© 2010 Marty Hall

JavaScript:

A Crash Course
Part ll: Functions and Objects

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/ajax.html

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2010 Marty Hall

movre
SERVLETS and
JAVASERVER PAGES

core.
SERVLETS and
JAVASERVER PAGES

For Iive Ajax & GWT training, see training
courses at http://courses.coreservlets.com/.

B Taught by the author of Core Serviets and JSP,
28 More Servlets and JSP, and this tutorial. Available at
public venues, or customized versions can be held

on-site at your organization.

* Courses developed and taught by Marty Hall
— Java 6, servlets/JSP (intermediate and advanced), Struts, JSF 1.x, JSF 2.0, Ajax, GWT 2.0 (with GXT), custom mix of topics
— Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, Google Closure) or survey several
*» Courses developed and taught by coreservlets.com experts (edited by Marty)
— Spring, Hibernate/JPA, EJB3, Web Services, Ruby/Rails
Contact hall@coreserviets.com for details

Topics in This Section

* Functions

— Basics

— As first-class data types

— Anonymous functions (closures)
* Objects

— Object basics

— Namespaces (static methods)

— JSON

— eval

 Functions with variable numbers of
arguments

© 2010 Marty Hall

Intro

“JavaScript has more in common with functional languages
like Lisp or Scheme than with C or Java.”
- Douglas Crockford in article “JavaScript: The World’s
Most Misunderstood Programming Language”.

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Getting Good at JavaScript

- JavaScript is not Java

— If you try to program JavaScript like Java, you will never
be good at JavaScript.

* Functional programming is key approach

— Functional programming is much more central to
JavaScript programming than OOP is.
— Java programmers find functional programming to be the
single-hardest part of JavaScript to learn.
» Because Java does not support functional programming
* But programmers who use Ruby, Lisp, Scheme, Python,
ML, Haskell, Clojure, Scala, etc. are accustomed to it

* OOP is radically different than in Java

— So different in fact, that some argue that by Java’s
definition of OOP. JavaScript does not have *“real” OOP.

© 2010 Marty Hall

Functions

“It is Lisp in C’s clothing.”
- JSON and YUI guru Douglas Crockford, describing
the JavaScript language in JavaScript: The Good Parts.

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Overview

* Not similar to Java
— JavaScript functions very different from Java methods

 Main differences from Java

— You can have global functions
* Not just methods (functions as part of objects)
— You don’t declare return types or argument types
— Caller can supply any number of arguments
* Regardless of how many arguments you defined
— Functions are first-class datatypes
* You can pass functions around, store them in arrays, etc.
— You can create anonymous functions (closures)
* Critical for Ajax
* These are equivalent

— function foo(...) {...}
— var foo = function(...) {...}

Functions are First-Class Data
Types

— Can assign functions to variables
« function square(x) { return(x*x); }
* var f = square;
« f(5); > 25
— Can put functions in arrays
« function double(x) { return(x*2); }
* var functs = [square, f, double];
* functs[0](10); > 100
— Can pass functions into other functions
* someFunction(square);
— Can return functions from functions
« function blah() { ... return(square); }
— Can create a function without assigning it to a variable
* (function(x) {return(x+7);})(10); > 17

Assigning Functions to
Variables

 Examples
function square(x) { return(x*x); }
var f = square;
square(5); =2 25
f(5); = 25
« Equivalent forms
function square(x) { return(x*x); }
var square = function(x) { return(x*x); };

Putting Functions in Arrays

 Examples
var funcs = [square, f, double];
var 2 = funcs[0];
2(7); =2 49
funcs[2](7); = 14
* Other data structures

— Functions can also go in objects or any other category of
data structure. We haven’t covered objects yet, but here 1s
a quick example:
var randomObj = { a: 3, b: "Hi", c: square};
randomObj.a; = 3
randomObj.b; - "Hi"
randomObj.c(6); = 36

Passing Functions into Other
Functions

function third (X) { * Firebug - Examples: Functions E@@
return (x / 3) ; File View Help
} Inspect Clear Profile |
Console | HTML €SS Script DOM Net Options *
. . »»» operate(third);
function trlple (x) { Operation ¢n 1 is 0.3333333333333333.
return(x * 3); Operaticy/on 2 is 0.GE66666666E6GE6E.
} Operatign on 3 iz 1.

»>»> opferate (triple);

OperAtionAn 1 is 3.

function nineTimes (x) {
* .
return (X 9) 4 perGtion on 3 is 9.
} Zﬁw“"ineTimes) ;
Function as argument. erstiongandliis i
Operation on 2 iz 18.
function operate (f)‘{/ Operation on 3 is 27.
var nums = [1, 2, 3];
for (var i=0; i<nums.length; i++) {
var num = nums[i];
console.log("Operation on %o is %o.",
num, f (num));

Opératitn on 2 is 6.

