
#PTE = 64 — 12 = 52 bits or 252 entries

Since there are only 16 GB physical memory, only 2
page table.

Common-case: no hash conflict, so one memory reference per address translation;

Worst case: almost 2(3412) memory references are needed if hash table degrade into a link
list.

(34-12) pTEs are really needed to store the

5.11.4 TLB initialization, or process context switch.
5.11.5 TLB miss. When most missed TLB entry is cached in processor caches.
5.11.6 Write protection exception.

Solution 5.12
5.12.1

0 hits
2 hits

5.12.2

3 hits
3 hits

5.12.3

3 hits or fewer

3 hits or fewer

5.12.4 Any address sequence is fine so long as the number of hits are correct.

a. | 3hits
3 hits

$194

Chapter 5 Solutions

5.12.5 The best block to evict is the one that will cause the fewest misses in the
future. Unfortunately, a cache controller cannot know the future! Our best alterna-
tive is to make a good prediction.

5.12.6 If you knew that an address had limited temporal locality and would con-
flict with another block in the cache, it could improve miss rate. On the other hand,
you could worsen the miss rate by choosing poorly which addresses to cache.

Solution 5.13

5.13.1 Shadow page table: (1) VM creates page table, hypervisor updates shadow
table; (2) nothing; (3) hypervisor intercepts page fault, creates new mapping, and
invalidates the old mapping in TLB; (4) VM notifies the hypervisor to invalidate
the process’s TLB entries. Nested page table: (1) VM creates new page table, hyper-
visor adds new mappings in PA to MA table. (2) Hardware walks both page tables
to translate VA to MA; (3) VM and hypervisor update their page tables, hypervisor
invalidates stale TLB entries; (4) same as shadow page table.

5.13.2

Native: 4; NPT: 24 (instructors can change the levels of page table)

Native: Ly NPT: L x (L +2)

5.13.3
Shadow page table: page fault rate.
NPT: TLB miss rate.

5.13.4
Shadow page table: 1.03
NPT: 1.04

5.13.5 Combining multiple page table updates

5.13.6 NPT caching (similar to TLB caching)

Chapter 5 Solutions

$195

Solution 5.14
5.14.1

CPI: 2.0 + (100/10,000 x (20 + 150)) = 3.7
CPI: 2.0 + (100/10,000 x (20 + 300)) = 5.2
CPI: 2.0 + (100/10,000 x (20 + 75)) = 2.95

To obtain a 10% performance degradation, we must solve:
1.1 x (2.0 + (100/10,000 x 20)) = 2.0 + (100/10,000 X (20 + n))
We find that n = 22 cycles

CPI for the system with no accesses to I/0

CPI: BaseCPI + ((priv OS access/10000) x (perf impact trap guestOS + perf impact trap VMM))
CPI: BaseCPI + ((priv OS access/10000) x (perf impact trap guestOS + 2 x perf impact trap
VMM))

CPI: BaseCPI + ((priv OS access/10000) x (perf impact trap guestOS + 0.5 x perf impact trap
VMM))

CPI: 1.5 + (110/10,000 x (25 + 160)) = 3.535
CPI: 1.5 + (110/10,000 x (25 + 320)) = 5.295
CPI: 1.5 + (110/10,000 x (25 + 80)) = 2.655

To obtain a 10% performance degradation, we must solve:
1.1 x (BaseCPI + (priv OS access/10000 x perf impact trap guestOS))
= BaseCPI + ((priv OS access/10000) x (perf impact trap guestOS + n))
1.1 % (1.5 + (110/10000 x 25)) = (1.5 + (110/10000 X (25 + n)))
1.1 x1.775 = 1.5 + (0.011 x (25 + n))
1.9525-1.5=0.011 x (25 + n)
0.4525/0.011 =25 +n

we find that n = 20 cycles is longest possible penalty to trap to the VMM

5.14.2

CPI, non virtualized = 2.0 + 80/10,000 x 20 + 20/10,000 x 1000 =2.0 + 0.16 + 2.0 = 4.16
CPlI, virtualized = 2.0 + 80/10,000 x (20 + 150) + 20/10,000 x (1000 + 150) = 2.0 + 1.36 +
2.3=5.66

1/0 bound applications have a smaller impact from virtualization because, comparatively, a
much longer time is spent on waiting for the 1/0 accesses to complete.

CPI (non virtualised): BaseCPI + (priv OS access-I/0 accesses)/10000 x perf impact trap
guestOS) + 1/0 accesses/10000 x I/0 access time

CPI (virtualised): BaseCPI + (priv OS access-I/0 accesses)/10000 x (perf impact trap
guestOS + perf impact trap VMM)) + (I/0 accesses/10000 x (I/0 access time + perf impact
trap VMM))

CPI (non virtualised): 1.5 + (110 — 10)/10000 x 25 + 10/10000 x 1000 = 1.5 + 0.225 +
1=2.725

CPI (virtualised): 1.5 + (110 — 10)/10000 x (25 + 160) + 10/10000 x (1000 + 160) = 1.5 +
1.665 + 1.16 = 4.325

1/0 bound applications have a smaller impact from virtualization because, comparatively, a
much longer time is spent on waiting for the 1/0 accesses to complete.

$196

Chapter 5 Solutions

5.14.3 Virtual memory aims to provide each application with the illusion of the
entire address space of the machine. Virtual machines aims to provide each operat-
ing system with the illusion of having the entire machine to its disposal. Thus they
both serve very similar goals, and offer benefits such as increased security. Virtual
memory can allow for many applications running in the same memory space to
not have to manage keeping their memory separate.

5.14.4 Emulatinga different ISA requires specific handling of that ISA’s API. Each
ISA has specific behaviors that will happen upon instruction execution, interrupts,
trapping to kernel mode, etc. that therefore must be emulated. This can require
many more instructions to be executed to emulate each instruction than was origi-
nally necessary in the target ISA. This can cause a large performance impact and
make it difficult to properly communicate with external devices. An emulated sys-
tem can potentially run faster than on its native ISA if the emulated code can be
dynamically examined and optimized. For example, if the underlying machine’s
ISA has a single instruction that can handle the execution of several of the emu-
lated system’s instructions, then potentially the number of instructions executed
can be reduced. This is similar to the recent Intel processors that do micro-op
fusion, allowing several instructions to be handled by fewer instructions.

Solution 5.15

5.15.1 The cache should be able to satisfy the request since it is otherwise idle
when the write buffer is writing back to memory. If the cache is not able to satisfy
hits while writing back from the write buffer, the cache will perform little or no
better than the cache without the write buffer, since requests will still be serialized
behind writebacks.

5.15.2 Unfortunately, the cache will have to wait until the writeback is complete
since the memory channel is occupied. Once the memory channel is free, the cache
is able to issue the read request to satisfy the miss.

