
© 2010 Marty Hall

JavaScript:
A Crash Course

Part II: Functions and ObjectsPart II: Functions and Objects
Originals of Slides and Source Code for Examples:

http://courses.coreservlets.com/Course-Materials/ajax.html

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

http://courses.coreservlets.com/Course Materials/ajax.html

© 2010 Marty Hall

For live Ajax & GWT training, see training
 t htt // l t /courses at http://courses.coreservlets.com/.

Taught by the author of Core Servlets and JSP,
More Servlets and JSP and this tutorial Available at More Servlets and JSP, and this tutorial. Available at
public venues, or customized versions can be held

on-site at your organization.
C d l d d t ht b M t H ll

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

• Courses developed and taught by Marty Hall
– Java 6, servlets/JSP (intermediate and advanced), Struts, JSF 1.x, JSF 2.0, Ajax, GWT 2.0 (with GXT), custom mix of topics
– Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, Google Closure) or survey several

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, EJB3, Web Services, Ruby/Rails

Contact hall@coreservlets.com for details

Topics in This Section

• Functions
– Basics
– As first-class data types

Anonymous functions (closures)– Anonymous functions (closures)

• Objects
– Object basicsObject basics
– Namespaces (static methods)
– JSON
– eval

• Functions with variable numbers of
targuments

5

© 2010 Marty Hall

Intro
“JavaScript has more in common with functional languages p g g
like Lisp or Scheme than with C or Java.”

- Douglas Crockford in article “JavaScript: The World’s
Most Misunderstood Programming Language”

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Most Misunderstood Programming Language .

Getting Good at JavaScript

• JavaScript is not Java
– If you try to program JavaScript like Java, you will never

be good at JavaScript.

• Functional programming is key approach• Functional programming is key approach
– Functional programming is much more central to

JavaScript programming than OOP is.
– Java programmers find functional programming to be the

single-hardest part of JavaScript to learn.
• Because Java does not support functional programmingBecause Java does not support functional programming
• But programmers who use Ruby, Lisp, Scheme, Python,

ML, Haskell, Clojure, Scala, etc. are accustomed to it

• OOP is radically different than in Java• OOP is radically different than in Java
– So different in fact, that some argue that by Java’s

definition of OOP, JavaScript does not have “real” OOP.7

© 2010 Marty Hall

FunctionsFunctions
“It is Lisp in C’s clothing.”It is Lisp in C s clothing.

- JSON and YUI guru Douglas Crockford, describing
the JavaScript language in JavaScript: The Good Parts.

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Overview

• Not similar to Java
J S i f i diff f J h d– JavaScript functions very different from Java methods

• Main differences from Java
– You can have global functionsYou can have global functions

• Not just methods (functions as part of objects)
– You don’t declare return types or argument types

Caller can supply any number of arguments– Caller can supply any number of arguments
• Regardless of how many arguments you defined

– Functions are first-class datatypes
Y f ti d t th i t• You can pass functions around, store them in arrays, etc.

– You can create anonymous functions (closures)
• Critical for Ajax
• These are equivalent

– function foo(...) {...}
– var foo = function(...) {...}

9

Functions are First-Class Data
TypesTypes

– Can assign functions to variables
f ti () { t (*) }• function square(x) { return(x*x); }

• var f = square;
• f(5);  25

– Can put functions in arrays
• function double(x) { return(x*2); }
• var functs = [square f double];var functs [square, f , double];
• functs[0](10);  100

– Can pass functions into other functions
F ti ()• someFunction(square);

– Can return functions from functions
• function blah() { … return(square); }() { (q); }

– Can create a function without assigning it to a variable
• (function(x) {return(x+7);})(10);  17

10

Assigning Functions to
VariablesVariables

• Examples
function square(x) { return(x*x); }
var f = square;
square(5);  25square(5);  25
f(5);  25

• Equivalent formsEquivalent forms
function square(x) { return(x*x); }
var square = function(x) { return(x*x); };

11

Putting Functions in Arrays

• Examples
var funcs = [square, f , double];
var f2 = funcs[0];
f2(7);  49f2(7);  49
funcs[2](7);  14

• Other data structuresOther data structures
– Functions can also go in objects or any other category of

data structure. We haven’t covered objects yet, but here is
i k la quick example:

var randomObj = { a: 3, b: "Hi", c: square};
randomObj.a;  3j
randomObj.b;  "Hi"
randomObj.c(6);  36

12

Passing Functions into Other
FunctionsFunctions

function third(x) {
return(x / 3);

}

function triple(x) {
return(x * 3);()

}

function nineTimes(x) {
return(x * 9);etu ();

}

function operate(f) {

Function as argument.

