

TEMA 1: INTRODUCCIÓN A LA FÍSICA

OET – Curso 2020/2021 Biomedical engineering degree

Ruzica Jevtic
Universidad San Pablo CEU
Madrid

- 1. La física como parte de la ciencia y la tecnología
- 2. Unidades de medida
- 3. Dimensiones de las magnitudes físicas
- 4. Órdenes de magnitud: notación científica
- 5. Vectores: operaciones básicas

- 1. La física como parte de la ciencia y la tecnología
- 2. Unidades de medida
- 3. Dimensiones de las magnitudes físicas
- 4. Órdenes de magnitud: notación científica
- 5. Vectores: operaciones básicas

La física como parte de la ciencia y la tecnología

¿Cómo explicar lo que ocurre a nuestro alrededor? -> MODELOS FÍSICOS

La física pretende describir los fundamentos del universo y su funcionamiento

Física clásica

MÉTODO CIENTÍFICO

Física moderna

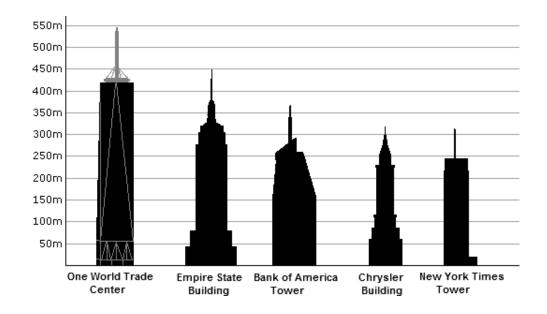
La física, como ciencia experimental, permite confirmar o refutar sus afirmaciones a través de la experimentación

- 1. La física como parte de la ciencia y la tecnología
- 2. Unidades de medida
- 3. Dimensiones de las magnitudes físicas
- 4. Órdenes de magnitud: notación científica
- 5. Vectores: operaciones básicas

Unidades de medida

Algunas definiciones previas...

 Se denomina MAGNITUD a una propiedad de un sistema físico que puede ser cuantificada y expresada en forma numérica (p.e., la altura de una persona, su peso, anchura de hombros o la velocidad a la que corre)


• Una MEDIDA es el valor que toma una determinada magnitud de un sistema físico concreto

en un instante determinado

 Estas medidas se realizan comparando la magnitud en cuestión con una determinada unidad de referencia denominada PATRÓN de medida

Comparativa con patrón = metro

Unidades de medida II

Algunas definiciones previas...

- Se denomina MAGNITUD FUNDAMENTAL a aquellas magnitudes que no pueden expresarse en función de otras magnitudes (por ejemplo, la longitud)
- Se denomina MAGNITUD DERIVADA a aquellas magnitudes que pueden expresarse en función de otras magnitudes (por ejemplo, la velocidad se puede expresar en función del espacio y del tiempo, m/sg)
- La elección de las unidades estándar para expresar magnitudes fundamentales determina un SISTEMA DE UNIDADES
- En 1960, en la XI Conferencia General de Pesas y Medidas en París, un comité internacional estableció un conjunto estándar para la comunidad científica, denominado SISTEMA INTERNACIONAL (SI)

Unidades de medida III

El Sistema Internacional de medida define 7 magnitudes fundamentales y sus correspondientes unidades de medida:

- 1. Longitud → metro (m): longitud del trayecto recorrido por la luz en vacio en 1/299792458 s
- 2. Masa \rightarrow kilogramo (kg): se basa en la constante de Planck h
- 3. Tiempo → segundo (s): se basa en la radiación del atomo de cesio
- **4.** Intensidad eléctrica → Amperio (A): se basa en la carga de un electrón
- 5. Temperatura termodinámica \rightarrow Kelvin (K): se basa en la constante de Boltzman k
- **6.** Cantidad de sustancia → mol (mol): se basa en la constante de Avogadro
- 7. Intensidad luminosa → candela (cd): intensidad luminosa de una fuente de radiacion monocromatica de frecuencia 540·10¹² Hz y cuya intensidad energética en esa dirección es