5.15.3 Correct solutions should exhibit the following features:

1. The memory read should come before memory writes.
2. The cache should signal “Ready” to the processor before completing
the write.

Example (simpler solutions exist, the state machine is somewhat underspecified in
the chapter):

Chapter 5 Solutions

$197

CPU req

Hit

Idle
_/ Mark cache ready

Compare Tag

Old block

Read new
block.
Copy old
block to write
buffer.

Memory

Pending
ready

Miss

Memory
Not ready

Wait for
write-back

Mark cache ready

Compare Tag

Memory CPU req Old block dirty
Not ready

Memory
Not ready

Solution 5.16
5.16.1

Coherent: [2,4], [3,4], [2,5], [3,5]; non-coherent: [1, 1];

P1: X[O] ++; X[1] += 3;

P2: X[0] = 5; X[1] = 2;

coherent: [5,5], [6,5], [5,2], [6,2]
non-coherent: [1, 2];

5.16.2

a. | P1: X[0] ++; X[1] = 4;

P2: X[0] = 2; X[1] ++;

operation sequence

P1: read X[0], X[O]++, write X[O]; X[1] = 4, write X[1];
P2: X[0] = 2, write X[0]; read X[1], X[1]++, write X[1];

b. | P1: X[O] ++; X[1] +=3;

P2: X[0] = 5; X[1] = 2;

operation sequence

P1: read X[O], X[O]++, write X[O]; read X[1], X[1] += 3, write X[1];
P2: X[0] = 5, write X[O]; X[1] =2, write X[1];

5.16.3

Best-case: 1; worst-case: 6

best case: 1; worst case: 6;

$198

Chapter 5 Solutions

5.16.4

Consistent: [0,0], [0,1], [1,2], [2,1], [2,2], [2,3], [3,3];

P1:A=1;B+=2;A++;B=4;
P2:C=B; D=A;

Consistent [C,D]: [0,0], [0,1], [2,1], [2,2], [4,2]

5.16.5

Inconsistent: [2,0], [3,0], [3,1], [3,2];

Inconsistent [C,D]: [4,0]

5.16.6 Write-through, non write allocate simplifies the most.

Solution 5.17
5.17.1

a. | Shared L2 is better for benchmark A; private L2 is better for benchmark B.

Compare L1 miss latencies for various configurations.

b. | Benchmark A/B: private miss rate X memory hit latency + (1 — private miss rate) x private
cache hit latency

Benchmark A/B: shared miss rate x memory hit latency + (1 — shared miss rate) x shared
cache hit latency

Benchmark A private: 0.003 x 120 + 0.997 x 8 = 0.36 + 7.976 = 8.336

Benchmark B private: 0.0006 x 120 + 0.9994 x 8 = 0.072 + 7.9952 = 8.0672
Benchmark A shared: 0.0012 x 120 + 0.9988 x 20 = 0.144 + 19.976 = 20.12
Benchmark B shared: 0.0003 x 120 + 0.9997 x 20 = 0.036 + 19.994 = 20.03

5.17.2

a. | When shared L2 latency doubles, both benchmarks prefer private L2.

private L2.

b. | Shared cache latency doubling:

cache hit latency

Benchmark A shared: 0.0012 x 120 + 0.9988 x 2 x 20 = 0.144 + 2 x 19.976 = 40.096
Benchmark B shared: 0.0003 x 120 + 0.9997 x 2 x 20 = 0.036 + 2 X 19.994 = 40.024
Off chip memory latency doubling;:

cache hit latency

cache hit latency

When memory latency doubles, benchmark A prefers shared cache while benchmark B prefers

Benchmark A/B: shared miss rate X memory hit latency + (1 — shared miss rate) x 2 x shared

Benchmark A/B: private miss rate X 2 x memory hit latency + (1 — private miss rate) X private

Benchmark A/B: shared miss rate x 2 X memory hit latency + (1 — shared miss rate) x shared

Chapter 5 Solutions

$199

5.17.3
a. | Shared L2: typically good for multithreaded benchmarks when significant amount of shared
data; good for applications need more than private cache capacity.
Private L2: good for applications whose working set can fit, also good for isolating negative
interferences between multiprogrammed workloads.
b. | Shared L2: typically good for multithreaded benchmarks when significant amount of shared
data; good for applications need more than private cache capacity.
Private L2: good for applications whose working set can fit, also good for isolating negative
interferences between multiprogrammed workloads.
5.17.4
a. | Over shared cache: benchmark A 4.7%, benchmark B 1.3%
Over private cache: benchmark A 11.6%, benchmark B 8.1%
b. | Performance improvement over shared cache: benchmark A 4.7%, benchmark B 1.3%
Performance improvement over private cache: benchmark A 11.6%, benchmark B 8.1%
5.17.5
a. | For private L2, 4X bandwidth. For shared L2, cannot determine because the aggregate miss
rate is not the sum of per-workload miss rates.
b. | For private L2, 4X bandwidth. For shared L2, cannot determine because the aggregate miss
rate is not the sum of per-workload miss rates.
5.17.6

Processor: out-of-order execution, larger load/store queue, multiple hardware
threads;

Caches: more miss status handling registers (MSHR)

Memory: memory controller to support multiple outstanding memory requests

Solution 5.18
5.18.1

srclP field. 1 miss per entry.

refTime and status fields. 1 miss per entry.

5.18.2

Split the srcIP field into a separate array.

Group the refTime and status fields into a separate array.

$200 Chapter 5 Solutions

5.18.3

a. | topK_sourceIP (int hour);
Group the srcIP and refTime fields into a separate array.

b. | topK_sourceIP (int hour);

Group srcIP, refTime and status together.

5.184
D A Y
(8-way) (4-way) (direct map)
apsi 0.00% 0.746% 0.505% 0.006% 0.142% 0.740%
facerec 0.00% 0.649% 0.144% -0.001% 0.001% 0.083%
O P = =
(8-way) (4-way) (direct map)
perlbmk 0.00% 0.0011% 0.0016% 0.0017% 0.0024% 0.0061%
ammp 0.00% 0.0166% 0.0172% 0.0175% 0.0180% 0.0196%
5.18.5

3 way for shared L1 cache; 4-way for shared L2 cache.

8-way for shared L1 cache of 64 KB;
8-way for shared L2 cache of 1 MB and direct-mapped for L1 cache of 64 KB;

5.18.6

apsi. 512 KB 2-way LRU has higher miss rate than direct-mapped cache.

apsi/mesa/ammp/mcf all have such examples.

Example cache: 4-block caches, direct-mapped versus 2-way LRU.
Reference stream (blocks): 1226 1.

