
ESTADÍSTICA

INTRODUCCIÓN

- ¿Qué es la estadística?.
 - Es la rama de las matemáticas que estudia la recolección, análisis e interpretación de datos.
- ¿Por qué estudiamos estadística?
 - Aprender sobre fenómenos físicos o naturales con el objetivo de obtener conclusiones y por tanto, poder tomar decisiones.

INTRODUCCIÓN

La estadística se divide en dos grandes áreas:

1. ESTADÍSTICA DESCRIPTIVA

 Visualización/representación y resumen de datos.

2. ESTADÍSTICA INFERENCIAL.

- Creación de modelos en base a los datos observados con el objetivo de poder hacer predicciones.

ESTADÍSTICA DESCRIPTIVA UNIVARIADA

ESTADÍSTICA DESCRIPTIVA UNIVARIADA

ÍNDICE

- DEFINICIONES.
- REPRESENTACIÓN DE DATOS.
 - Tabla de frecuencias.
 - Representaciones gráficas.
- MEDIDAS DE LOS DATOS.
 - Centralización y posición.
 - Dispersión.
 - Forma.

DEFINICIONES

Población: conjunto de seres, medidas u objetos acerca de los que se desea tener información.

Elemento/Individuo: cada uno de los miembros de la población.

Muestra: subconjunto de individuos de la población.

DEFINICIONES

VARIABLE ESTADÍSTICA

Característica que se mide/observa en los individuos de una población.

Ejemplo: la altura, la edad, el peso, el sexo, número de hermanos, etc

Cualitativa: Describe una

cualidad.

Ejemplo: color de ojos, preferencias, etc.

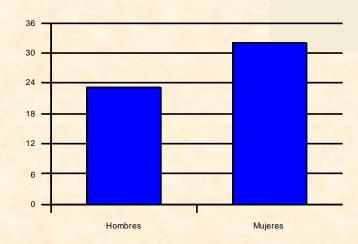
Cuantitativa: Toma valores numéricos.

Ejemplo: altura, peso, etc.

Discreta: conjunto numerable (enteros)

Continua: Valores en un intervalo (toma decimales)

OBJETIVO


Resumir información contenida en l<mark>os datos</mark> para facilitar su análisis

 Hay dos maneras equivalentes de presentar la información contenida en un conjunto de datos:

TABLAS DE FRECUENCIAS

Sexo Frecuencia			
Hombres	23		
Mujeres	32		

REPRESENTACIONES GRÁFICAS

REPRESENTACIÓN DE LOS DATOS TABLA DE FRECUENCIA

Muestra la frecuencia de cada valor observado.

- Datos cuantitativos continuos o discretos con muchos valores distintos -> Damos la frecuencia con los datos agrupados en clases o intervalos.

TABLA DE FRECUENCIA

- Frecuencias absolutas (F_i): Contabilizan el número total de elemento de cada clase.
- Frecuencias relativas (fi): Es la proporción (porcentaje) de individuos de cada tipo que pertenecen a cada clase sobre el total de individuos de la muestra. Se obtiene dividiendo la frecuencia absoluta entre el total de individuos.
- Frecuencias acumuladas (F_{ac} y f_{ac}): Se obtienen sumando las frecuencias de las clases anteriores.

TABLA DE FRECUENCIA

EJEMPLO 1

Se ha contado el número de hijos de 100 matrimonios que llevan casados más de 15 años. Obteniendo los siguientes resultados:

```
      0
      0
      1
      1
      2
      0
      3
      0
      2
      4

      2
      1
      0
      5
      5
      2
      2
      3
      1
      1

      1
      2
      2
      4
      5
      0
      3
      2
      2
      2

      2
      4
      3
      1
      1
      0
      0
      2
      3

      1
      4
      0
      0
      1
      1
      2
      2
      3
      2

      3
      1
      1
      0
      0
      1
      2
      0
      2
      2

      0
      0
      0
      0
      1
      1
      4
      3
      3
      2

      1
      6
      3
      1
      3
      2
      1
      3
      4
      0

      1
      3
      0
      2
      3
      2
      1
      3
      4
      0

      1
      3
      0
      2
      3
      2
      1
      3
      4
      0

      1
      3
      0
      2
      3
      2
      1
      3
      4
```