function operate(f) {
var nums = [1, 2, 3];
for(var i=0; i<nums.length; i++) {
var num = nums[i];
console log("Operation on %o is %o "console.log(Operation on %o is %o. ,

num, f(num));
}

}
13

Returning Functions from
FunctionsFunctions

• Examples
function randomFunct() {
if(Math.random() > 0.5) {

return(square);(q)
} else {

return(double)
}}

}
var f3 = randomFunct();
f3(5); // Returns either 25 or 10f3(5); // Returns either 25 or 10
f3(5); // Returns whatever it did on line above

• Dynamically created functionsy y
– Instead of a predefined function like square, you can

return a new function with return(function(…) { …});
14

Can Create a Function without
Assigning it to a VariableAssigning it to a Variable

• Examples
(function(x) {return(x+7);})(10);  17

function randomFunct2() {() {
if(Math.random() > 0.5) {

return(function(x) { return(x*x); });
} else {} else {

return(function(x) { return(x*2); });
}

}}
– Same behavior as previously shown randomFunct

• More on anonymous functionsy
– Called “closures” if the functions refer to local variables

from the outside. Can’t do Ajax without them!
15

© 2010 Marty Hall

Functions:Functions:
Advanced Topicsp

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Anonymous Functions with
Static DataStatic Data

• Examples
function makeTimes7Function() {

return(function(n) { return(n*7); });
}}
var f = makeTimes7Function();
f(7);  49

• Equivalent form of function above• Equivalent form of function above
function makeTimes7Function() {

var m = 7;
return(function(n) { return(n*m); });

}
var m = 700; // Value of global m is irrelevant; g
var f = makeTimes7Function();
f(7);  49

17

Anonymous Function with
Captured Data (Closures)Captured Data (Closures)
function makeMultiplierFunction(m) {

t (f ti () { t (*) })return(function(n) { return(n*m); });
}

var test = 10;
f k M lti li F ti (t t)var f = makeMultiplierFunction(test);

f(7);  70
test = 100;
f(7);  70 // Still returns 70

18

Point: when you call makeMultiplierFunction, it creates a function that has its own private copy of m. This idea of an anonymous function
that captures a local variable is the only way to do Ajax without having the global variable problems that we showed in first section.

The apply Method: Simple Use

• Idea
– Lets you apply function to array of arguments instead of

individual arguments. It is a method of functions!
• someFunction apply(null arrayOfArgs);someFunction.apply(null, arrayOfArgs);

– Later, we cover advanced usage with obj instead of null

• Examples
function hypotenuse(leg1, leg2) {
return(Math.sqrt(leg1*leg1 + leg2*leg2));

}}
hypotenuse(3, 4);  5
var legs = [3, 4];
hypotenuse apply(null legs);  5hypotenuse.apply(null, legs);  5

Math.max.apply(null, [1, 3, 5, 7, 6, 4, 2]);  7
19

The call and apply Methods:
Use with ObjectsUse with Objects

• Idea
– call

• Lets you call function on args, but sets “this” first.
– Will make more sense once we cover objects, but the main idea isWill make more sense once we cover objects, but the main idea is

that “this” lets you access object properties. So, “call” treats a
regular function like a method of the object.

– apply
• Same idea, but you supply arguments as array

• Examples
function fullName() {function fullName() {

return(this.firstName + " " + this.lastName);
}
fullName();  "undefined undefined"
var person = { firstName: "David", lastName: "Flanagan" };
fullName.call(person);  "David Flanagan"20

© 2010 Marty Hall

Object Basics

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Basics

• Constructors
F i d f l Th “ ”– Functions named for class names. Then use “new”.

• No separate class definition! No “real” OOP in JavaScript!
– Can define properties with “this”

• You must use “this” for properties used in constructors
function MyClass(n1) { this.foo = n1; }
var m = new MyClass(10);

P ti (i t i bl)• Properties (instance variables)
– You don’t define them separately

• Whenever you refer to one, JavaScript just creates ite e e you e e to o e, Ja aSc pt just c eates t
m.bar = 20; // Now m.foo is 10 and m.bar is 20
• Usually better to avoid introducing new properties in

outside code and instead do entire definition in constructor

• Methods
– Properties whose values are functions

22

Objects: Example
(Circle Class)(Circle Class)
function Circle(radius) {

this radius = radius;this.radius = radius;

this.getArea =
function() {function() {

return(Math.PI * this.radius * this.radius);
};

}}

var c = new Circle(10);
() // 31 1 92c.getArea(); // Returns 314.1592...