Solutions

Solution 6.1

6.1.1
a. | Video Game Controller—Input, Human
Monitor—OQutput, Human
CDROM—Storage, Machine
b. | Handheld GPS Keypad—Input, Human
Display—Output, Human
Satellite Interface—Input, Machine
Computer Interface—I/0, Machine
6.1.2
a. | Video Game Controller—0.0038 Mbit/sec

Monitor—800-8000 Mbit/sec
CDROM—88-220 Mbit/sec

b. | Handheld GPS Keypad—0.0001 Mbit/sec
Display—800 Mbit/sec

Satellite Interface—10 Mbit/sec
Computer Interface—400-800 Mbit/sec

6.1.3
a. | Video Game Controlle—Operation Rate
Monitor—Data Rate
CDROM—Data Rate for most applications
b. | Handheld GPS Keypad—Operation Rate

Display—Data Rate
Satellite Interface—Data Rate
Computer Interface—Data Rate

Solution 6.2
6.2.1

a. | 43848

b. | 87480

$202

Chapter 6 Solutions

6.2.2

a. | 0.996168582375479

b. | 0.998628257887517

6.2.3 Availability approaches 1.0. With the emergence of inexpensive drives, hav-
ing a nearly 0 replacement time for hardware is quite feasible. However, replacing
file systems and other data can take significant time. Although a drive manufac-
turer will not include this time in their statistics, it is certainly a part of replacing

a disk.

6.2.4 MTTR becomes the dominant factor in determining availability. However,
availability would be quite high if MTTF also grew measurably. If MTTF is 1000

times MTTR, it the specific value of MTTR is not significant.

Solution 6.3

6.3.1
a. | 15.196 ms
b. | 13.2ms
6.3.2
a. | 15.225
b. | 13.233

6.3.3 The dominant factor for all disks seems to be the average seek time, although
RPM would make a significant contribution as well. Interestingly, by doubling the
block size, the RW time changes very little. Thus, block size does not seem to be

critical.

Solution 6.4

6.4.1
a. | Yes | A satellite database will process infrequent requests for bulk information. Thus,
increasing the sector size will allow more data per read request.
b. | No This depends substantially on which aspect of the video game is being discussed.

However, response time is critical to gaming. Increasing sector size may reduce
response time.

Chapter 6 Solutions

$203

6.4.2

a. | Yes | Increasing rotational speed will allow more data to be retrieved faster. For bulk data, this
should improve performance.

b. | No Increasing rotational speed will allow improved performance when retrieving graphical
elements from disk.

6.4.3

a. | No A database system that is collecting data must have exceptionally high availability, or
data loss is possible.

b. | Yes | Increasing disk performance in a non-critical application such as this may have benefits.

Solution 6.5

6.5.1 There is no penalty for either seek time or for the disk rotating into position
to access memory. In effect, if data transfer time remains constant, performance
should increase. What is interesting is that disk data transfer rates have always
outpaced improvements with disk alternatives. Flash is the first technology with
potential to catch hard disk.

6.5.2

a. | No Databases are huge and Flash is expensive. The performance gain is not worth the
expense.

b. | Yes | Anything that improves performance is of benefit to gaming.

6.5.3

a. | Maybe Decreasing download time is highly beneficial to database downloads. However, the
data rate for some satellites may be so low that no gain would result.

b. | Yes

Solution 6.6

6.6.1 Note that some of the specified Flash memories are controller limited.
This is to convince you to think about the system rather than simply the Flash
memory.

a. | 28.7ms

b. | 32.5ms

$204

Chapter 6 Solutions

6.6.2 Note that some of the specified Flash memories are controller limited.
This is to convince you to think about the system rather than simply the Flash
memory.

a. | 14.35ms

b. | 16.25 ms

6.6.3 On initial thought, this may seem unexpected. However, as the Flash mem-
ory array grows, delays in propagation through the decode logic and delays propa-
gating decoded addresses to the Flash array account for longer access times.

Solution 6.7
6.7.1

a. | Asynchronous. Mouse inputs are relatively infrequent in comparison to other inputs. The mouse
device is electrically distant from the CPU.

b. | Synchronous. The memory controller is electrically close to the CPU and throughput to memory
must be high.

6.7.2 For all devices in the table, problems with long, synchronous buses are the
same. Specifically, long synchronous buses typically use parallel cables that are sub-
ject to noise and clock skew. The longer a parallel bus is, the more susceptible it is
to environmental noise. Balanced cables can prevent some of these issues, but not
without significant expense. Clock skew is also a problem with the clock at the end
of a long bus being delayed due to transmission distance or distorted due to noise
and transmission issues. If a bus is electrically long, then an asynchronous bus is
usually best.

6.7.3 The only real drawback to an asynchronous bus is the time required to trans-
mit bulk data. Usually, asynchronous buses are serial. Thus, for large data sets, trans-
mission can be quite high. If a device is time sensitive, then an asynchronous bus
may not be the right choice. There are certainly exceptions to this rule-of-thumb
such as FireWire, an asynchronous bus that has excellent timing properties.

Solution 6.8
6.8.1

a. | USB or FireWire due to hot swap capabilities and access to the drive.

b. | USB due to distance from the CPU and low bandwidth requirements. FireWire would not be as
appropriate due to its daisy chaining implementation.

Chapter 6 Solutions

$205

6.8.2

PCI Uses a single, parallel data bus with control lines for each device. Individual devices do
not have controllers, but send requests and receive commands from the bus controller
through their control lines. Although the data bus is shared among all devices, control
lines belong to a single device on the bus.

USB Similar to the PCI bus except that data and control information is communicated
serially from the bus controller.

FireWire Uses a daisy chain approach. A controller exists in each device that generates requests
for the device and processes requests from devices after it on the bus. Devices relay
requests from other devices along the daisy chain until they reach the main bus
controller.

SATA As the name implies, Serial ATA uses a serial, point-to-point connection between a
controller and device. Although both SATA and USB are serial connections, point-to-point
implies that unlike USB, data lines are not shared by multiple connections. Like USB
and FireWire, SATA devices are hot swappable.

6.8.3

PCI

The parallel bus use to transmit data limits the length of the bus. Having a fixed

number of control lines limits the number of devices on the bus. The tradeoff is speed.
PCI buses are not useful for peripherals that are physically distant from the computer.

usB

with relatively low data rates that must be physically distant from the computer.

Serial communication implies longer communication distances, but the serial nature of
the communication limits communication speed. USB buses are useful for peripherals

FireWire Daisy chaining allows adding theoretically unlimited numbers of devices. However,

when one device in the daisy chain dies, all devices further along the chain cannot

makes it faster than USB.

communicate with the controller. The multiplexed nature of communication on FireWire

SATA

USB or FireWire.