TABLA DE FRECUENCIA

EJEMPLO 1

Nº de hijos	F _i		fi	F _{ac}	f ac	
0	22		0.22	22	0.22	
1	24		0.24	46	0.46	
2	26		0.26	72	0.72	
3	17		0.17	89	0.89	
4	6		0.06	95	0.95	
5	3		0.03	98	0.98	
6	2		0.02	100		

100

TABLA DE FRECUENCIA

Hay muchos valores

Se agrupan en clase o intervalos

- ¿Cuántas clases elegir?
 - ➢ Pocas → Se pierde mucha información de los datos.
 - ➤ Muchas. → La frecuencia resultante en cada una puede ser pequeña y poco útil para el estudio
- ¿Qué longitud elegir para cada clase?

Se suelen elegir intervalos de igual longitud

TABLA DE FRECUENCIA

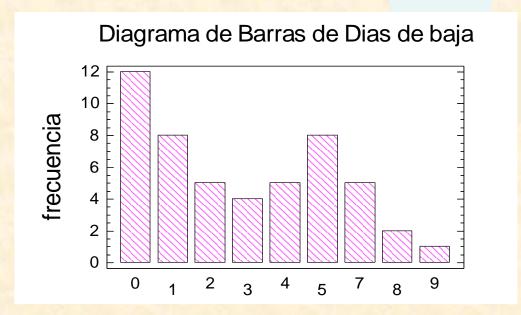
EJEMPLO 2

Los siguientes datos muestran los niveles de colesterol en la sangre de 40 estudiantes de primer año de una universidad.

213	173	193	196	220	183	194	200
192	200	200	199	178	183	188	193
187	181	193	205	196	211	202	213
216	206	195	191	171	194	184	191
221	212	221	204	204	191	183	227

TABLA DE FRECUENCIA

EJEMPLO 2

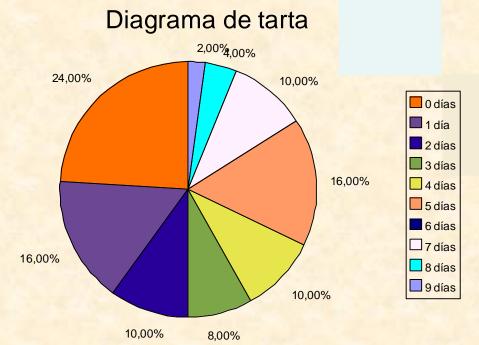

Tabla de frecuencias de los niveles de colesterol en sangre

Intervalo de clase	Frecuencia absoluta	Frecuenci <mark>a relativa</mark>
170 – 180	3	0,075
180 – 190	7	0,175
190 – 200	13	0,325
200 – 210	8	0,200
210 - 220	5	0,125
220 – 230	4	0,100

GRÁFICAS

1. Diagrama de Barras

- Gráficos de frecuencias para datos cualitativos.
- Barras separadas para cada valor.
- La altura de las barras representa la frecuencia absoluta o relativa de cada valor.



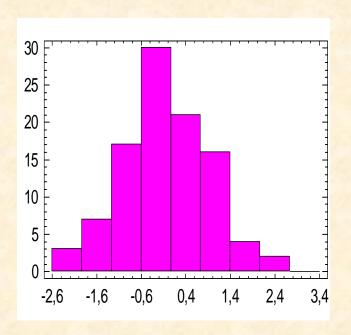
GRÁFICAS

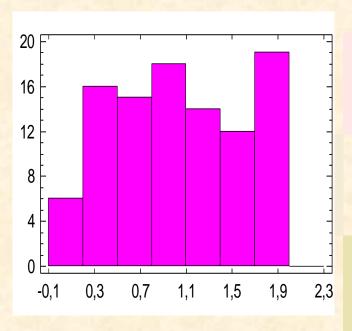
2. Diagrama de tarta o sectores

- Gráficos de frecuencias para datos cualitativos.
- El área de cada sector representa la frecuencia relativa de cada valor.

