TEMA 3: LÍMITES Y CONTINUIDAD

José L. Díaz Matemáticas I

Índice de contenidos

TEMA 3:

1. Una mirada previa al cálculo

- ¿Qué es el cálculo?
- El problema de la recta tangente
- El problema del área

2. Cálculo de límites de manera gráfica y numérica

- Introducción a los límites
- Límites que no existen
- Definición formal de límite

Índice de contenidos II

TEMA 3:

3. Límites infinitos

- Introducción a los límites infinitos
- Asíntotas verticales

4. Infinitésimos

- Definición
- Equivalencias

5. Continuidad en conjuntos

- Teoremas de Bolzano y Darboux
- Teorema de Weierstrass

Índice de contenidos VII

TEMA 3:

6. Límites al infinito

- Límites en el infinito
- Asíntotas horizontales
- Límites infinitos al infinito

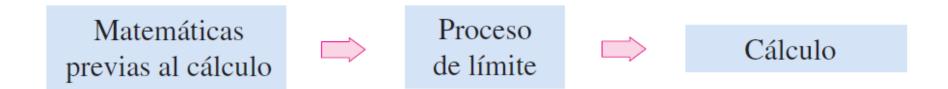
Una mirada previa al cálculo: ¿Qué es el cálculo?

El cálculo es...

- La matemática de los cambios: velocidades y aceleraciones
- El desarrollo de modelos que permite entender situaciones de la vida real → conceptos: rectas tangentes, pendientes, áreas, volúmenes, curvaturas...

Estrategia:

Pasar de las matemáticas previas al cálculo (estáticas) al cálculo (dinámico) → reformulación a través de un proceso de límite



Una mirada previa al cálculo: ¿Qué es el cálculo? II

Ejemplo: ¿qué podemos hacer con cálculo diferencial?

Sin cálculo	Con cálculo diferencial		
Valor de $f(x)$ cuando $x = c$ $y = f(x)$ c	Límite de $f(x)$ cuando x tiende a c y $y = f(x)$ c		
Pendiente de una recta Δy	Pendiente de una curva		
Recta secante a una curva	Recta tangente a una curva		

Una mirada previa al cálculo: ¿Qué es el cálculo? III

Ejemplo: ¿qué podemos hacer con cálculo integral?

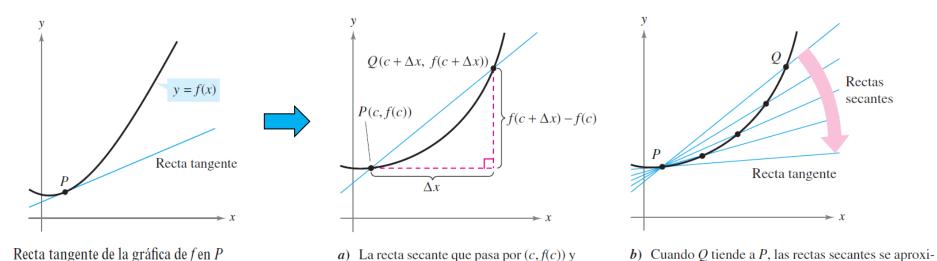
Sin c	álculo	Con cálculo integral			
Área de un rectángulo		Área bajo una curva	<i>y x</i>		
Trabajo realizado por una fuerza constante		Trabajo realizado por una fuerza variable			
Centro de un rectángulo	•<	Centroide de una región	<i>y x</i>		

Una mirada previa al cálculo: El problema de la recta tangente

man a la recta tangente

A partir de una función f y de un punto P de su gráfica, encontrar la ecuación de la recta tangente a la gráfica en el punto P

- Calcular la pendiente de una recta secante que pase por P y por otro punto Q de la curva
- Si Q tiende a P, la pendiente de la recta secante de aproxima a la de la tangente → la pendiente de la recta tangente es el límite de la pendiente de la recta secante