(2]

Returning Functions from
Functions

 Examples
function randomFunct() {
if(Math.random() > 0.5) {
return(square);
} else {
return(double)

}
}

var f3 = randomFunct();

f3(5); // Returns either 25 or 10

f3(5); // Returns whatever it did on line above
- Dynamically created functions

— Instead of a predefined function like square, you can
return a new function with return(function(...) { ...});

Can Create a Function without
Assigning it to a Variable

 Examples
(function(x) {return(x+7);})(10); => 17

function randomFunct2() {
if(Math.random() > 0.5) {
return(function(x) { return(x*x); });
} else {
return(function(x) { return(x*2); });

}
}

— Same behavior as previously shown randomFunct

« More on anonymous functions

— Called “closures” if the functions refer to local variables
from the outside. Can’t do Ajax without them!

© 2010 Marty Hall

Functions:
Advanced Topics

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Anonymous Functions with
Static Data

 Examples

function makeTimes7Function() {
return(function(n) { return(n*7); });

Y
var f = makeTimes7Function();
f(7); > 49

- Equivalent form of function above
function makeTimes7Function() {
varm=7,
return(function(n) { return(n*m); });
}
var m = 700; // Value of global m is irrelevant

var f = makeTimes7Function();
f(7); - 49

Anonymous Function with
Captured Data (Closures)

function makeMultiplierFunction (m) {
return (function(n) { return(n*m); });

var test = 10;

var £ = makeMultiplierFunction (test);
£(7); = 70

test = 100;

£(7); > 70 // Still returns 70

Point: when you call makeMultiplierFunction, it creates a function that has its own private copy of m. This idea of an anonymous function
that captures a local variable is the only way to do Ajax without having the global variable problems that we showed in first section.

The apply Method: Simple Use

* Idea
— Lets you apply function to array of arguments instead of

individual arguments. It is a method of functions!
» someFunction.apply(null, arrayOfArgs);

— Later, we cover advanced usage with obj instead of null

 Examples
function hypotenuse(leg1, leg2) {
return(Math.sqrt(leg1*leg1 + leg2*leg2));
Y
hypotenuse(3, 4); > 5
var legs = [3, 4];
hypotenuse.apply(null, legs); = 5

Math.max.apply(null, [1, 3,5,7,6,4,2]); > 7

The call and apply Methods:
Use with Objects

* ldea

— call

* Lets you call function on args, but sets “this” first.

— Will make more sense once we cover objects, but the main idea is
that “this” lets you access object properties. So, “call” treats a
regular function like a method of the object.

— apply
* Same idea, but you supply arguments as array
 Examples
function fullName() {
return(this.firstName + " " + this.lastName);
}
fullName(); - "undefined undefined"
var person = { firstName: "David", lastName: "Flanagan" };
fullName.call(person); - "David Flanagan"

© 2010 Marty Hall

Object Basics

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Basics

 Constructors

— Functions named for class names. Then use “new”.
* No separate class definition! No “real” OOP in JavaScript!
— Can define properties with “this”

* You must use “this” for properties used in constructors
function MyClass(nl) { this.foo = nl; }
var m = new MyClass(10) ;

* Properties (instance variables)

— You don’t define them separately

* Whenever you refer to one, JavaScript just creates it
m.bar = 20; // Now m.foo is 10 and m.bar is 20

« Usually better to avoid introducing new properties in
outside code and instead do entire definition in constructor

 Methods

— Properties whose values are functions

Objects: Example
(Circle Class)

function Circle (radius) {
this.radius = radius;

this.getArea =
function () {
return(Math.PI * this.radius * this.radius);
};
}

var ¢ = new Circle(10);
c.getArea(); // Returns 314.1592...

The prototype Property

In previous example
— Every new Circle got its own copy of radius
* Fine, since radius has per-Circle data
— Every new Circle got its own copy of getArea function
» Wasteful, since function definition never changes
Class-level properties
— Classname.prototype.propertyName = value;

Methods

— Classname.prototype.methodName = function() {...};
 Just a special case of class-level properties

— This is legal anywhere, but it is best to do it in constructor
Pseudo-Inheritance

— The prototype property can be used for inheritance
« Complex. See later section on Prototype library

Objects: Example
(Updated Circle Class)

function Circle (radius) {
this.radius = radius;

Circle.prototype.getArea =
function () {
return(Math.PI * this.radius * this.radius);

};

var ¢ = new Circle(10);
c.getArea(); // Returns 314.1592...