The high-speed nature of SATA connections limits the length of the connection between
the controller and devices. The distance is longer than PCI, but shorter than FireWire or
USB. Because SATA connections are point-to-point, SATA is not as extensible as either

Solution 6.9

6.9.1 A polled device is checked by devices that communicate with it. When the
devices requires attention or is available, the polling process communicates with it.

No. Signals from the controller must be handed immediately for satisfactory interaction.

Yes

$206

Chapter 6 Solutions

6.9.2 Interrupt-driven communication involves devices raising interrupts when
they require attention and the CPU processing those interrupts as appropriate.
While polling requires a process to periodically examine the state of a device, inter-
rupts are raised by the device and occur when the device is ready to communicate.
When the CPU is ready to communicate with the device, the handler associated
with the interrupt runs and then returns control to the main process.

a. | Inputs from the controller generate interrupts handled by the controller driver.

b. | Polling is okay

6.9.3 Basically, each interface is designed in a similar way with memory locations
identified for inputs and outputs associated with devices.

a. | The video game controller is an input only device. It has 4 buttons, a joystick, and a rocker.
Each button can be in either an on or off position. The joystick generates nine 1 byte values
that indicate relative position as a vector from the origin at the center of the control. Finally, the
rocker state is expressed as 4 bits, one bit for each of the four directions.

b. | A computer monitor is an output only device that requires memory based on the number of
pixels available for output. The monitor | am sitting at now is 2560x1600 pixels. Each pixel
requires a memory word to set its color. The amount of memory required suggests why video
cards tend to have their own, onboard memory.

6.9.4

a. | The video game controller is an input only device. Thus, a collection of commands should be
defined that either poll inputs or are called to process interrupts. The commands simply convey
the same information as memory mapping, but return values for command invocations.

b. | A computer monitor is an output only device A single command can be implemented that sends
an image to be displayed to the interface card. Alternatively, it could send a pointer to the
image rather than the image itself.

6.9.5 Absolutely. A graphics card is an excellent example. A memory map can be
used to store information that is to be displayed. Then, a command used to actu-
ally display the information. Similar techniques would work for other devices from
the table.

Solution 6.10

6.10.1 Low-priority interrupts are disabled to prevent them from interrupting
the handing of the current interrupt which is higher priority. The status regis-
ter is saved to assure that any lower priority interrupts that have been detected
are handled with the status register is restored following handing of the current
interrupt.

Chapter 6 Solutions

$207

6.10.2 Lower numbers have higher interrupt priorities

a. Power Down: 2 Overheat: 1 Ethernet Controller Data: 3
b. Overheat: 1 Reboot: 2 Mouse Controller: 3
6.10.3

Power Down Interrupt Jump to an emergency power down sequence and begin execution

Ethernet Controller Data Save the current program state. Jump to the Ethernet controller

Interrupt code and handle data input. Restore the program state and continue
execution

Overheat Interrupt Jump to an emergency power down sequence and begin execution

Mouse Controller Interrupt Save the current program state. Jump to the mouse controller code
and handle input. Restore the program state and continue execution

Reboot Interrupt Jump to address O and reinitialize the system

6.10.4 If the enable bit of the cause register is not set then interrupts are all dis-
abled and no interrupts will be handled. Zeroing all bits in the mask would have
the same affect.

6.10.5 Hardwaresupportforsavingand restoring program state prior to interrupt-
handling would help substantially. Specifically, when an interrupt is handled that
does not terminate execution, the running program must return to the point where
the interrupt occurred. Handling this in the operating system is certainly feasible,
but the only solution requires storing information on a stack or some other dedi-
cated memory area. In some case, registers are dedicated to this task. Providing
hardware support removes the burden from the operating system and program
state need not be pulled from the CPU and put in memory.

This is essentially the same has handling a function call, except that some inter-
rupts do not allow the interrupted program to resume execution. Like an interrupt,
a function must store program state information before jumping to its code. There
are sophisticated activation record management protocols and frequently support-
ing hardware for many CPUs.

6.10.6 Priority interrupts can still be implemented by the interrupt handler in
roughly the same manner. Higher priority interrupts are handled first and lower
priority interrupts are disabled when a higher priority interrupt is being handled.
Even though each interrupt causes a jump to its own vector, the interrupt system
implementation must still handle interrupt signals.

Both approaches have roughly the same capabilities.

$208

Chapter 6 Solutions

Solution 6.11

6.11.1 Yes. The CPU initiates the data transfer, but once the data transfer starts,
the device and memory communicate directly with no intervention from the CPU.

6.11.2

a. | Yes. If the CPU is processing graphical data that is to be displayed, allowing the graphics card
to access that data without going through the CPU can prevent substantial delays.

b. | Yes. If the CPU is processing sound data that is to be output by the sound card in real time,
allowing the sound card to access data without going through the CPU can have extensive
benefit.

DMA is useful when individual transactions with the CPU may involve large
amounts of data. A frame handled by a graphics card may be huge, but is treated as
one display action. Conversely, input from a mouse is tiny.

6.11.3

a. | No. The graphics card does not write back to system memory.

b. | No. The sound card does not write back to system memory.

Basically, any device that writes to memory directly can cause the data in memory
to differ from what is stored in cache.

6.11.4 Virtual memory swaps memory pages in and out of physical memory based
on locations being addressed. If a page is not in memory when an address associ-
ated with it is accessed, the page must be loaded, potentially displacing another
page. Virtual memory works because of the principle of locality. Specifically, when
memory is accessed, the likelihood of the next access being nearby is high. Thus,
pulling a page from disk to memory due to a memory access not only retrieves the
memory be accessed, but likely the next memory element being access.

Any of the devices listed in the table could cause potential problems if it causes
virtual memory to thrash, continuously swapping in and out pages from physical
memory. This would happen if the locality principle is violated by the device. Care-
tul design and sufficient physical memory will almost always solve this problem.

Solution 6.12
6.12.1

a. | Yes.

b. | Yes.

Chapter 6 Solutions

$209

6.12.2

a. | No. Web data is usually small, but requires significant numbers of transactions.

b. | Yes. Sound data is large with relatively infrequent transactions.

6.12.3 Sce the previous problem for explanations.

a. | Yes.

b. | No.

6.12.4 Polling would be more inappropriate for applications were numbers of
transactions handled is a good performance metric. When data throughput domi-
nates numbers of transactions, then polling could potentially be a reasonable
approach.

The selection of command-driven or memory-mapped I/O is more difficult. In
most situations, a mixture of the two approaches is the most pragmatic approach.
Specifically, use commands to handle interactions and memory to exchange data.
For transaction dominated I/O, command-driven I/O will likely be sufficient.