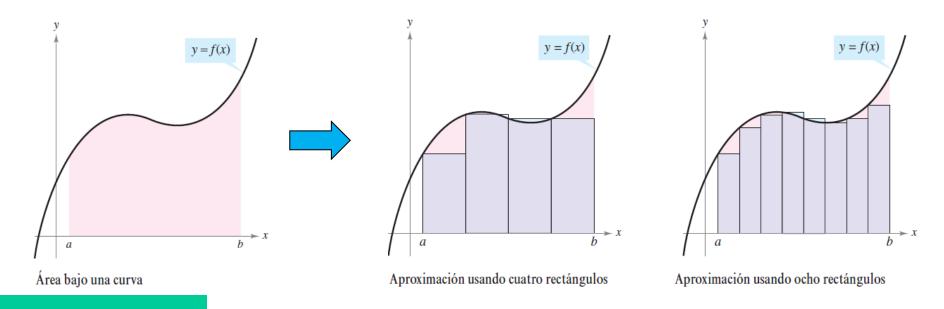


 $(c + \Delta x, f(c + \Delta x))$

Una mirada previa al cálculo: El problema del área

Determinar el área de una región plana delimitada por gráficas de funciones

- Estimar el área bajo la curva utilizando varios rectángulos
- La aproximación mejora al aumentar el número de rectángulos
- El área de la región puede calcularse entonces como el límite de la suma de las áreas de los rectángulos cuando el número de éstos crece sin fin



Cálculo de límites de manera gráfica y numérica: Introducción a los límites

Descripción "informal" de límite:

Si f(x) se acerca arbitrariamente a un número L cuando x se aproxima a c por cualquiera de los dos lados, entonces:

 $\lim_{x\to c} f(x) = L$

Ejemplo: estimación del límite de una función de manera gráfica

y numérica

$$f(x) = \frac{x^3 - 1}{x - 1}, \quad x \neq 1$$

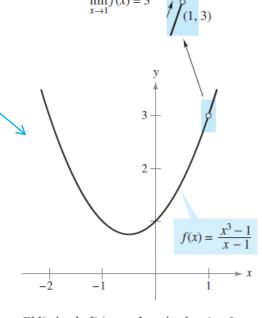
x se aproxima a 1 por la izquierda.

x se aproxima a 1 por la derecha.

								1.1	
f(x)	2.313	2.710	2.970	2.997	?	3.003	3.030	3.310	3.813
						1			

f(x) se aproxima a 3.

f(x) se aproxima a 3.



El límite de f(x) cuando x tiende a 1 es 3

Cálculo de límites de manera gráfica y numérica: Límites que no existen

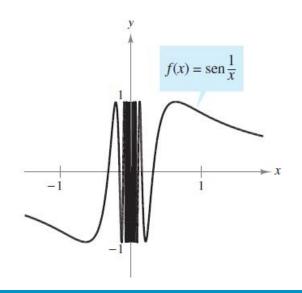
¿Cuándo decimos que un límite no existe?

COMPORTAMIENTOS ASOCIADOS A LA NO EXISTENCIA DE UN LÍMITE

- **1.** f(x) se aproxima a números diferentes por la derecha de c que por la izquierda.
- **2.** f(x) aumenta o disminuye sin límite a medida que x se aproxima a c.
- **3.** f(x) oscila entre dos valores fijos a medida que x se aproxima a c.

Ejemplo: Analizar la existencia del límite $\lim_{x\to 0} \sec \frac{1}{x}$

x	$2/\pi$	$2/3\pi$	$2/5\pi$	$2/7\pi$	$2/9\pi$	$2/11\pi$	$x \rightarrow 0$
sen (1/x)	1	-1	1	-1	1	-1	El límite no existe.



Cálculo de límites de manera gráfica y numérica: Definición formal de límite

DEFINICIÓN DE LÍMITE

Sea f una función definida en un intervalo abierto que contiene a c (salvo posiblemente en c) y L un número real. La afirmación

$$\lim_{x \to c} f(x) = L$$

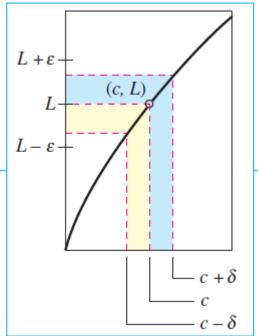
significa que para todo $\varepsilon > 0$ existe un $\delta > 0$ tal que si

$$0 < |x - c| < \delta$$
, entonces $|f(x) - L| < \varepsilon$.