GRÁFICAS

3. Histograma

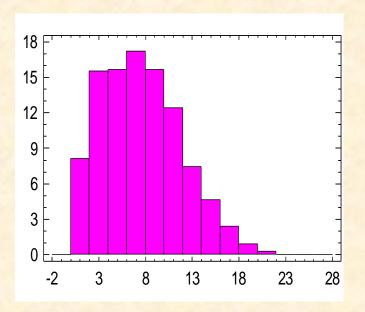

- Gráficos de frecuencias para datos cuantitativos.
- Cada barra representa una clase. No hay hueco entre barras.
- Las bases son iguales a la amplitud de cada clase.
- La altura corresponde a la frecuencia absoluta o relativa de la clase.
- Marca de clase: Es el valor medio de cada clase.
- El área que hay bajo el histograma es proporcional a la cantidad de individuos del intervalo.

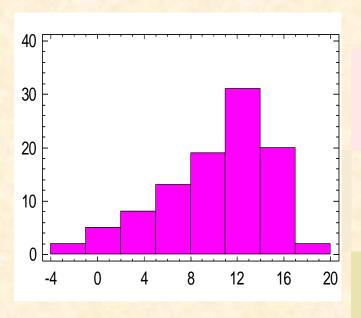

GRÁFICAS

El histograma da información sobre:

La simetría de los datos y la dispersión de los mismos

Simétricos

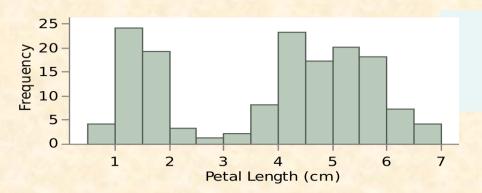

Dispersos


GRÁFICAS

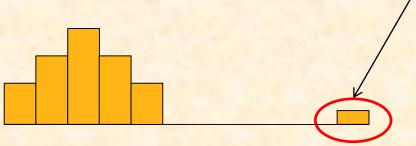
El histograma da información sobre:

La forma de la distribución

Asimétricos a la derecha


Asimétricos a la izquierda

GRÁFICAS

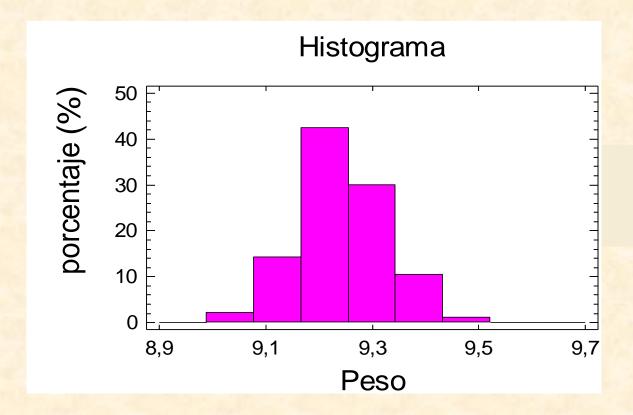

El histograma da información sobre:

Si existen brechas entre los datos posibles dos poblaciones.

Si hay valores muy alejados valores atípicos.

EJEMPLO 3

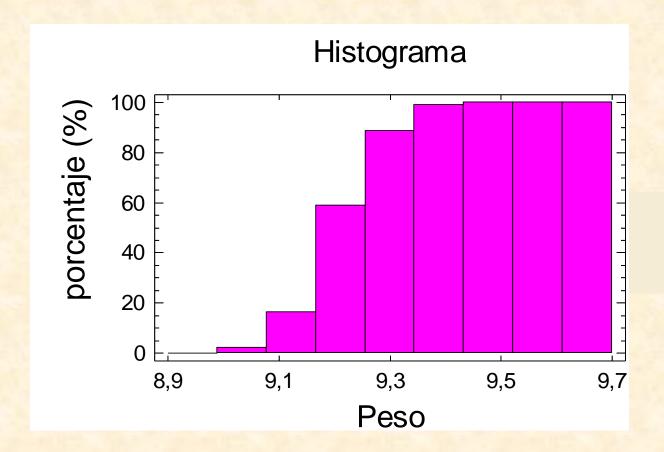
La variable representa el peso (en gr.) de 191 monedas de 100 pesetas.