© 2010 Marty Hall

W
e -3
7 il F S
- e |

Static Methods

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Static Methods (Namespaces)

* Idea
— Have related functions that do not use object properties

— You want to group them together and call them with
Utils.funcl1, Utils.func2, etc.
» Grouping is a syntactic convenience. Not real methods.
* Helps to avoid name conflicts when mixing JS libraries

— Similar to static methods in Java
« Syntax
— Assign functions to properties of an object, but do not
define a constructor. E.g.,
 var Utils = { }; // Or new Object(), or make function Utils

Utils.foo = function(a, b) { ... };
Utils.bar = function(c) { ... };
var x = Utils.foo(val1, val2);
var y = Utils.bar(val3);

Static Methods: Example (Code)

var MathUtils = {}; * Firebug - Static Methods [= |[8[X]
File Wiew Help
MathUtils.fact = function (n) { Inspect Clear Profile (&
if (n <= 1) { Console | HTML €55 Script DOM
return (1) ,. =x> MathUtils. fact (1) ;
1
} else { #»» Mathlltils. fact (2);
return(n * MathUtils.fact(n-1)) ;|-
} =rr MathlUtils. fact (3);
&
} ; =»> MathUtils. fact (4}
24
MathUtils.logl0 = function(x) { s oo
return (Math . lOg (X) /Math . log (10)) 7 srr Mathlfeils. loglOilol;
}i -
=== MathTtils. logld(l00) ;
z
== Mathltils. loglO(l000) ;
Z.9939555395593339¢8
»» MarhUtils.logl0(l0000) ;
4
]

Namespaces in Real
Applications

- Best practices in large projects

— In many (most?) large projects, all global variables
(including functions!) are forbidden due to the possibility
of name collisions from pieces made by different authors.

— So, these primitive namespaces play the role of Java’s
packages. Much weaker, but still very valuable.

- Fancy variation: repeat the name
* var MyApp = {};
* MyApp.foo = function foo(...) { ... };
* MyApp.bar = function bar(...) { ... };
— The name on the right does not become a global name.
The only advantage is for debugging

* Firebug and other environments will show the name when
you print the function object.

© 2010 Marty Hall

JSON:
Anonymous Objects

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

JSON (JavaScript Object Notation)

* ldea
— A simple textual representation of JavaScript objects
» Called “object literals” or “anonymous objects”

— Main applications
* One-time-use objects (rather than reusable classes)
» Objects received via strings

 Directly in JavaScript

— var someObject =
{ propertyl: wvaluel,
property2: value2,

A
 In a string (e.g., when coming in on network)
— Surround object representation in parens
— Pass to the builtin “eval” function

JSON: Example

var person =

{ firstName: 'Brendan'’',
lastName: 'Eich’',
bestFriend: { firstName: 'Chris’,
lastName: 'Wilson' },

greeting: function() {
return("Hi, I am " + this.firstName +
" " + this.lastName + ".");

} * Firebug - Examples: JSON
} . Eilz View Help
’

Inspect Clear Profile |

Console | HTML (€S5S Script DOM Net Options =
»>»> person.firstName;

"Brendan"

»»>» person.lastName:

jofs sl B

>»> person.bestFriend. firstName;
“chels"”

»»>» person.bestFriend.lastName;
"Wilson"

>»» person.gresting();

"Hi, I am Brendsan Eich."

Internet Explorer and Extra
Commas

* Firefox & Chrome tolerate trailing commas

— Tolerated in both arrays and anonymous objects
e varnums =[1, 2, 3,];
 var obj = { firstName: "Joe", lastName: "Hacker", };

* |E will crash in both cases

— For portability, you should write it without commas after
the final element:
* var nums = [1, 2, 3];
« var obj = { firstName: "Joe", lastName: "Hacker"};
— This issue comes up moderately often, especially when
building JSON data on the server, as we will do in
upcoming lectures.

Other Object Tricks

The instanceof operator

— Determines if lhs is a member of class on rhs

« if (blah instanceof Array) {
doSomethingWith(blah.length);

}
The typeof operator

— Returns direct type of operand, as a String

* "number", "string", "boolean", "object", "function”, or "undefined".
— Arrays and null both return "object"

Adding methods to builtin classes

String.prototype.describelLength =
function() { return("My length is " + this.length); };

"Any Random String".describelength() ;

eval

— Takes a String representing any JavaScript and runs it
« eval("3 * 4 + Math.PI"); // Returns 15.141592

More on eval

« Simple strings
— Just pass to eval
— var test="[1, 2, 3, 2, 1].sort()";
— eval(test); 2 [1, 1,2, 2, 3]
- Strings that are delimited with { ... }

— You have to add extra parens so that JavaScript will know
that the braces are for object literals, not for delimiting
statements.