NOTA:

Algunas funciones carecen de límite cuando $x \rightarrow c$, pero las que lo poseen no pueden tener dos límites diferentes

Si el límite de una función existe, entonces es único



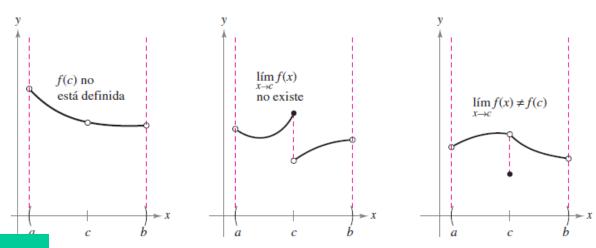
Continuidad y límites laterales o unilaterales: Continuidad en un punto y en un intervalo abierto

Definición informal de la continuidad de una función:

Decir que una función f es continua en x = c significa que no hay interrupción de la gráfica de f en $c \rightarrow$ la gráfica no tiene saltos o huecos en c

CONDICIONES DE DISCONTINUIDAD DE FUNCIONES:

- **1.** La función no está definida en x = c
- **2.** No existe el límite de f(x) en x = c
- 3. El límite de f(c) en x = c existe, pero no es igual a f(c)



Continuidad y límites laterales o unilaterales: Continuidad en un punto y en un intervalo abierto II

DEFINICIÓN DE CONTINUIDAD

Continuidad en un punto: Una función f es **continua en c** si se satisfacen las tres condiciones siguientes:

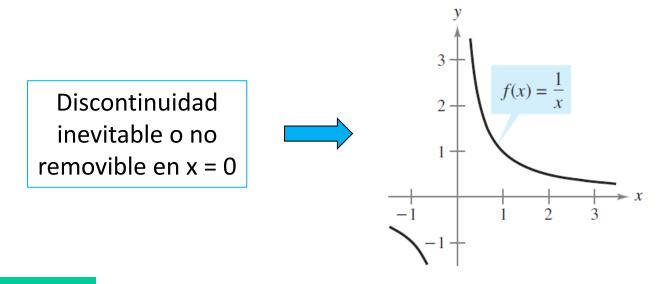
- **1.** f(c) está definida.
- 2. $\lim_{x \to c} f(x)$ existe.
- 3. $\lim_{x \to c} f(x) = f(c)$.

Continuidad en un intervalo abierto: Una función es **continua en un intervalo abierto** (a, b) si es continua en cada punto del intervalo. Una función continua en la recta completa de los números reales $(-\infty, \infty)$ es **continua en todas partes**.

Continuidad y límites laterales o unilaterales: Continuidad en un punto y en un intervalo abierto IV

Ejemplo: Analizar la continuidad de la función $f(x) = \frac{1}{x}$

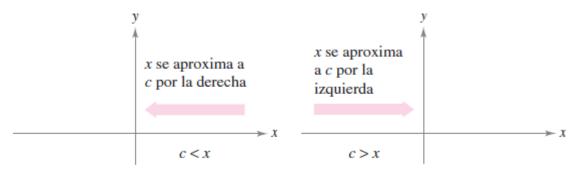
- El dominio de f lo constituyen todos los números reales distintos de cero
- f cumple las tres condiciones de continuidad en todos sus puntos excepto en x = 0
- Existe una discontinuidad inevitable en x = 0, ya que no hay modo de redefinir f(0) para que la nueva función sea continua en x = 0



Continuidad y límites laterales o unilaterales: Límites laterales y continuidad en un intervalo cerrado

Límites laterales:

- **1.** Límite por la derecha $\rightarrow x$ se aproxima a c por valores superiores a $c \implies \lim_{x \to c^+} f(x) = L$
- 2. Límite por la izquierda $\rightarrow x$ se aproxima a c por valores inferiores a $c \implies \lim_{x \to c^-} f(x) = L$