TABLAS DE FRECUENCIAS

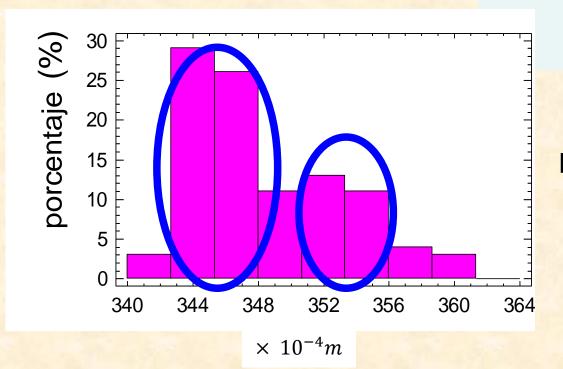
Clase	Límite Inferior	Límite Superior	Marca	Frecuencia	Frecuencia Relativa	Frecuencia Acumulada	Frec <mark>uencia Relat.</mark> Acumulada
menor que 8,9				0	0	0	0
1	8,9	8,98	8,95	0	0	0	0
2	8,98	9,07	9,03	4	0,02	4	0,02
3	9,07	9,16	9,12	27	0,14	31	0,16
4	9,16	9,25	9,21	81	0,42	112	0,59
5	9,25	9,34	9,3	57	0,3	169	0,88
6	9,34	9,43	9,39	20	0,1	189	0,99
7	9,43	9,52	9,47	2	0,01	191	1
8	9,52	9,61	9,56	0	0	191	1
9	9,61	9,7	9,65	0	0	191	1
mayor que 9,7				0	0	191	1

EJEMPLO 3

HISTOGRAMA

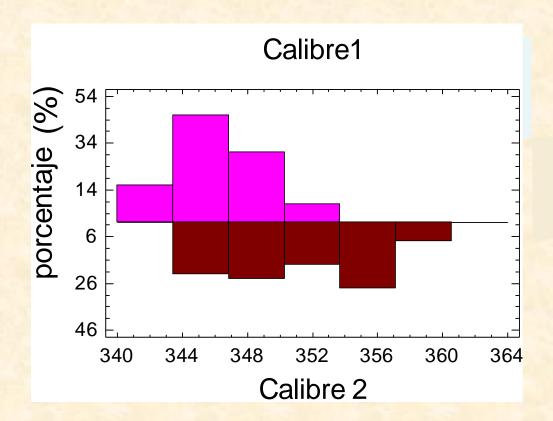

- Representación de las frecuencias relativas:

EJEMPLO 3


- Representación de las frecuencias relativas acumuladas:

EJEMPLO 4

Datos correspondientes a las longitudes ($\times 10^{-4}m$) de 100 clavos del mismo tipo, medidos por dos personas, 50 clavos cada una, que usaron calibres diferentes.



Posible presencia de 2 poblaciones

EJEMPLO 4

Comparación de los histogramas separando los datos según el calibre utilizado:

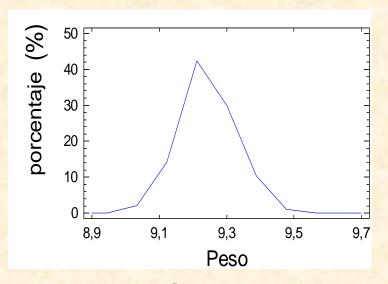
OTRAS REPRESENTACIONES GRÁFICAS

Polígono de frecuencias

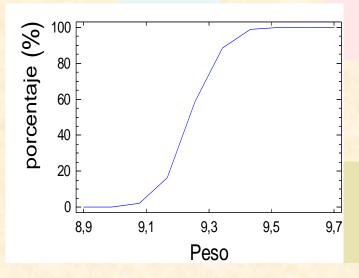
- Se representa los puntos medios de cada clase (marcas) frente a la frecuencia de la clase correspondiente y se unen estos puntos por líneas rectas.
- Útiles para comparar conjuntos de datos.

Diagrama de tallos y hojas

- Para conjunto de datos pequeño o moderado.
- Los datos se separan en "un tallo" y "hojas"
- Ventaja: no se pierden los datos.



OTRAS REPRESENTACIONES GRÁFICAS


EJEMPLO 5

- La variable representa el peso (en gr.) de 191 monedas de 100 pesetas.