* It never hurts to do this, so add parens routinely

— var test2 ="{ firstName: 'Jay', lastName: 'Sahn' }";
— var person = eval("(" + test2 +")");

— person.firstName; - "Jay"

— person.lastName; - "Sahn"

© 2010 Marty Hall

Functions with a
Variable Number of
Arguments

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Variable Args: Summary

* Fixed number of optional args
— Functions can always be called with any number of args
— Compare typeof args to "undefined"
— See upcoming convertString function
- Arbitrary args
— Discover number of args with arguments.length
— Get arguments via arguments|i]
— See upcoming longestString function

- Optional args via anonymous object
— Caller always supplies same number of arguments, but
one of the arguments is an anonymous (JSON) object
 This object has optional fields
* This is the most widely used approach for user libraries
— See upcoming sumNumbers function

Optional Args: Details

* You can call any function with any number
of arguments

— If called with fewer args, extra args are undefined

* You can use typeof arg == "undefined" for this

— You can also use boolean comparison if you are sure that no real
value could match (e.g., 0 and undefined both return true for larg)

* Use comments to indicate optional args to developers
— function foo(arg1, arg2, /* Optional */ arg3){...}
— If called with extra args, you can use “arguments” array

* Regardless of defined variables, arguments.length tells
you how many arguments were supplied, and argumentsi]
returns the designated argument.

* Use comments to indicate varargs
— function bar(arg1, arg2 /* varargs */) { ... }

Optional Arguments

function convertString(numString, /* Optional */ base) {
if (typeof base == "undefined") ({
base = 10;
}
var num = parselnt (numString, base);
console.log("%s base %o equals %o base 10.",
numString, base, num);

* Firebug - Optional Arguments |§][ﬁ|g]
Eile “iew Help

—

Inspect Clear Profile o,

Console | HTML €SS Script DOM Met Options =
>»» convertString ("1010") ;

1010 base 10 equals 1010 base 10.
»>»» convertString("1010", 2);:

1010 base Z equals 10 base 10.
F»» convertString ("2");

2 base 10 equals 2 base 10.

*»» convertString ("2", 1&);

2 base 16 equals 2 base 10.

. [~

Varargs

function longestString(/* varargs */) {
var longest = "";
for (var i=0; i<arguments.length; i++) {
var candidateString = arguments[i];
if (candidateString.length > longest.length) ({
longest = candidateString;

}

return (longest) ;

longestString("a", "bb", "ccc", "dddd"); -> "dddd"

Using JSON for Optional
Arguments

* ldea

— Caller always supplies same number of arguments, but
one of the arguments 1s an anonymous (JSON) object
 This object has optional fields

— This approach is widely used in Prototype, Scriptaculous,
and other JavaScript libraries

« Example (a/b: required, c/d/e/f: optional)
— someFunction(1.2, 3.4, {c: 4.5, f: 6.7});
— someFunction(1.2, 3.4, {c: 4.5,d: 6.7, ¢: 7.8});
— someFunction(1.2, 3.4, {c: 9.9, d: 4.5,¢: 6.7, f: 7.8});
— someFunction(1.2, 3.4);

Using JSON for Optional
Arguments: Example Code

function sumNumbers (x, y, extraParams) ({
var result = x + y;
if (isDefined (extraParams)) {
if (isTrue (extraParams.logInput)) ({
console.log("Input: x=%s, y=%s", x, y);
}
if (isDefined(extraParams.extraOperation)) {
result = extraParams.extraOperation (result);
}
}

return (result)

}

function isDefined(value) {
return (typeof value != "undefined") ;

}

function isTrue (value) {
return (isDefined (value) && (value == true))

Using JSON for Optional
Arguments: Example Results

@ Firebug - Optional Args with J1SON =]
File View Help

Inspect Clear Profile (% |
Consolev | HTML S5 Script DOM Net Options ~
>>> sumNumbers (2, 3);

5

>>> sumNumbers (2, 3, {logInput: true});

Input: x=2, y=3

5

>»>> function square(x) { return(x * x); }

>>> sumNumbers (2, 3, {logInput: true, extralOperation: square});
Input: x=2, y=3

25

>3

3]

© 2010 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Summary

General
— Don’t try to universally use Java style when programming in
JavaScript. If you do, you will see the bad features of JavaScript,
but never the good features.
Functions

— Totally different from Java. Passing functions around and making
anonymous functions very important.
« Don’t think of this as rare or unusual, but as normal practice.

Objects

— Constructor defines class. Use “this”. Use prototype for methods.
 Totally different from Java. Not like classical OOP at all.

Other tricks

— someFunction.apply(null, arrayOfArgs);
— var someValue = eval("(" + someString + ")");
— Various ways to do optional args. Object literals often best.

© 2010 Marty Hall

Questions?

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 2.0, Struts, Ajax, GWT 2.0, Spring, Hibernate, SOAP & RESTful Web Services, Java 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