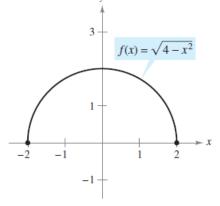


a) Límite por la derecha

b) Límite por la izquierda

Encontrar el límite de f(x) cuando x se aproxima a -2 por la derecha

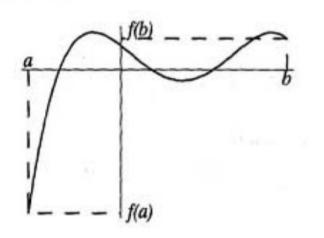
$$f(x) = \sqrt{4 - x^2}$$
 $\lim_{x \to -2^+} \sqrt{4 - x^2} = 0$



Continuidad en intervalos Teorema de Bolzano

Teorema de Bolzano

Si $[a, b] \subset \mathbb{R}$, $f : [a, b] \longrightarrow \mathbb{R}$ es continua, y en los extremos del intervalo f toma valores de signo contrario (sig $f(a) \neq \text{sig } f(b)$), entonces existe algún punto $x_0 \in (a, b)$ tal que $f(x_0) = 0$.



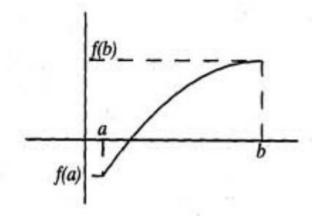


Fig. 6.4

Nota: Observemos que el teorema no dice nada sobre el número de raíces que existen en el intervalo.

Continuidad en intervalos Teorema de Darboux

Teorema de Darboux de los valores intermedios

Si $f : [a, b] \longrightarrow \mathbb{R}$ es continua, entonces f toma todos los valores comprendidos entre f(a) y f(b).

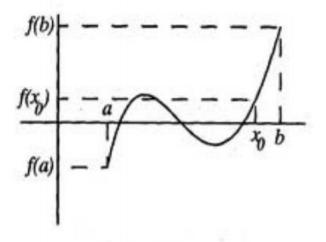


Fig. 6.5

Teorema.

Si $f:[a,b] \longrightarrow \mathbb{R}$ es continua, entonces f está acotada en [a,b].

Continuidad en intervalos Teorema de Weierstrass

Teorema de Weierstrass

Si $f:[a,b] \longrightarrow \mathbb{R}$ es continua, entonces f alcanza el máximo y el mínimo en el intervalo [a,b], es decir, existen $x_1,x_2 \in [a,b]$ tales que

$$f(x_1) \le f(x) \le f(x_2) \quad \forall x \in [a, b]$$

Observación: Este resultado es cierto en cualquier subconjunto compacto (cerrado y acotado) de IR.

Límites infinitos: Asíntotas verticales

DEFINICIÓN DE ASÍNTOTA VERTICAL

Si f(x) tiende a infinito (o menos infinito) cuando x tiende a c por la derecha o por la izquierda, se dice que la recta x = c es una **asíntota vertical** de la gráfica de f.

NOTA:

Si la gráfica de una función f tiene una asíntota vertical en x = c, entonces f no es continua en c

ASÍNTOTAS VERTICALES

Sean f y g funciones continuas en un intervalo abierto que contiene a c. Si $f(c) \neq 0$, g(c) = 0, y existe un intervalo abierto que contiene a c tal que $g(x) \neq 0$ para todo $x \neq c$ en el intervalo, entonces la gráfica de la función está dada por

$$h(x) = \frac{f(x)}{g(x)}$$

tiene una asíntota vertical en x = c.