POLÍGONO DE FRECUENCIAS

Polígono de frecuencias relativas

Polígono de frecuencias acumuladas

OTRAS REPRESENTACIONES GRÁFICAS

EJEMPLO 5

DIAGRAMA DE TALLOS Y HOJAS

```
unidad = 0,01 1/2 representa 0,12
9019
   00001112223333334444
91|555566677777777777888888888889999999
92| 55555566666666666778888888888889999999
   0000000111122222333333333444
93 55555667788899
94|001233
94|68
```


INTRODUCCIÓN

Medidas de centralización y posición

Valor que representa a todo el conjunto de datos: media, mediana,
 moda y cuantiles.

Medidas de dispersión

 Valor que cuantifica cómo están distribuidos los datos con respecto a la media: varianza (desviación típica).

Medidas de forma

 Valores que miden lo simétrica o "apuntada/picuda" que es la distribución de nuestros datos: coeficiente de asimetría, coeficiente de apuntamiento (curtosis)

MEDIDAS DE CENTRALIZACIÓN

MEDIA ARITMÉTICA

 Para datos no agrupados la media aritmética de un conjunto de datos x₁, x₂, x₃, ... x_n es

$$\bar{x} = \frac{\sum x_i}{n}$$

Para datos agrupados en tablas de frecuencias:

$$\overline{x} = \frac{\sum x_i \cdot F_i}{n} = \sum x_i \cdot \left(\frac{F_i}{n}\right) = \sum x_i \cdot f_i$$

MEDIDAS DE CENTRALIZACIÓN

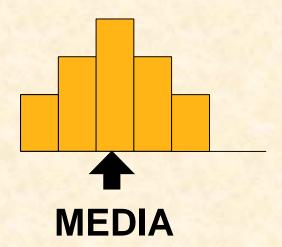
EJEMPLO 1

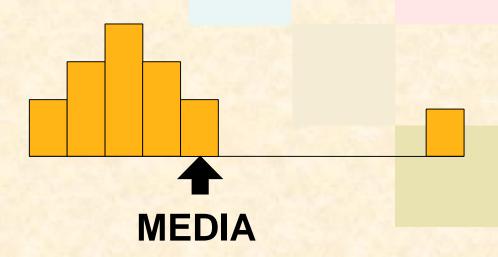
Una pequeña empresa tiene cinco trabajadores. Sus salarios mensuales son: 510, 560, 575, 600 y 800 Euros. Calcular el salario medio.

$$\bar{x} = \frac{510 + 560 + 575 + 600 + 800}{5} = 609$$

¿Qué ocurriría si el valor 800 fuera 5000?. 510, 560, 575, 600 y 5000

$$\bar{x} = \frac{510 + 560 + 575 + 600 + 5000}{5} = 1449$$


La medida pierde representatividad



MEDIDAS DE CENTRALIZACIÓN

EJEMPLO 1

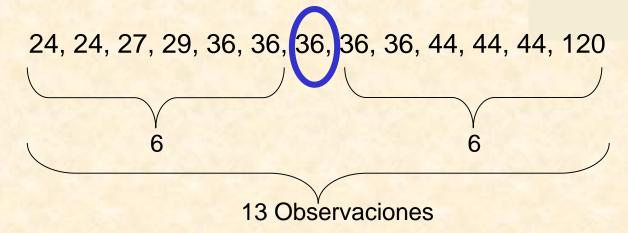
- Actúa como centro geométrico o como centro de masas del conjunto de datos.
- Es muy sensible a valores extremos (atípicos).

MEDIDAS DE CENTRALIZACIÓN

MEDIANA

- Es un valor que divide a los datos en dos grupos con el mismo número de individuos.
- Es conveniente cuando los datos son asimétricos.
- No es sensible a valores extremos.
- Para calcularla:
 - ordenamos los datos de menor a mayor.
 - si el número de datos es impar, la mediana es el dato del medio
 - si el número de datos es par, la mediana es la media de los datos centrales.