23

The prototype Property

• In previous example
E Ci l i f di– Every new Circle got its own copy of radius

• Fine, since radius has per-Circle data
– Every new Circle got its own copy of getArea function

• Wasteful, since function definition never changes

• Class-level properties
– Classname prototype propertyName = value;Classname.prototype.propertyName value;

• Methods
– Classname.prototype.methodName = function() {...};

• Just a special case of class-level properties
– This is legal anywhere, but it is best to do it in constructor

• Pseudo-InheritancePseudo Inheritance
– The prototype property can be used for inheritance

• Complex. See later section on Prototype library
24

Objects: Example
(Updated Circle Class)(Updated Circle Class)
function Circle(radius) {

this radius = radius;this.radius = radius;

Circle.prototype.getArea =
function() {function() {

return(Math.PI * this.radius * this.radius);
};

}}

var c = new Circle(10);
() // 31 1 92c.getArea(); // Returns 314.1592...

25

© 2010 Marty Hall

Static Methods

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Static Methods (Namespaces)

• Idea
H l d f i h d bj i– Have related functions that do not use object properties

– You want to group them together and call them with
Utils.func1, Utils.func2, etc.

• Grouping is a syntactic convenience. Not real methods.
• Helps to avoid name conflicts when mixing JS libraries

– Similar to static methods in Java
• Syntax

– Assign functions to properties of an object, but do not
define a constructor E gdefine a constructor. E.g.,

• var Utils = { }; // Or new Object(), or make function Utils
Utils.foo = function(a, b) { … };
Util b f ti () { }Utils.bar = function(c) { … };
var x = Utils.foo(val1, val2);
var y = Utils.bar(val3);27

Static Methods: Example (Code)

var MathUtils = {};

MathUtils.fact = function(n) {
if (n <= 1) {

return(1);
} else {

return(n * MathUtils.fact(n-1));
}

};};

MathUtils.log10 = function(x) {
return(Math.log(x)/Math.log(10));(g() g())

};

28

Namespaces in Real
ApplicationsApplications

• Best practices in large projects
– In many (most?) large projects, all global variables

(including functions!) are forbidden due to the possibility
of name collisions from pieces made by different authors.of name collisions from pieces made by different authors.

– So, these primitive namespaces play the role of Java’s
packages. Much weaker, but still very valuable.

• Fancy variation: repeat the name
• var MyApp = { };
• MyApp foo = function foo() { };MyApp.foo function foo(…) { … };
• MyApp.bar = function bar(…) { … };

– The name on the right does not become a global name.
Th l d t i f d b iThe only advantage is for debugging

• Firebug and other environments will show the name when
you print the function object.

29

© 2010 Marty Hall

JSON:JSON:
Anonymous Objectsy j

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

JSON (JavaScript Object Notation)

• Idea
– A simple textual representation of JavaScript objects

• Called “object literals” or “anonymous objects”

– Main applications– Main applications
• One-time-use objects (rather than reusable classes)
• Objects received via strings

Di l i J S i• Directly in JavaScript
– var someObject =

{ property1: value1, p p y
property2: value2,
... };

• In a string (e.g., when coming in on network)In a string (e.g., when coming in on network)
– Surround object representation in parens
– Pass to the builtin “eval” function31

JSON: Example

var person =
{ firstName: 'Brendan',{ ,
lastName: 'Eich',
bestFriend: { firstName: 'Chris',

lastName: 'Wilson' },
greeting: function() {greeting: function() {

return("Hi, I am " + this.firstName +
" " + this.lastName + ".");

}
};

32

Internet Explorer and Extra
CommasCommas

• Firefox & Chrome tolerate trailing commas
– Tolerated in both arrays and anonymous objects

• var nums = [1, 2, 3,];
• var obj = { firstName: "Joe", lastName: "Hacker", };var obj { firstName: Joe , lastName: Hacker , };

• IE will crash in both cases
– For portability, you should write it without commas after

the final element:
• var nums = [1, 2, 3];
• var obj = { firstName: "Joe", lastName: "Hacker"};var obj { firstName: Joe , lastName: Hacker };

– This issue comes up moderately often, especially when
building JSON data on the server, as we will do in

i l tupcoming lectures.

33

Other Object Tricks

• The instanceof operator
D i if lh i b f l h– Determines if lhs is a member of class on rhs

• if (blah instanceof Array) {
doSomethingWith(blah.length);

}}

• The typeof operator
– Returns direct type of operand, as a String

• "number", "string", "boolean", "object", "function", or "undefined".
– Arrays and null both return "object"

• Adding methods to builtin classesg
String.prototype.describeLength =

function() { return("My length is " + this.length); };
"Any Random String".describeLength();

• eval• eval
– Takes a String representing any JavaScript and runs it

• eval("3 * 4 + Math.PI"); // Returns 15.141592
34

More on eval

• Simple strings
– Just pass to eval
– var test = "[1, 2, 3, 2, 1].sort()";

eval(test);  [1 1 2 2 3]– eval(test);  [1, 1, 2, 2, 3]

• Strings that are delimited with { … }
– You have to add extra parens so that JavaScript will knowYou have to add extra parens so that JavaScript will know

that the braces are for object literals, not for delimiting
statements.