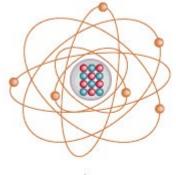
1/683 W/estereorradián

Unidades de medida VI

- Otro sistema de medida es el **sistema anglosajón** donde, por ejemplo, la **longitud** se mide en **pies**, la **fuerza** en **libras** y el **tiempo** en **segundos**
- Siempre que indiquemos una magnitud debemos indicar las unidades en las que expresamos dicha magnitud
 - Preferentemente, estas magnitudes serán las del Sistema Internacional
- A menudo se usan múltiplos y submúltiplos (potencias de 10) de las unidades del sistema internacional

Unidades de medida VII

Múltiplos y submúltiplos del sistema internacional:


Prefijo		Símbolo	Factor	Equivalente	
Múltiplos	Exa	E	10 ¹⁸	1000000000000000000	
	Peta	P	10 ¹⁵	1000000000000000	
	Tera	Т	1012 1000000000000000000000000000000000		
	Giga	G	10 ⁹	1000000000	
	Mega	M	10 ⁶	1000000	
Σ	Kilo	k	10 ³	1000	
	Hecto	h	10 ²	100	
	Deca	da	10 ¹	10	
Submúltiplos	Deci	d	10 ⁻¹	0.1	
	Centi	С	10 ⁻²	0.01	
	Mili	m	10 ⁻³	0.001	
	Micro	μ	10 ⁻⁶	0.000001	
	Nano	n	10 ⁻⁹	0.00000001	
	Pico	р	10 ⁻¹²	0.00000000001	
	Femto	f	10 ⁻¹⁵	0.000000000000001	
	Atto	а	10 ⁻¹⁸	0.000000000000000000001	

Unidades de medida VIII

Ejercicios:

- 1. ¿Cuánto es 90 millas/h expresado en km/s? ¿y en m/s? ¿y en km/h?
- 2. Si 1 litro = 10^3 cm³, ¿a cuántos μ m³ equivale? ¿y a cuántos m³?
- 3. ¿Cuántos átomos hay en 1 kg de C_{12} ?

Carbono 12 estable

- 1. La física como parte de la ciencia y la tecnología
- 2. Unidades de medida
- 3. Dimensiones de las magnitudes físicas
- 4. Órdenes de magnitud: notación científica
- 5. Vectores: operaciones básicas

Dimensiones de las magnitudes físicas

Dar un valor de una magnitud física implica indicar un número y la unidad en la que está expresado

NOTA: Para **saber lo que se está midiendo**, es necesario conocer la **dimensión de la magnitud física:** la **coherencia dimensional** es una **condición necesaria** (pero no suficiente) para que una **ecuación** sea **correcta**

DIMENSIONES:

- Longitud [L]
- Tiempo [T]
- Masa [M]

Quantity	Symbol	Dimension
Area	A	L^2
Volume	V	L^3
Speed	v	L/T
Acceleration	а	L/T^2
Force	F	ML/T^2
Pressure (F/A)	p	M/LT^2
Density (M/V)	ho	M/L^3
Energy	E	ML^2/T^2
Power (E/T)	P	ML^2/T^3

- 1. La física como parte de la ciencia y la tecnología
- 2. Unidades de medida
- 3. Dimensiones de las magnitudes físicas
- 4. Órdenes de magnitud: notación científica
- 5. Vectores: operaciones básicas

Órdenes de magnitud: notación científica

Notación científica:

La forma general de un número en notación científica es a x 10ⁿ, donde 1 <= a < 10
 y n es un entero