MEDIDAS DE CENTRALIZACIÓN

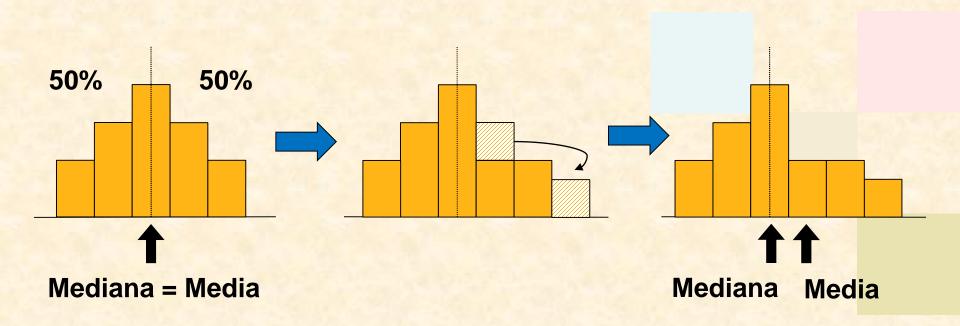

EJEMPLO 2

13 ovejas comieron una hierba venenosa. Las horas que tardaron en morir fueron:

44, 27, 24, 24, 36, 36, 44, 44, 120, 29, 36, 36 y 36.

Calcular la mediana.

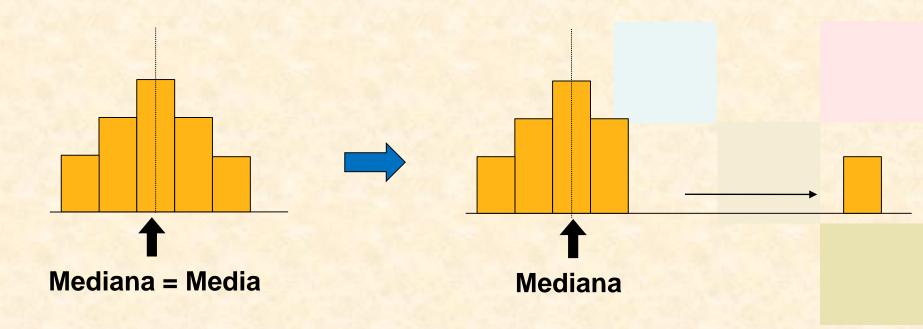
→ Ordenamos los valores de menor a mayor:



MEDIDAS DE CENTRALIZACIÓN

MEDIANA

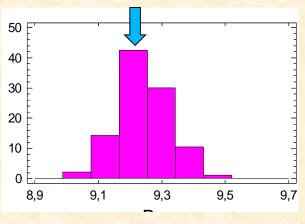
Poco sensible a las <u>asimetrías</u> del histograma.

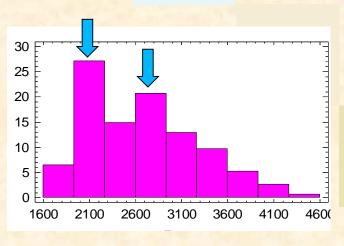


MEDIDAS DE CENTRALIZACIÓN

MEDIANA

Poco sensible a valores atípicos.

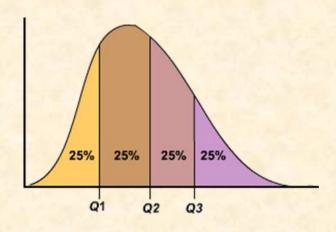




MEDIDAS DE CENTRALIZACIÓN

MODA

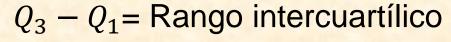
- Es el valor más frecuente, el que más se repite.
- En datos agrupados, es la clase más frecuente.
- La presencia de varias modas puede indicar la existencia de varios grupos.