Límites infinitos: Asíntotas verticales II

Ejemplo:

Determinar todas las asíntotas verticales de la gráfica de $f(x) = \frac{x^2 + 2x - 8}{x^2 - 4}$

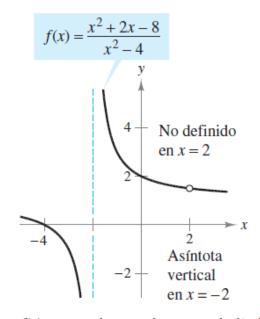
• En primer lugar es necesario simplificar la expresión:

$$f(x) = \frac{x^2 + 2x - 8}{x^2 - 4} = \frac{(x+4)(x-2)}{(x+2)(x-2)} = \frac{x+4}{x+2}, \quad x \neq 2$$

 Aplicando el teorema de las asíntotas verticales se puede concluir que existe una asíntota vertical en x = -2

$$\lim_{x \to -2^{-}} \frac{x^2 + 2x - 8}{x^2 - 4} = -\infty \quad \text{y} \quad \lim_{x \to -2^{+}} \frac{x^2 + 2x - 8}{x^2 - 4} = \infty$$

NOTA: Es importante observar que x = 2 no es una asíntota vertical



f(x) crece y decrece sin cota o sin límite cuando x tiende a -2

Límites infinitos: Asíntotas verticales III

PROPIEDADES DE LOS LÍMITES INFINITOS

Sean c y L números reales, y f y g funciones tales que

$$\lim_{x \to c} f(x) = \infty \qquad \text{y} \qquad \lim_{x \to c} g(x) = L.$$

1. Suma o diferencia:
$$\lim_{x \to c} [f(x) \pm g(x)] = \infty$$

2. Producto:
$$\lim_{x \to c} [f(x)g(x)] = \infty, \quad L > 0$$
$$\lim_{x \to c} [f(x)g(x)] = -\infty, \quad L < 0$$

3. Cociente:
$$\lim_{x \to c} \frac{g(x)}{f(x)} = 0$$

Propiedades análogas son válidas para límites laterales y para funciones cuyo límite de f(x) cuando x tiende a c es $-\infty$.

Límites infinitos: Asíntotas verticales IV

Ejemplo: Cálculo de límites utilizando las propiedades de los límites infinitos

a) Puesto que $\lim_{x\to 0} 1 = 1$ y $\lim_{x\to 0} \frac{1}{x^2} = \infty$, se puede escribir

$$\lim_{x \to 0} \left(1 + \frac{1}{x^2} \right) = \infty.$$

Propiedad 1

b) Puesto que $\lim_{x\to 1^-} (x^2+1) = 2$ y $\lim_{x\to 1^-} (\cot \pi x) = -\infty$, se deduce que

$$\lim_{x \to 1^{-}} \frac{x^2 + 1}{\cot \pi x} = 0.$$

Propiedad 3

c) Al ser $\lim_{x\to 0^+} 3 = 3$ y $\lim_{x\to 0^+} \cot x = \infty$, se tiene

$$\lim_{x \to 0^+} 3 \cot x = \infty.$$

Propiedad 2

Infinitésimos

Definición. Infinitésimo

La función $f:A\longrightarrow I\!\!R$ es un infinitésimo en el punto $a\in I\!\!R$ si $\lim_{x\to a}f(x)=0$.

The state of the s

Definición. Infinitésimos comparables

Dos infinitésimos f y g en a son comparables si existe $\lim_{x\to a} \frac{f(x)}{g(x)}$

Definición. Orden de infinitésimos

Si $f, g: A \longrightarrow \mathbb{R}$ son infinitésimos comparables en el punto a, diremos que:

- a) f y g son del mismo orden si $\lim_{x\to a} \frac{f(x)}{g(x)} = l \in \mathbb{R} \{0\}$
- b) f es de mayor orden que g si $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$

Infinitésimos

Definición. Infinitésimos equivalentes

Dadas dos funciones f y g que sean infinitésimos en el punto a, si $\lim_{x\to a} \frac{f(x)}{g(x)} = 1$ las funciones f y g se llaman infinitésimos equivalentes, cuando $x\to a$, y se escribe $f\sim g$.