Ejemplos:

$$\checkmark 5 \cdot 10^2 = 500$$

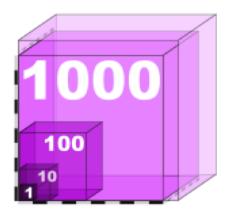
$$\checkmark$$
 8 · 10⁴ = 80000

$$\checkmark$$
 4.3 · 10⁷ = 43000000

$$\checkmark$$
 6.25 · 10¹⁰ = 62500000000

$$\checkmark$$
 5 · 10⁻² = 0.05

$$\checkmark$$
 8 · 10⁻⁴ = 0.0008


$$\checkmark$$
 4.3 · 10⁻⁷ = 0.00000043

$$\checkmark \quad 6.25 \cdot 10^{-10} = 0.0000000000625$$

Órdenes de magnitud: notación científica II

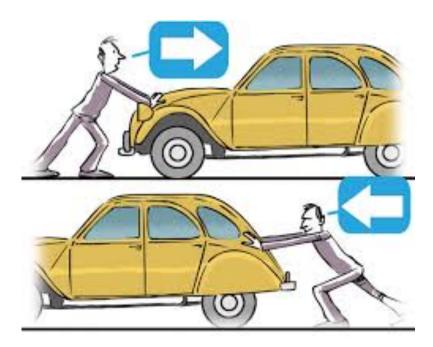
Órdenes de magnitud:

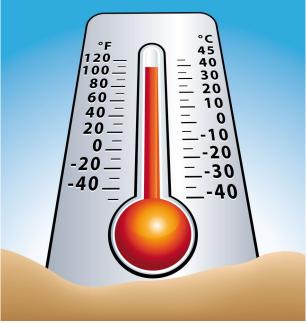
- Cuando se realizan cálculos aproximados (a menudo porque se carece de información más precisa) se suelen redondear los números a la potencia de 10 más cercana
- A este número redondeado a la potencia de 10 más cercana se le suele denominar
 "orden de magnitud"

Órdenes de magnitud: notación científica III

El universo por órdenes de magnitud:

Tamaño o distancia	(m)	Masa	(kg)	Intervalo de tiempo	(s)
Protón	10-15	Electrón	10-30	Tiempo invertido por la luz en atravesar un núcleo	10-23
Átomo	10^{-10}	Protón	10-27	Periodo de la radiación de luz visible	10-15
Virus	10^{-7}	Aminoácido	10^{-25}	Periodo de las microondas	10^{-10}
Ameba gigante	10-4	Hemoglobina	10-22	Periodo de semidesintegración de un muón	10-6
Nuez	10^{-2}	Virus de la gripe	10^{-19}	Periodo del sonido audible más alto	10-4
Ser humano	10^{0}	Ameba gigante	10^{-8}	Periodo de las pulsaciones del corazón humano	10^{0}
Montaña más alta	10^{4}	Gota de Iluvia	10-6	Periodo de semidesintegración de un neutrón libre	10^{3}
Tierra	10^{7}	Hormiga	10-4	Periodo de rotación terrestre	105
Sol	109	Ser humano	10^{2}	Periodo de revolución terrestre	10^{7}
Distancia Tierra-Sol	1011	Cohete espacial Saturno 5	10^{6}	Vida media de un ser humano	109
Sistema solar	1013	Pirámide	1010	Periodo de semidesintegración del plutonio 239	1012
Distancia de la estrella más cercana	1016	Tierra	10^{24}	Vida media de una cordillera	1015
Galaxia Vía Láctea	1021	Sol	1030	Edad de la Tierra	1017
Universo visible	10^{26}	Galaxia Vía Láctea	1041	Edad del universo	1018
		Universo	1052		

