

FUNDAMENTOS DE ELECTRÓNICA

Primer parcial (2012-2013)

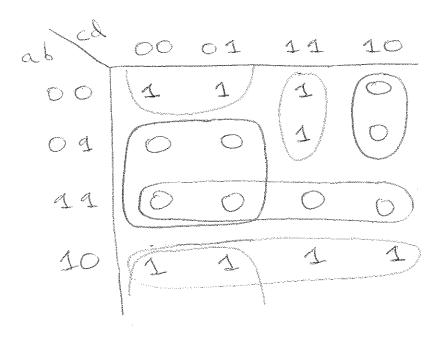
Apellidos:	
Nombre:	

Compañía:

Sección:

Fecha: 19/06/2013

- Rellene sus datos personales
- Compruebe que tiene todas las cuestiones y ejercicios resueltos
- El examen deberá ser escrito a bolígrafo
- Se puede utilizar calculadora pero debe ser NO programable
- No arranque ninguna hoja del examen

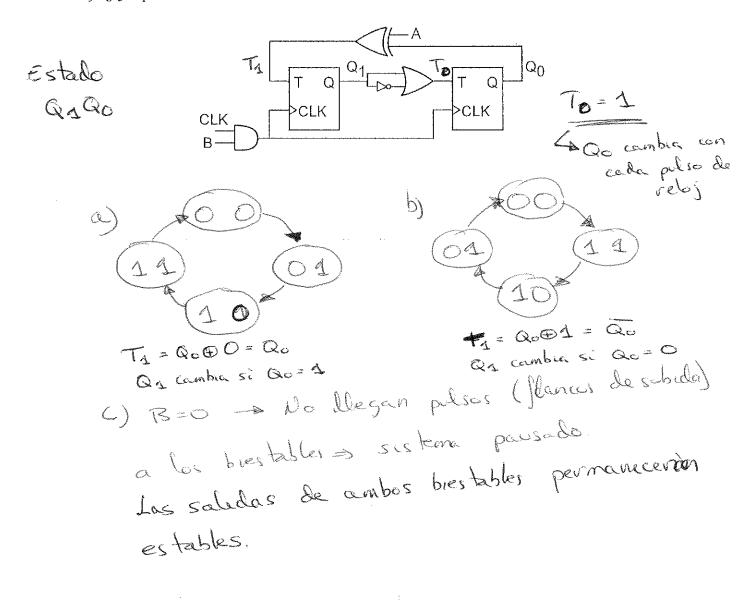

Ejercicio 1	Ejerciolo 2	Ejercicio 3
/1	/2.5	/2.5
Ejercicio 4	Cuestión (1/4)	Cuestión 2
/2	. /1	/1
NOTA FINAL		

EJERCICIO 1 / 1

Simplifique mediante manipulaciones algebraicas adecuadas la siguiente expresión, justificando cada uno de los pasos haciendo referencia a un Postulado o a un Teorema:

Dada la función $F(a, b, c, d) = \sum m(0,1,3,7,8,9,10,11)$:

- a) Obtener la expresión lógica más simplificada posible de F en forma de suma de productos y en forma de producto de sumas.
- b) Repita la simplificación incluyendo dos indiferencias que le ayuden a simplificar lo máximo posible dicha función.

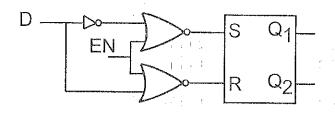


EJERCICIO 3

/ 2.5

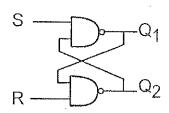
Indique cuales son las posibles secuencias cíclicas de la siguiente configuración de biestables. Todos los biestables son flip-flop activados por flanco de subida. Considere los siguientes casos:

- a) A=0 y B=1
- b) A=B=1
- c) ¿Qué pasa cuando B=0?

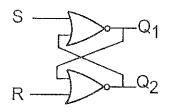


Ejercicio 4

J/2


Dada la siguiente configuración para formar un biestable latch D activado por nivel bajo de la señal de habilitación (EN):

- Seleccione el latch SR apropiado (NAND o NOR). Especifique el razonamiento seguido para seleccionarlo.
- Indique que salida (Q_1 o Q_2) debe ser Q y cual \bar{Q} . Justifique su respuesta.


LATCH:

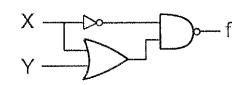
S	R	Q ₁	Q ₂
0	0	1	1
0	1	1	0
1	0	0	1
1	1	Q_1	Q_2

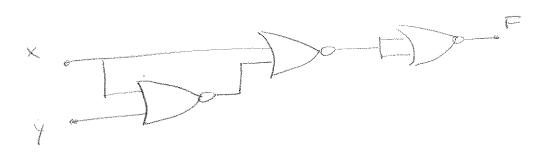
NOR

S	R	Q_1	Q_2
0	0	Q ₁	Q_2
0	1	1	0
1	0	0	1
1	1	0	0

Cuestión 1 / 1

Explique la función que realiza un multiplexor y mencione dos aplicaciones. Si en un multiplexor tenemos n número de entradas de control, ¿cuál es el número máximo de entradas de datos?


Un multiple nor conecta una de sus entradas a su saleda en Junión de las variables de control. Saleda en Junión de las variables de control.


Aplicaciones: Acceso a buses, selector de datos, implementación de Juniones (d. sicas...

mentación de Juniones (d. sicas...)

Cuestión 2 / 1

Implemente la siguiente combinación de puertas lógicas usando solo puertas NOR de dos entradas:

