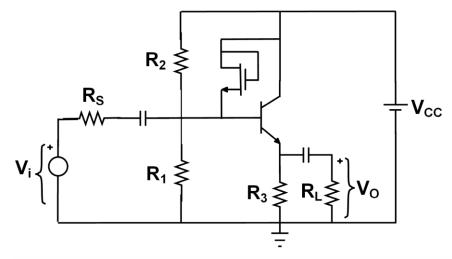


FUNDAMENTOS DE ELECTRÓNICA

Examen 1ª Convocatoria. Segundo Parcial. Parte 1 (2016-2017)

Apellidos, Nombre:

Compañía: Sección AGM:	Grupo CUD:
------------------------	------------

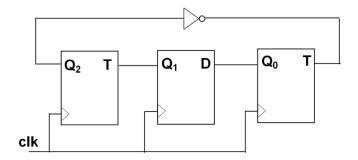

Este examen consta de tres ejercicios y una cuestión. **Se divide en dos partes que debe presentar por separado.** Esta hoja será grapada a los folios con las soluciones correspondientes. Lea atentamente las siguientes normas:

- Rellene sus datos personales
- Comience cada ejercicio en cara nueva de folio
- Compruebe que tiene todas las cuestiones y ejercicios resueltos
- El examen deberá ser escrito a bolígrafo
- No usar bolígrafo rojo ni Tipp-Ex
- Se puede utilizar calculadora pero debe ser NO programable
- Utilice exclusivamente folios proporcionados por el profesorado

PARTE 1				NOTA
	Ejercicio 1 Ejercicio 2		PARTE 1	
	/ 4.5		/ 1.5	

EJERCICIO 1

Sea el siguiente circuito basado en un transistor bipolar NPN y un transistor NMOS.



 V_{CC} = 12 V, R_1 = 2.4 kΩ, R_3 = 0.9 kΩ, R_S = 1.2 kΩ, R_L = 1.8 kΩ, V_i fuente de tensión alterna W/L = 30, K = 20 μA/V², V_{TH} = 1 V, β = 100, V_{BE} = 0.6 V si la unión BE está en directa

- a) En qué región no puede estar el transistor NMOS. Justifique su respuesta.
- b) Si el transistor NMOS no está en corte, en qué región no puede estar el transistor bipolar. Justifique su respuesta.
- c) Calcular el punto de polarización de ambos transistores y el valor de la resistencia R_2 si la tensión V_{GS} es igual a 4.2 V. Resolver sin despreciar la corriente de base.
- d) Calcule la ganancia máxima de la etapa. Tome $V_T = 25.8 \text{ mV}$.
- e) Calcule la impedancia de entrada de la etapa incluyendo efecto Early para ambos transistores ($V_A = 15 \text{ V}$).
- f) Calcule el valor mínimo de R2 para que el cual el transistor NMOS no cambia de región.

EJERCICIO 2

Dado el siguiente circuito secuencial, constituido por biestables flip-flop (dos T y uno D) activados por flanco de subida:

- a) ¿Cuáles son las tablas de transición de estados del biestable D y del biestable T?
- b) ¿En qué instante de tiempo un cambio de estado del biestable T (salida Q₀), produce un cambio de estado en el biestable D? Justifique su respuesta.
- c) Indique los ciclos que se generan en dicho circuito secuencial.

FUNDAMENTOS DE ELECTRÓNICA

Examen 1ª Convocatoria. Segundo Parcial. Parte 2 (2016-2017)

Apellidos, Nombre:

Compañía:	Sección AGM:	Grupo CUD:
-----------	--------------	------------

Este examen consta de tres ejercicios y una cuestión. **Se divide en dos partes que debe presentar por separado.** Esta hoja será grapada a los folios con las soluciones correspondientes. Lea atentamente las siguientes normas:

- Rellene sus datos personales
- Comience cada ejercicio en cara nueva de folio
- Compruebe que tiene todas las cuestiones y ejercicios resueltos
- El examen deberá ser escrito a bolígrafo
- No usar bolígrafo rojo ni Tipp-Ex
- Se puede utilizar calculadora pero debe ser NO programable
- Utilice exclusivamente folios proporcionados por el profesorado

PARTE 2			NOTA	
	Ejercicio 3	Cuestión 1		PARTE 2
	/3		/1	

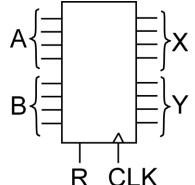
EJERCICIO 3

Para el circuito de la figura, basado en un AO y un transistor NMOS, en el cual existe realimentación negativa si el transistor está conduciendo, calcule:

$$R_{1} = 0.5 \text{ k}\Omega, R_{L} = 3 \text{ k}\Omega$$

$$V_{CC} = 9 \text{ V}, V_{EE} = -9 \text{ V}, I_{0,max} = 40 \text{ mA}$$

$$V_{TH} = 1 \text{ V}, W/L = 40, K = 20 \text{ } \mu\text{A}/\text{V}^{2}$$


$$V_{i}$$

- a) La tensión de entrada V_i y salida V_o si por el transistor fluye una corriente 4.9 mA.
- b) La tensión de entrada V_i mínima para que el transistor conduzca. El valor de la tensión de salida V_o en ese caso.
- c) El valor de la tensión de salida V_o si la tensión de entrada es inferior a la calculada en el apartado b.
- d) La tensión de entrada V_i máxima para no sobrepasar la tensión de salida límite definida por el AO.
- e) El valor de la tensión de salida V_o si la tensión de entrada es superior a la calculada en el apartado d.
- f) La resistencia R_L mínima para no sobrepasar la corriente máxima de salida del AO en el rango de tensión de entrada V_i definido entre los apartados b y d.

CUESTIÓN 1

Sea un sistema digital con entradas A y B y salidas X e Y, todas ellas compuestas por cuatros bits. Una de las salidas es combinacional y la otra es secuencial, para la cual el sistema dispone de reloj (CLK) y reset (R). Se ha anotado el valor de las entradas y salidas en distintos momentos, que se recogen en la siguiente tabla. Deducir que salida es combinacional y que salida es secuencial. Justifique su respuesta.

A	В	X	Y
1000	0001	1001	0101
1101	0001	1100	0111
1101	0110	1011	0000
1101	0110	1011	1001
0011	1010	1001	1100
0011	1101	1110	0110

Describa brevemente ejemplos de dos sistemas digitales combinacionales y dos secuenciales.

Nota: Una puerta lógica o un biestable no se consideran sistemas digitales para esta cuestión.