Solution 6.13
6.13.1

a. | Large numbers of small, concurrent transactions

b. | Large, concurrent data reads and writes

6.13.2 Standard benchmarks help when trying to compare and contrast differ-
ent systems. Ranking systems with benchmarks is generally not useful. However,
understanding tradeoffs certainly is.

6.13.3 It does not make much sense to evaluate an I/O system outside the system
where it will be used. Although benchmarks help simulate the environment of a
system, nothing replaces live data in a live system.

CPUgs are particularly difficult to evaluate outside of the system where they are
used. Again, benchmarks can help with this, but frequently Amdahl’s Law makes
spending resources on improving CPU speed have diminishing returns.

Solution 6.14

6.14.1 Striping forces I/O to occur on multiple disks concurrently rather than on
a single disk.

a. | No. The bottleneck in such systems is network throughput, not disk /0

b. | Yes. Sound editing requires access to large amounts of data in real time.

$210

Chapter 6 Solutions

6.14.2 The MTBF is calculated as MTTF + MTTR, with MTTF as the dominating
factor. For the RAID 1 system with redundancy to fail, both disks must fail. The
probability of both disks failing is the product of a single disk failing. The result is
a substantially increased MTBF.

In all applications, decreasing the likelihood of data loss is good. However, online
database and video services are particularly sensitive to resource availability. When
such systems are offline, revenue loss is immediate and customers lose confidence
in the service.

6.14.3 RAID 1 maintains two complete copies of a dataset while RAID 3 maintains
error correction data only. The tradeoff is storage cost. RAID 1 requires 2 times the
actual storage capacity while RAID 3 requires substantially less. This must be viewed
both in terms of the cost of disks, but also power and other resources required to
keep the disk array running.

In the previous applications, large online services like database and video services
would definitely benefit from RAID 3. Video and sound editing may also benefit
from RAID 3, but these applications are not as sensitive to availability issues as
online services.

Solution 6.15

6.15.1
a. | 513C
b. | 8404

6.15.2
a. | BB83
b. | FC4C

6.15.3 RAID 4 is more efficient because it requires fewer reads to generate the
next parity word value. Specifically, RAID 3 accesses every disk for every data write
no matter which disk is being written to. For smaller writes where data is located
on a single disk, RAID 4 will be more efficient.

RAID 3 has no inherent advantages to RAID 4.

6.15.4 RAID 5 distributes parity blocks throughout the disk array rather than on
a single disk. This eliminates the parity disk as a bottleneck during disk access. For
applications with high numbers of concurrent reads and writes, RAID 5 will be more
efficient. For lower volume, RAID 5 will not significantly outperform RAID 4.

Chapter 6 Solutions

S$211

6.15.5 As the number of disks grows by 1, the number of accesses required to
calculate a parity word in RAID 3 also grows by 1. In contrast, RAID 4 and 5 con-
tinue to access only existing values of data being stored. Thus, as the number of
disks grows, RAID 3 performance will continue to degrade while RAID 4 and 5 will
remain constant.

There is no performance advantage for RAID 4 or 5 over RAID three for small
numbers of disks. For 2 disks, there is no difference.

Solution 6.16
6.16.1

a. | 13333

b. | 26667

6.16.2

14000 7000 3500

1750

b. 28000 No 14000 No 7000 Yes

3500

Yes

6.16.3

PCI Bus Front Side Bus

m Bottleneck? m Bottleneck? m Bottleneck?

a. 15625 41687.5 82812.5

b. 31250 No 83375 No 165625 No

6.16.4 The assumptions made in approximating I/O performance are extensive.
From the approximation of I/O commands generated by the executing system
through sequential and random I/O events handled by disks, the approximations
are extensive. By benchmarking in a full system, or executing actual application
an engineer can see actual numbers that are far more accurate than approximate
calculations.

Solution 6.17

6.17.1 Runtime characteristics vary substantially from application to applica-
tion. All three applications perform some kind of transaction processing, but

$212

Chapter 6 Solutions

those transactions may be different in nature. A Web server processes numerous
transactions typically involving small amounts of data. Thus, transaction through-
put is critical. A database server is similar, but the data transferred may be much
larger. A bioinformatics data server will deal with huge data sets where transactions
processed is not nearly as critical as data throughput.

When identifying the runtime characteristics of the application, you are implicitly
identifying characteristics for evaluation. For a web server, transactions per second
is a critical metric. For the bioinformatics data server, data throughput is critical.
For a database server, you will want to balance both criteria.

6.17.2 It is relatively easy to use online resources to identify potential servers.
You may also find advertisements in periodicals from your professional societies or
trade journals. You should be able to identify one or more candidates using the cri-
teria identified in 6.17.1. If your reasons for selecting the server don’t follow from
the criteria in 6.17.1, something is not right.

6.17.3 In problem 6.16, we used characteristics of a Sun Fire x4150 to attempt
to predict its performance. You can use the same data and characteristics here.
Remember that the Sun Fire x4150 has multiple configurations. You should con-
sider this when you perform your evaluation.

Find similar measurements for the server that you have selected. Most of this data
should be available online. If not, contact the company providing the server and
see if such data is available.

It’s a reasonably simple task to use a spreadsheet to evaluate numerous configura-
tions and systems simultaneously. If you design your spreadsheet carefully, you can
simply enter a table of data and make comparisons quickly. This is exactly what you
will do in industry when evaluating systems.

6.17.4 Although analytic analysis is useful when comparing systems, nothing
beats hands-on evaluation. There are a number of test suites available that will serve
your needs here. Virtually all of them will be available online. Look for benchmarks
that generate transactions for the web server, generate large data transfers for the
bioinformatics server, and a combination of the two for the database server.

Solution 6.18
6.18.1

a. | 8.76

b. | 7.008

Chapter 6 Solutions

$213

6.18.2

I T S T S
a. 31.536 227.76
b. 21.024 151.84

6.18.3 Average failure rates of the drives with longer longevity for 7 and 10 years

are:
a. 12.264 36.792
b. 8.176 24.528

It is not surprising that with failure rates starting to double 3 years later, we have to
replace far fewer disks in the second situation than the first. The ratio of the num-
ber of drives replaced in the first scenario to the number replaced in the second
should give us the multiple that we want:

a. 2.57 6.19

b. 2.57 6.19

Solution 6.19

6.19.1 In all cases, no. The objective of the customer is not known. Thus, improv-
ing any performance metric by nearly doubling the cost may or may not have an
price impact on the company.

6.19.2 As a search engine provider paid by ad hits, throughput is critical. Most
HTTP traffic is small, so the network is not as great a bottleneck as it would be for
large data transfers. RAID 0 may be an effective solution. However, RAID 1 will
almost certainly not be an effective solution. Increased availability makes our prod-
uct more attractive, but a 1.6 cost multiple is most likely too high.

RAID 0 is going to increase throughput by 70%, meaning the potential exists to
serve 1.7 times as many ads. The cost of this gain is 0.6 of the original price. 1.7 times
as many ads for 1.6 times the original cost may justify the upgrade cost.

6.19.3 This problem is not as simple as it would seem at first glance. As an
online backup provider, availability is critical. Thus, using RAID 1 where failure

$214

Chapter 6 Solutions

rate decreases for a 1.6 times cost increase might be worthwhile. However, online
backup is more appealing when services are provided quickly making RAID 0
appealing. Remember Amdahl’s law. Will increasing throughput in the disk array
for long data reads and writes result in performance improvements for the system?
The network will be our throughput bottleneck, not disk access. RAID 0 will not
help much.

RAID 1 has more potential for increased revenue by making the disk array avail-
able more. For our original configuration, we are losing between 12 and 19 disks
per 1000 to 1500 every 7 years. If the system lifetime is 7 years, the RAID 1 upgrade
will almost certainly not pay for itself even though it addresses the most critical
property of our system. Over 10 years, we lose between 30 and 50 drives. If repair
times are small, then even over a 10 year span the RAID 1 solution will not be cost
effective.

Solution 6.20

6.20.1 The approach to solving this problem is relatively simple once parameters
of a bioinformatics simulation are understood. Simulations tend to run days or
months. Thus, losing simulation data or having a system failure during simula-
tion are catastrophic events. Availability is therefore a critical evaluation parameter.
Additionally, the disk array will be accessed by 1000 parallel processors. Through-
put will be a major concern.

The primary role of the power constraint in this problem is to prevent simply maxi-
mizing all parameters in the disk array. Adding additional disks and controllers
without justification will increase power consumption unnecessarily.

6.20.2 Remember that your system must provide both backup and archiving.
Thus, you will need multiple copies of your data and may be required to move
those copies offsite. This makes none of the solutions optimal.

RAID or a second backup array provides high speed backup, but does not provide
archival capabilities. Magnetic tape allows archiving, but can be exceptionally slow
when comparing to disk backups. Online backup automatically achieves archiving,
but can be even slower than disks.

6.20.3 Your benchmarks must evaluate backup throughput. Most other param-
eters that govern selection of a system are relatively well understood—portability
and cost being the primary issues to be evaluated.

Solutions

Solution 7.1

There is no single right answer for this question. The purpose is to get students to
think about parallelism present in their daily lives. The answer should have at least
10 activities identified.

7.1.1 Any reasonable answer is correct here.
7.1.2 Any reasonable answer is correct here.
7.1.3 Any reasonable answer is correct here.

7.1.4 The student is asked to quantify the savings due to parallelism. The answer
should consider the amount of overlap provided through parallelism and should
be less than or equal to (if no parallelism was possible) to the original time com-
puted if each activity was carried out serially.

Solution 7.2

7.2.1 While binary search has very good serial performance, it is difficult to paral-
lelize without modifying the code. So part A asks to compute the speed-up factor,
but increasing X beyond 2 or 3 should have no benefits. While we can perform the
comparison of low and high on one core, the computation for mid on a second
core, and the comparison for A[mid] on a third core, without some restructur-
ing or speculative execution, we will not obtain any speed-up. The answer should
include a graph, showing that no speed-up is obtained after the values of 1,2 or 3
(this value depends somewhat on the assumption made) for Y.

7.2.2 In this question, we suggest that we can increase the number of cores to
each the number of array elements. Again, given the current code, we really can-
not obtain any benefit from these extra cores. But if we create threads to compare
the N elements to the value X and perform these in parallel, then we can get ideal
speed-up (Y times speed-up), and the comparison can be completed in the amount
of time to perform a single comparison.

This problem illustrates that some computations can be done in parallel if serial
code is restructured. But more importantly, we may want to provide for SIMD

$216

Chapter 7 Solutions

operations in our ISA, and allow for data-level parallelism when performing the
same operation on multiple data items.

Solution 7.3

7.3.1 Thisis a straightforward computation. The first instruction is executed once,
and the loop body is executed 998 times.

Version 1—17,965 cycles
Version 2—22,955 cycles
Version 3—20,959 cycles

7.3.2 Array elements DJj] and D[j—1] will have loop carried dependencies. These
will f3 in the current iteration and f1 in the next iteration.

7.3.3 This is a very challenging problem and there are many possible implemen-
tations for the solution. The preferred solution will try to utilize the two nodes by
unrolling the loop 4 times (this already gives you a substantial speed-up by elimi-
nating many loop increment, branch and load instructions. The loop body run-
ning on node 1 would look something like this (the code is not the most efficient
code sequence):

DADDIU r2, r0, 996
L.D fI, -16(rl)
L.D f2, -8(rl)

loop:

ADD.D 3, f2, fl
ADD.D f4, 3, f2
Send (2, f3)
Send (2, f4)

S.D f3, 0(rl)
S.D f4, 8(rl)
Receive(f5)
ADD.D f6,f5,f4
ADD.D f1,f6,f5
Send (2, f6)
Send (2, f1)
S.D. f5, 16(rl)
S.D f6, 24(rl)
S.0 fl1 32(rl)
Receive(f2)

Chapter 7 Solutions

$217

The code on node 2 would look something like this:

loop:

S.D f2 40(rl)
DADDIU rl1, rl1, 48
BNE r1, r2, loop

ADD.D 3, f2, fl

ADD. D f4, f3, f2
ADD.D fo6, fb5, f4

S.D 3, 0(rl)

S.D f4, 8(rl)

S.D f5, 16(rl)

DADDIU r3, r0, O

Receive (f7)
Receive (f8)
ADD.D f9, f8, f7
Send(1, f9)
Receive (f7)
Receive (f8)
ADD.D f9, f8, f7
Send(1, f9)
Receive (f7)
Receive (f8)
ADD.D f9, f8, f7
Send(1, f9)
Receive (f7)
Receive (f8)
ADD.D f9, f8, f7
Send(1, f9)
DADDIU r3, r3, 1
BNE r3, 83, Tloop

Basically Node 1 would compute 4 adds each loop iteration, and Node 2 would
compute 4 adds. The loop takes 1463 cycles, which is much better than close to
18K. But the unrolled loop would run faster given the current send instruction

latency.

7.3.4 The loop network would need to respond within a single cycle to obtain a
speed-up. This illustrates why using distributed message passing is difficult when
loops contain loop-carried dependencies.