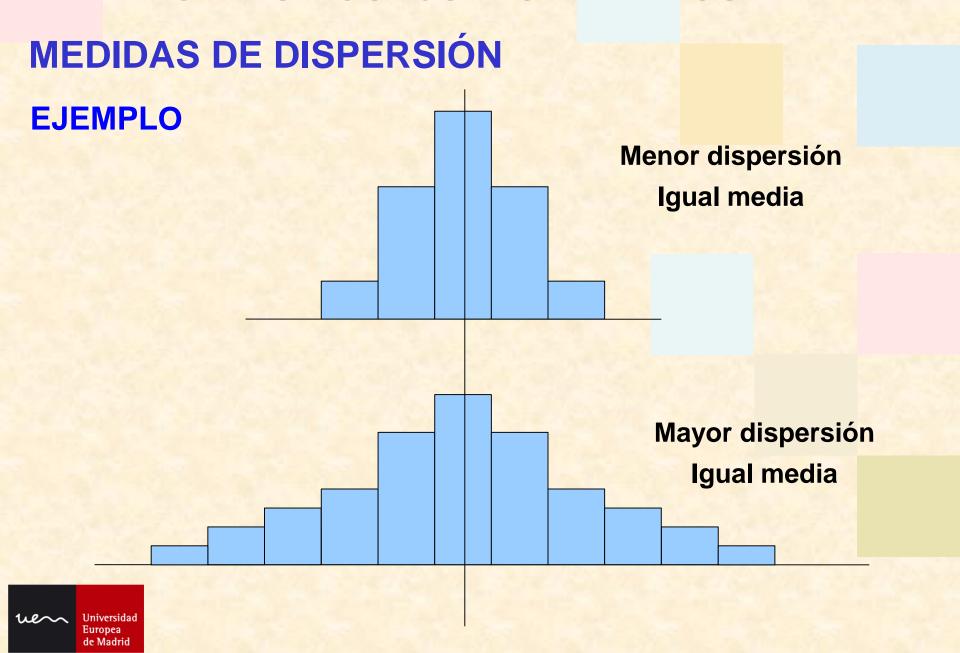

Unimodal

Bimodal

MEDIDAS DE POSICIÓN (CUANTILES)

CUARTILES

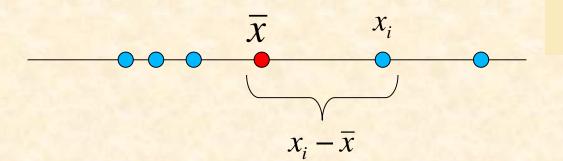

- Son valores no centrales muy importantes de las distribuciones.
- Son valores de la variable (Q₁, Q₂ y Q₃) que dividen a la distribución en 4 partes, cada una de las cuales engloba el 25 % de las mismas.


 Q_1 = Primer cuartil

 Q_2 = Segundo cuartil = Mediana

 Q_3 = Tercer cuartil

MEDIDAS DE DISPERSIÓN


EJEMPLO

- Los valores 0 y 10 tienen como media 5.
- Los valores 5 y 5 tienen como media 5.
- En ambos casos tienen la misma media, sin embargo los conjuntos son diferentes.
- En ocasiones, conocer sólo la media <u>no</u> nos da una idea de cómo están repartidos el resto de valores entorno a ella.

¿están cerca o lejos de la media?

MEDIDAS DE DISPERSIÓN

Distancia entre un valor y la media

 Calculamos la distancia media como el promedio de las distancias de todos los valores al valor medio:

$$D = \frac{1}{n} \sum_{i} (x_i - \bar{x})$$

Problema: La distancia media puede salir 0 sin que los puntos sean todos igual que la media, puesto que los valores se pueden cancelar.

Solución: Quitar los signos negativos elevando al cuadrado.

MEDIDAS DE DISPERSIÓN

VARIANZA

- Mide el promedio de las desviaciones (al cuadrado) de las observaciones con respecto a la media.
- Para datos no agrupados la varianza de un conjunto de datos x₁, x₂, x₃, ... x_n es:

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$
 Distancia cuadrática

Una manera fácil de calcular la varianza es utilizar el desarrollo:

$$\sigma_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i})^{2} - \bar{x}^{2}$$

MEDIDAS DE DISPERSIÓN

VARIANZA

· Si los datos están agrupados en una tabla de frecuencias:

$$\sigma^{2} = \left(\frac{1}{n}\sum_{i}F_{i}x_{i}^{2}\right) - \bar{x}^{2}$$

$$\sigma^{2} = \left(\sum_{i}f_{i}x_{i}^{2}\right) - \bar{x}^{2}$$

MEDIDAS DE DISPERSIÓN

VARIANZA POBLACIONAL VS MUESTRAL

Para datos no agrupados la varianza poblacional de un conjunto de datos $x_1, x_2, x_3, ... x_N$ (toda la población) es:

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

Para datos no agrupados la varianza muestral de un conjunto de datos $x_1, x_2, x_3, ... x_n$ (muestra de la población) es:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 Estimador no sesgado de la varianza poblacional

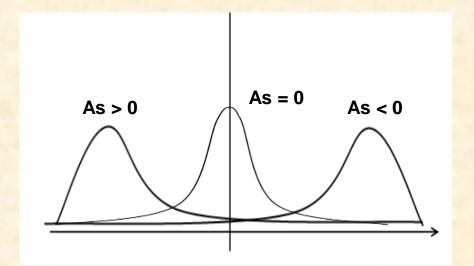
MEDIDAS DE DISPERSIÓN

DESVIACIÓN TÍPICA

 Para lograr una medida de la distancia media calculamos la raíz cuadrada de la varianza;

$$\sigma = \sqrt{\frac{1}{n} \sum_{i} (x_i - \bar{x})^2}$$

 Tiene las mismas unidades que la variable estadística y es en general más "tangible".