Tabla de infinitésimos equivalentes

Las siguientes funciones son infinitésimos equivalentes cuando $x \to 0$

$$sen x \sim x \sim arcsen x$$

$$tg x \sim x \sim arctg x$$

$$1 - \cos x \sim \frac{x^2}{2}$$

$$log(1+x) \sim x$$

$$a^x - 1 \sim x \log a$$

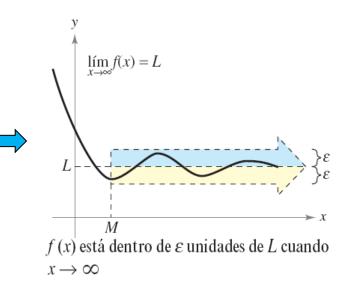
Límites al infinito: Límites en el infinito

DEFINICIÓN DE LÍMITES AL INFINITO

Sea L un número real.

- 1. El enunciado $\lim_{x\to\infty} f(x) = L$ significa que para cada $\varepsilon > 0$ existe un M > 0 tal que $\left| f(x) L \right| < \varepsilon$ siempre que x > M.
- 2. El enunciado $\lim_{x \to -\infty} f(x) = L$ significa que para cada $\varepsilon > 0$ existe un N < 0 tal que $\left| f(x) L \right| < \varepsilon$ siempre que x < N.

Para un número positivo dado ε existe un número positivo M tal que, para x > M, la gráfica de f estará entre las rectas horizontales dadas por $y = L + \varepsilon$ e $y = L - \varepsilon$



Límites al infinito: Límites en el infinito II

Ejemplo: Límites en el infinito de f(x)

$$f(x) = \frac{3x^2}{x^2 + 1}$$

x decrece sin límite.

x crece sin límite.

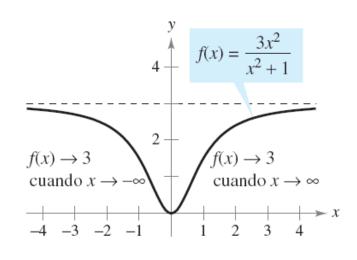
x	$-\infty\leftarrow$	-100	-10	-1	0	1	10	100	$\rightarrow \infty$
f(x)	3←	2.9997	2.97	1.5	0	1.5	2.97	2.9997	\rightarrow 3

f(x) se aproxima a 3.

f(x) se aproxima a 3.

$$\lim_{x \to -\infty} f(x) = 3$$
 Límite en infinito negativo.

$$\lim_{x \to \infty} f(x) = 3$$
 Límite en infinito positivo.



El límite de f(x) cuando x tiende a $-\infty$ o ∞ es 3

Límites al infinito: Asíntotas horizontales

DEFINICIÓN DE UNA ASÍNTOTA HORIZONTAL

La recta y = L es una **asíntota horizontal** de la gráfica de f si

$$\lim_{x \to -\infty} f(x) = L \quad \text{o} \quad \lim_{x \to \infty} f(x) = L.$$

NOTA: a partir de esta definición se concluye que **la gráfica de una función de** *x* **puede tener como mucho dos asíntotas horizontales** (una hacia la derecha y otra hacia la izquierda)

LÍMITES AL INFINITO

Si r es un número racional positivo y c es cualquier número real, entonces

$$\lim_{x \to \infty} \frac{c}{x^r} = 0.$$

Además, si x^r se define cuando x < 0, entonces

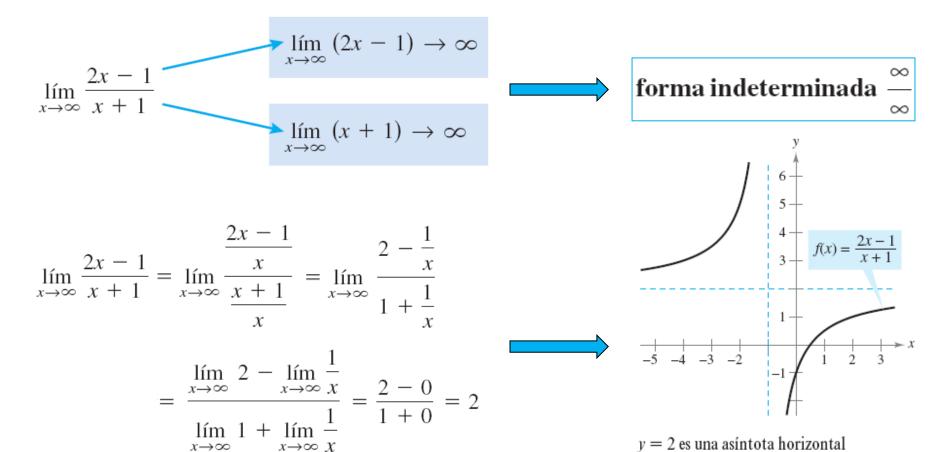
$$\lim_{x \to -\infty} \frac{c}{x^r} = 0.$$