$218

Chapter 7 Solutions

Solution 7.4

7.4.1 This problem is again a divide and conquer problem, but utilizes recursion
to produce a very compact piece of code. In part A the student is asked to compute
the speed-up when the number of cores is small. We when forming the lists, we
spawn a thread for the computation of left in the MergeSort code, and spawn a
thread for the computation of the right. If we consider this recursively, for m initial
elements in the array, we can utilize 1 +2 +4 + 8 + 16 + ... log,(m) processors to
obtain speed-up.

7.4.2 In this question, log,(m) is the largest value of Y for which we can obtain
any speed-up without restructuring. But if we had m cores, we could perform sort-
ing using a very different algorithm. For instance, if we have greater than m/2 cores,
we can compare all pairs of data elements, swap the elements if the left element
is greater than the right element, and then repeat this step m times. So this is one
possible answer for the question. It is known as parallel comparison sort. Various
comparison sort algorithms include odd-even sort and cocktail sort.

Solution 7.5

7.5.1 For this set of resources, we can pipeline the preparation. We assume that
we do not have to reheat the oven for each cake.

Preheat Oven
Mix ingredients in bowl for Cake 1

Fill cake pan with contents of bowl and bake Cake 1. Mix ingredients for Cake 2
in bowl.

Finish baking Cake 1. Empty cake pan. Fill cake pan with bowl contents for Cake 2
and bake Cake 2. Mix ingredients in bowl for Cake 3.

Finish baking Cake 2. Empty cake pan. Fill cake pan with bowl contents for Cake 3
and bake Cake 3.

Finish baking Cake 3. Empty cake pan.

7.5.2 Now we have 3 bowls, 3 cake pans and 3 mixers. We will name them A, B
and C.

Preheat Oven

Mix incredients in bowl A for Cake 1

Fill cake pan A with contents of bowl A and bake for Cake 1. Mix ingredients for
Cake 2 in bowl A.

Chapter 7 Solutions

$219

Finish baking Cake 1. Empty cake pan A. Fill cake pan A with contents of bowl A
for Cake 2. Mix ingredients in bowl A for Cake 3.

Finishing baking Cake 2. Empty cake pan A. Fill cake pan A with contents of bowl A
for Cake 3.

Finish baking Cake 3. Empty cake pan A.

The point here is that we cannot carry out any of these items n parallel because we
either have one person doing the work, or we have limited capacity in our oven.

7.5.3 Each step can be done in parallel for each cake. The time to bake 1 cake,
2 cakes or 3 cakes is exactly the same.

7.5.4 The loop computation is equivalent to the steps involved to make one cake.
Given that we have multiple processors (or ovens and cooks), we can execute instruc-
tions (or cook multiple cakes) in parallel. The instructions in the loop (or cooking
steps) may have some dependencies on prior instructions (or cooking steps) in the
loop body (cooking a single cake). Data-level parallelism occurs when loop itera-
tions are independent (i.e., no loop carried dependencies). Task-level parallelism
includes any instructions that can be computed on parallel execution units, are
similar to the independent operations involved in making multiple cakes.

Solution 7.6

7.6.1 This problem presents an “embarrassingly parallel” computation and asks the
student to find the speed-up obtained on a 4-core system. The computations involved
are: (m X p X n) multiplications and (m X p X (n — 1)) additions. The multiplications
and additions associated with a single element in C are dependent (we cannot start
summing up the results of the multiplications for a element until two products are
available). So in this question, the speed-up should be very close to 4.

7.6.2 This question asks about how speed-up is affected due to cache misses
caused by the 4 cores all working on different matrix elements that map to the same
cache line. Each update would incur the cost of a cache miss, and so will reduce the
speed-up obtained by a factor of 3 times the cost of servicing a cache miss.

7.6.3 In this question, we are asked how to fix this problem. The easiest way to
solve the false sharing problem is to compute the elements in C by traversing the
matrix across columns instead of rows (i.e., using index-j instead of index-i). These
elements will be mapped to different cache lines. Then we just need to make sure
we processor the matrix index that is computed (i, j) and (i + 1, j) on the same core.
This will eliminate false sharing.

$220

Chapter 7 Solutions

Solution 7.7
7.7.1
x=2,y=2,w=1,z=0
x=2,y=2,w=3,z=0
x=2,y=2,w=5,z=0
x=2,y=2,w=1,z=2
x=2,y=2,w=3,z=2
x=2,y=2,w=5,z=2
x=2,y=2,w=1,z=4
x=2,y=2,w=3,z=4
x=3,y=2,w=5,2=4

7.7.2 We could set synchronization instructions after each operation so that all
cores see the same value on all nodes.

Solution 7.8

7.8.1 1 byte x C entries = number of bytes consumed in the cache for maintain-
ing coherence.

7.8.2 P bytes/entry X S/T = number of bytes needed to store coherency informa-
tion in each directory on a single node.

Solution 7.9

7.9.1 There are a number of correct answers since the answer depends upon the
write protocol and the cache coherency protocol chosen. First, the write will gen-
erate a read from memory of the L2 cache line, and then the line is written to
the L1 cache. Any data that was “dirty” in L2 that was replaced is written back to
memory. The data updated in the block is updated in L1 and L2 (assuming L1
is updated on a write miss). The status of the line is set to “dirty”. Specific to the
coherency protocol assumed, on the first read from another node, a cache-to-cache
transfer takes place of the entire dirty cache line. Depending on the cache coher-
ency protocol used, the status of the line will be changed (in our answer it will
become “shared” in both caches). The other two reads can be serviced from any of
the caches on the two nodes with the updated data. The accesses for the other three
writes are handled exactly the same way. The key concept here is that all nodes are
interrogated on all reads to maintain coherency, and all must respond to service
the read miss.

Chapter 7 Solutions

$221

7.9.2 For a directory-based mechanism, since the address space of memory is
divided up on a node-by-node basis, only the directory responsible for the address
requested needs to be interrogated. The directory controller will then initiate the
cache-to-cache transfer, but will not need to bother the L2 caches on the nodes
where theline is not present. All state updates are handled locally at the directory. For
the last two reads, again the single directory is interrogated and the directory con-
troller initiates the cache-to-cache transfer. But only the two nodes participating in
the transfer are involved. This increases the L2 bandwidth since only the minimum
number of cache accesses/interrogations are involved in the transaction.

7.9.3 The answer to this question is similar, though there are subtle differences.
For the cache-based block status case, all coherency traffic is managed at the 1.2
level between CPUs, so this scenario should not change except that reads by the
3 local cores should not generate any coherence messages outside of the CPU. For
the directory case, all accesses need to interrogate the directory and the directory
controller will initiate cache-to-cache transfers. Again, the number of accesses is
greatly reduced using the directory approach.

7.9.4 This is a case of how false sharing can bring a system to its knees. Assuming
an invalidate on write policy, for writes on the same CPU, the L1 dirty copy from
the first write will be invalidated on the second write, and this same pattern will
occur on the third and fourth write. When writes are done on another CPU, then
coherence management moves to the L2, and the L2 copy on the first CPU is invali-
dated. The local write activity is the same as for the first CPU. This repeats for the
last two CPUs. Of course, this assumes that the order of the writes is in numerical
order, with the group of 4 writes being performed on the same CPU on each core.
If we instead assume that consecutive writes are performed by different CPUs each
time, then invalidates will take place at the L2 cache level on each write.

Solution 7.10

This question looks at the impact of handling a second memory access when one is
pending, given the fact that one is pending.

7.10.1 We will encounter a 25 cycle stall every 150 cycles
7.10.2 We will encounter a 50 cycle stall every 150 cycles
7.10.3 No impact

Solution 7.11

7.11.1 If every philosopher simultaneously picks up the left fork, then there will
be no right fork to pick up. This will lead to starvation.

$222

Chapter 7 Solutions

7.11.2 The basic solution is that whenever a philosopher wants to eat, she checks
both forks. If they are free, then she eats. Otherwise, she waits until a neighbor con-
tacts her. Whenever a philosopher finishes eating, she checks to see if her neighbors
want to eat and are waiting. If so, then she releases the fork to one of them and lets
them eat.

The difficulty is to first be able to obtain both forks without another philosopher
interrupting the transition between checking and acquisition. We can implement
this a number of ways, but a simple way is to accept requests for forks in a central-
ized queue, and give out forks based on the priority defined by being closest to the
head of the queue. This provides both deadlock prevention and fairness.

7.11.3 There are a number or right answers here, but basically showing a case
where the request of the head of the queue does not have the closest forks available,
though there are forks available for other philosophers.

7.11.4 By periodically repeating the request, the request will move to the head
of the queue. This only partially solves the problem unless you can guarantee that
all philosophers eat for exactly the same amount of time, and can use this time to
schedule the issuance of the repeated request.

Solution 7.12

7.12.1
A1, A3 B1, B3

Al B2
A3 B4
Ad

7.12.2
AL A3
Al
B1 B3
B2
A2
A4
B4

Chapter 7 Solutions

$223

7.12.3
.
Al B1
Al B2
A2 B3
A3 B4
A4

Solution 7.13

This is an open-ended question.

Solution 7.14

7.14.1 The answer should include a MIPS program that includes 4 different pro-
cesses that will compute 4 of the sums. Assuming that memory latency is not an
issue, the program should get linear speed when run on the 4 processors (there is
no communication necessary between threads). If memory is being considered in
the answer, then the array blocking should consider preserving spatial locality so
that false sharing is not created.

7.14.2 Since this program is highly data parallel and there are no data depen-
dencies, a 8X speed-up should be observed. In terms of instructions, the SIMD
machine should have fewer instructions (though this will depend upon the SIMD
extensions).

Solution 7.15

This is an open-ended question that could have many possible answers. The key is
that the student learns about MISD and compares it to an SIMD machine.

Solution 7.16

This is an open-ended question that could have many answers. The key is that the
students learn about warps.

Solution 7.17

This is an open-ended programming assignment. The code should be tested for
correctness.

$224

Chapter 7 Solutions

Solution 7.18

This question will require the students to research on the Internet both the AMD
Fusion architecture and the Intel QuickPath technology. The key is that students
become aware of these technologies. The actual bandwidth and latency values
should be available right off the company websites, and will change as the technol-
ogy evolves.

Solution 7.19

7.19.1 For an n-cube of order N (2 nodes), the interconnection network can
sustain N—1 broken links and still guarantee that there is a path to all nodes in the
network.

7.19.2 The plot below shows the number of network links that can fail and still
guarantee that the network is not disconnected.

100000

10000 /
1000
—l— Ncube
—O— Fully connected
100

Number of faulty links

Network order

Solution 7.20

7.20.1 Major differences between these suites include:
Whetstone—designed for floating point performance specifically
PARSEC—these workloads are focused on multithreaded programs

7.20.2 Only the PARSEC benchmarks should be impacted by sharing and syn-
chronization. This should not be a factor in Whetstone.

Chapter 7 Solutions

$225

Solution 7.21

7.21.1 Any reasonable C program that performs the transformation should be
accepted.

7.21.2 The storage space should be equal to (R + R) times the size of a single-
precision floating point number + (m + 1) times the size of the index, where R is
the number of non-zero elements and m is the number of rows. We will assume
each floating-point number is 4 bytes, and each index is a short unsigned integer
that is 2 bytes.

For Matrix X this equals 62 bytes.

7.21.3 The answer should include results for both a brute-force and a computa-
tion using the Yale Sparse Matrix Format.

7.21.4 There are a number of more efficient formats, but their impact should be
marginal for the small matrices used in this problem.

Solution 7.22

This question presents three different CPU models to consider when executing the
following code:

if (XCi10J1 > YOiILdD
count++;

7.22.1 There are a number of acceptable answers here, but they should consider the
capabilities of each CPU and also its frequency. What follows is one possible answer:

Since X and Y are FP numbers, we should utilize the vector processor (CPU C) to
issue 2 loads, 8 matrix elements in parallel from A and 8 matrix elements from B,
into a single vector register and then perform a vector subtract. We would then
issue 2 vector stores to put the result in memory.

Since the vector processor does not have comparison instructions, we would have
CPU A perform 2 parallel conditional jumps based on floating point registers. We
would increment two counts based on the conditional compare. Finally, we could
just add the two counts for the entire matrix. We would not need to use core B.

7.22.2 The point of the problem is to show that it is difficult to perform opera-
tion on individual vector elements when utilizing a vector processor. What might
be a nice instruction to add would be a vector comparison that would allow for us
to compare two vectors and produce scalar value of the number of elements where
one vector was larger the other. This would reduce the computation to a single

$226

Chapter 7 Solutions

instruction for the comparison of 8 FP number pairs, and then an integer compu-
tation for summing up all of these values.

Solution 7.23

This question looks at the amount of queuing that is occurring in the system given
a maximum transaction processing rate, and the latency observed on average by a
transaction. The latency includes both the service time (which is computed by the
maximum rate) and the queue time.

7.23.1 So for a max transaction processing rate of 5000/sec, and we have 4 cores
contributing, we would see an average latency of .8 ms if there was no queuing tak-
ing place. Thus, each core must have 1.25 transactions either executing or in some
amount of completion on average.

So the answers are:

m Max TP rate Avg. # requests per core

1ms 5000/sec 1.25
2ms 5000/sec 2.5
1ms 10,000/sec 2.5
2 ms 10,000/sec 5

7.23.2 We should be able to double the maximum transaction rate by doubling
the number of cores.

7.23.3 The reason this does not happen is due to memory contention on the
shared memory system.