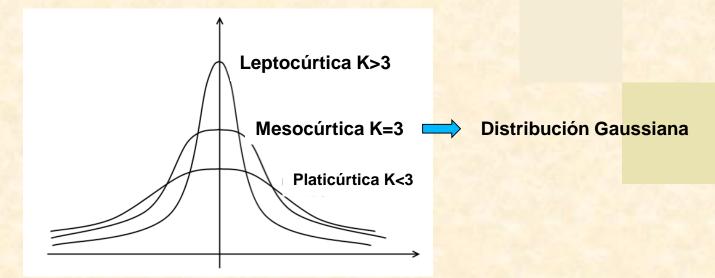

MEDIDAS DE FORMA

COEFICIENTE DE ASIMETRÍA

El coeficiente de asimetría mide la simetría de los datos respecto de la media. Se define como:

$$As = \frac{1}{N} \frac{\sum_{i=1}^{N} (x_i - \bar{x})^3}{\sigma^3}$$
 población
$$\sigma = \frac{1}{N} \frac{\sum_{i=1}^{N} (x_i - \bar{x})^3}{\sigma^3}$$
 población
$$\sigma = \frac{1}{N} \frac{\sum_{i=1}^{N} (x_i - \bar{x})^3}{\sigma^3}$$

 $x_1, x_2, x_3, \dots x_N$ constituye toda la


MEDIDAS DE FORMA

CURTOSIS

 El coeficiente de curtosis mide el apuntamiento de los datos. Se define como:

$$K = \frac{1}{N} \frac{\sum_{i=1}^{N} (x_i - \bar{x})^4}{\sigma^4}$$
 población σ es la de

 $x_1, x_2, x_3, ... x_N$ constituye toda la población σ es la desviación típica

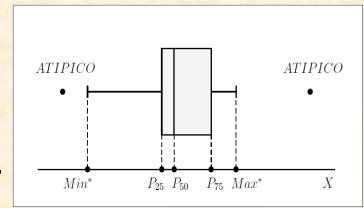
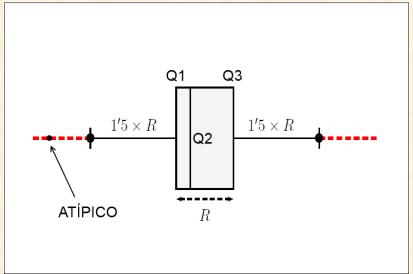


DIAGRAMA DE CAJA Y BIGOTES


 Es una representación gráfica de un conjunto de datos que consta de dos partes, la caja y los bigotes.

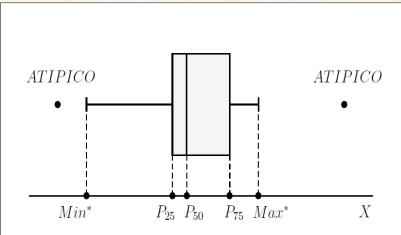

- Ofrece información acerca de:
 - □ La simetría de los datos.
 - ☐ La concentración de los datos.
 - ☐ La dispersión de los datos.
 - □ La presencia de puntos atípicos y su desvío respecto de generalidad.

DIAGRAMA DE CAJA Y BIGOTES

- Q_1 = Primer cuartil
- Q₂= Segundo cuartil = Mediana
- Q_3 = Tercer cuartil
- $R = Q_3 Q_1$ (Rango intercuartílico)
- L_{max} de los bigotes = 1.5 x R

Valores atípicos:

Valores tal que $> Q_3 + 1.5 \times R$ Valores tal que $< Q_1 - 1.5 \times R$

Extremos del bigote:

Máx valor tal que $< Q_3 + 1.5 \times R$ Mín valor tal que $> Q_1 - 1.5 \times R$