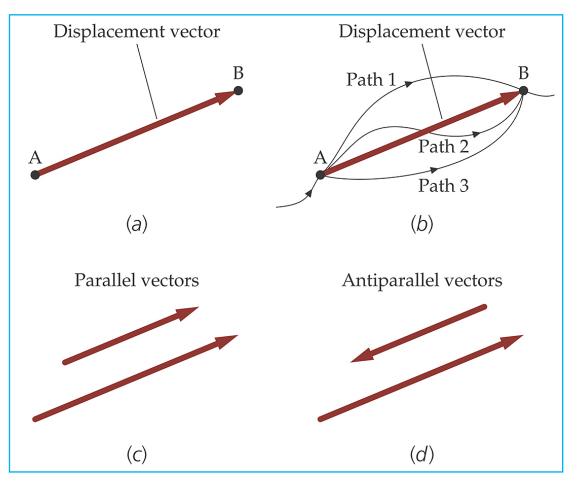

- 1. La física como parte de la ciencia y la tecnología
- 2. Unidades de medida
- 3. Dimensiones de las magnitudes físicas
- 4. Órdenes de magnitud: notación científica
- 5. Vectores: operaciones básicas

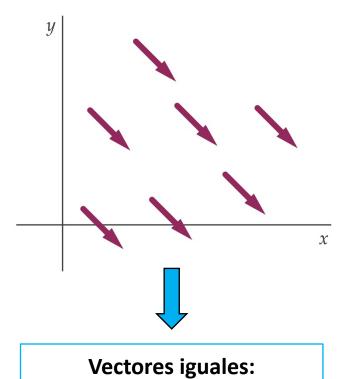


Vectores: operaciones básicas

Las magnitudes que...

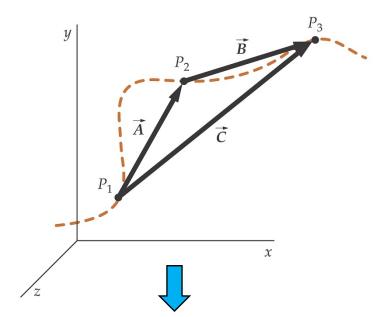
- tienen módulo y dirección, se denominan VECTORES
- no tienen dirección asociada, se denominan ESCALARES



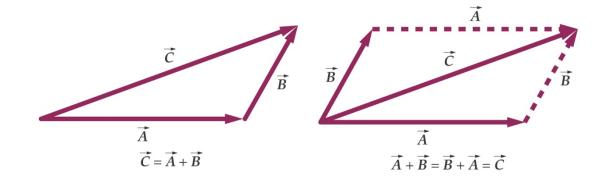


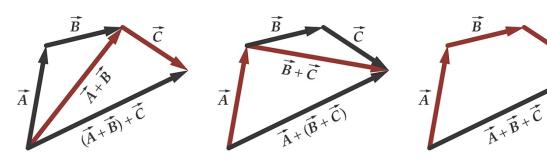
Vectores: operaciones básicas II

Definiciones básicas



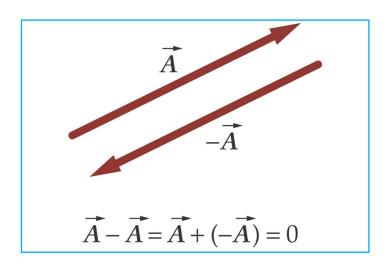
mismo módulo y sentido




Vectores: operaciones básicas III

Suma de vectores

Vectores desplazamiento de P_1 a P_2 (**A**) y de P_2 a P_3 (**B**) $\mathbf{A} + \mathbf{B} = \mathbf{C}$

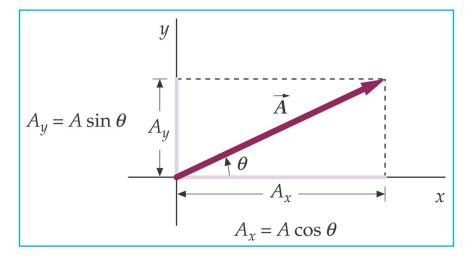


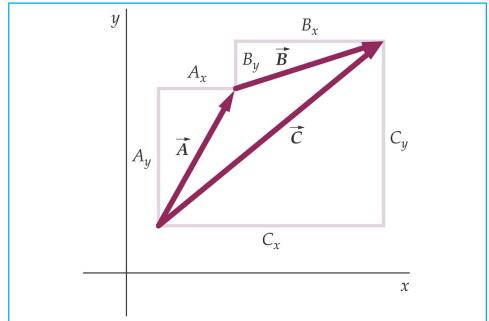
Sumas de dos (arriba) y tres (abajo) vectores