It h t t d thi dd ti l• It never hurts to do this, so add parens routinely

– var test2 = "{ firstName: 'Jay', lastName: 'Sahn' }";
– var person = eval("(" + test2 + ")");p (());
– person.firstName;  "Jay"
– person.lastName;  "Sahn"

35

© 2010 Marty Hall

Functions with a
Variable Number of

A tArguments

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Variable Args: Summary

• Fixed number of optional args
F ti l b ll d ith b f– Functions can always be called with any number of args

– Compare typeof args to "undefined"
– See upcoming convertString functionp g g

• Arbitrary args
– Discover number of args with arguments.length

G t t i t [i]– Get arguments via arguments[i]
– See upcoming longestString function

• Optional args via anonymous objectp g y j
– Caller always supplies same number of arguments, but

one of the arguments is an anonymous (JSON) object
• This object has optional fieldsThis object has optional fields
• This is the most widely used approach for user libraries

– See upcoming sumNumbers function
37

Optional Args: Details

• You can call any function with any number
fof arguments

– If called with fewer args, extra args are undefined
• You can use typeof arg == "undefined" for this• You can use typeof arg == undefined for this

– You can also use boolean comparison if you are sure that no real
value could match (e.g., 0 and undefined both return true for !arg)

• Use comments to indicate optional args to developersUse comments to indicate optional args to developers
– function foo(arg1, arg2, /* Optional */ arg3) {...}

– If called with extra args, you can use “arguments” array
R dl f d fi d i bl t l th t ll• Regardless of defined variables, arguments.length tells
you how many arguments were supplied, and arguments[i]
returns the designated argument.

• Use comments to indicate varargs• Use comments to indicate varargs
– function bar(arg1, arg2 /* varargs */) { ... }

38

Optional Arguments

function convertString(numString, /* Optional */ base) {
if (typeof base == "undefined") {if (typeof base undefined) {
base = 10;

}
var num = parseInt(numString, base);
console.log("%s base %o equals %o base 10.",

numString, base, num);
}

39

Varargs

function longestString(/* varargs */) {
var longest = "";var longest = ;
for(var i=0; i<arguments.length; i++) {

var candidateString = arguments[i];
if (candidateString length > longest length) {if (candidateString.length > longest.length) {

longest = candidateString;
}

}}
return(longest);

}

longestString("a", "bb", "ccc", "dddd");  "dddd"

40

Using JSON for Optional
ArgumentsArguments

• Idea
– Caller always supplies same number of arguments, but

one of the arguments is an anonymous (JSON) object
• This object has optional fieldsThis object has optional fields

– This approach is widely used in Prototype, Scriptaculous,
and other JavaScript libraries

• Example (a/b: required, c/d/e/f: optional)
– someFunction(1.2, 3.4, {c: 4.5, f: 6.7});

someFunction(1 2 3 4 {c: 4 5 d: 6 7 e: 7 8});– someFunction(1.2, 3.4, {c: 4.5, d: 6.7, e: 7.8});
– someFunction(1.2, 3.4, {c: 9.9, d: 4.5, e: 6.7, f: 7.8});
– someFunction(1.2, 3.4);(,);

41

Using JSON for Optional
Arguments: Example CodeArguments: Example Code

function sumNumbers(x, y, extraParams) {
var result = x + y;y;
if (isDefined(extraParams)) {

if (isTrue(extraParams.logInput)) {
console.log("Input: x=%s, y=%s", x, y);

}}
if (isDefined(extraParams.extraOperation)) {

result = extraParams.extraOperation(result);
}

}
return(result)

}

function isDefined(value) {
return(typeof value != "undefined");

}

function isTrue(value) {
return(isDefined(value) && (value == true))

}42

Using JSON for Optional
Arguments: Example ResultsArguments: Example Results

43

© 2010 Marty Hall

Wrap-up

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Summary

• General
D ’ i ll J l h i i– Don’t try to universally use Java style when programming in
JavaScript. If you do, you will see the bad features of JavaScript,
but never the good features.

F ti• Functions
– Totally different from Java. Passing functions around and making

anonymous functions very important.
• Don’t think of this as rare or unusual, but as normal practice.

• Objects
– Constructor defines class. Use “this”. Use prototype for methods.p yp

• Totally different from Java. Not like classical OOP at all.

• Other tricks
someFunction apply(null arrayOfArgs);– someFunction.apply(null, arrayOfArgs);

– var someValue = eval("(" + someString + ")");
– Various ways to do optional args. Object literals often best.

45

© 2010 Marty Hall

Questions?

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