Para evaluar límites en el infinito, resulta útil el siguiente teorema:

Límites al infinito: Asíntotas horizontales II

Ejemplo: Determinación de un límite al infinito

 $x \rightarrow \infty \chi$



Límites al infinito: Asíntotas horizontales III

Estrategia para determinar límites en $\pm \infty$ de funciones racionales

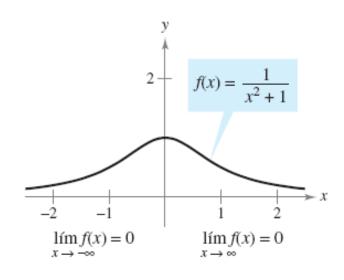
- Si el grado del numerador es menor que el grado de denominador, entonces el límite de la función racional es 0.
- 2. Si el grado del numerador es *igual al* grado de denominador, entonces el límite de la función racional es el cociente de los coeficientes dominantes.
- Si el grado del numerador es mayor que el grado del denominador, entonces el límite de la función racional no existe.

Ejemplo:

$$f(x) = \frac{1}{x^2 + 1}$$

El límite de f(x) cuando x tiende a infinito es 0 porque el grado del denominador supera al del numerador

NOTA: Las funciones racionales tienden a la misma asíntota horizontal hacia la derecha que hacia la izquierda



Límites al infinito: Asíntotas horizontales IV

Si en vez de funciones racionales tenemos funciones algebraicas y trascendentes mezcladas es posible que sea necesario utilizar la regla de L'Hôpital para evaluar los límites al infinito

En este caso, la regla de L'Hôpital se establece de la siguiente manera:

Si el límite de f(x)/g(x) cuando x tiende a ∞ (o $-\infty$) produce la forma indeterminada 0/0 si ∞/∞ , entonces

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

suponiendo que el límite de la derecha existe.

Ejemplo:

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{\frac{d}{dx} [\ln x]}{\frac{d}{dx} [x]} = \lim_{x \to \infty} \frac{1}{x} = 0$$

$$y = 0 \text{ es una asíntota horizontal}$$

Límites al infinito: Límites infinitos al infinito

Muchas funciones no tienden a un límite finito cuando x crece (o decrece) sin límite:

DEFINICIÓN DE LÍMITES INFINITOS AL INFINITO

Sea f una función definida en el intervalo (a, ∞) .

- 1. El enunciado $\lim_{x \to -\infty} f(x) = \infty$ significa que para cada número positivo M, existe un número correspondiente N > 0 tal que f(x) > M siempre que x > N.
- 2. El enunciado $\lim_{x \to -\infty} f(x) = -\infty$ significa que para cada número negativo M, existe un número correspondiente N > 0 tal que f(x) < M siempre que x > N.

Pueden darse definiciones similares para los enunciados:

$$\lim_{x \to -\infty} f(x) = \infty \text{ y } \lim_{x \to -\infty} f(x) = -\infty$$

Límites al infinito: Límites infinitos al infinito II

Ejemplo: Determinación de límites infinitos al infinito

$$a) \quad \lim_{x \to \infty} x^3$$

b)
$$\lim_{x\to-\infty} x^3$$

a) Cuando x crece sin límite, x³ también crece sin límite, por tanto:

$$\lim_{x\to\infty} x^3 = \infty$$

b) Cuando x decrece sin límite, x^3 también decrece sin límite, por tanto:

$$\lim_{x \to -\infty} x^3 = -\infty$$

NOTA: los resultados deben concordar con los que se obtienen si se aplica el criterio del coeficiente dominante para funciones polinómicas