Vectores: operaciones básicas IV

Sustracción de vectores


Formas alternativas de restar vectores



Vectores: operaciones básicas V

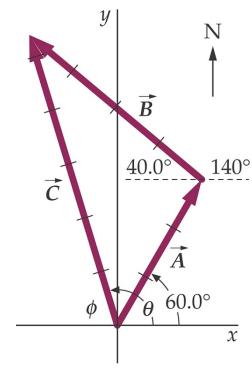
Componentes de un vector

$$tg\theta = \frac{A_y}{A_x} \to \theta = \arctan \frac{A_y}{A_x}$$
$$A = ||A|| = \sqrt{A_x^2 + A_y^2}$$

$$C_x = A_x + B_x$$

$$C_y = A_y + B_y$$

Vectores: operaciones básicas VI


Ejercicio:

Suponga que dispone de un mapa que le indica las direcciones a seguir para enterrar un "tesoro" en un lugar determinado

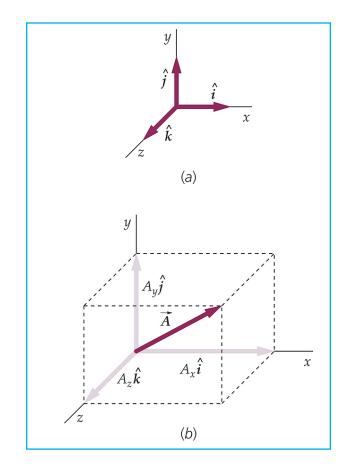
Las instrucciones son:

- 1. 3.00 km en dirección del nordeste 60°
- 4.00 km en dirección noroeste con ángulo de 40° respecto del oeste

¿En qué dirección debe moverse y cuánto tendrá que caminar para cumplir su objetivo con la máxima rapidez?

Vectores: operaciones básicas VII

Vectores unitarios


Un vector unitario es un **vector sin dimensiones** y de **módulo unidad**

 Los vectores unitarios que apuntan en las direcciones de x, y, z, son adecuados para expresar los vectores en función de sus componentes rectangulares:

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$

 La suma de dos vectores, puede escribirse en función de vectores unitarios:

$$\vec{A} + \vec{B} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}) + (B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$$
$$= (A_x + B_x)\hat{\imath} + (A_y + B_y)\hat{\jmath} + (A_z + B_z)\hat{k}$$

Vectores: operaciones básicas VIII

Resumen de las propiedades de los vectores

Property	Explanation	Figure	Component Representation
Equality	$\vec{A} = \vec{B}$ if $ \vec{A} = \vec{B} $ and their directions are the same	$\vec{A} = \vec{B}$	$A_x = B_x$ $A_y = B_y$ $A_z = B_z$
Addition	$\vec{C} = \vec{A} + \vec{B}$	\vec{c} \vec{B}	$C_x = A_x + B_x$ $C_y = A_y + B_y$ $C_z = A_z + B_z$
Negative of a vector	$\vec{A} = -\vec{B}$ if $ \vec{B} = \vec{A} $ and their directions are opposite	\vec{A} \vec{B}	$A_{x} = -B_{x}$ $A_{y} = -B_{y}$ $A_{z} = -B_{z}$
Subtraction	$\vec{C} = \vec{A} - \vec{B}$	\vec{A} \vec{B}	$C_x = A_x - B_x$ $C_y = A_y - B_y$ $C_z = A_z - B_z$
Multiplication by a scalar	$\vec{B} = s\vec{A}$ has magnitude $ \vec{B} = s \vec{A} $ and has the same direction as \vec{A} if s is positive or $-\vec{A}$ if s is negative	\vec{A} $\vec{s}\vec{A}$	$B_x = sA_x$ $B_y = sA_y$ $B_z = sA_z$

