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Differential Geometry

Differential Geometry

@ We focus on the study of parametrized curves in R3.

@ We consider how to measure geometric properties as length
and curvature.

@ A deeper insight can be obtained by defining three mutually
perpendicular unit vectors: the so-called moving frame.

@ This study takes us briefly into the branch of mathematics
called differential geometry.

@ This area uses calculus and analysis to understand the
geometry of

o Curves
e Surfaces, and
e Manifolds
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Arclength

Approximating the length of a C! path
o Let x:[a,b] CR — R3 be a C! path in R3

@ We can approximate the length L of x as:

x(D)
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Arclength

Approximating the length of a C! path

x(4_1) )

x(a)

e First, partition the interval [a, b] into n subintervals.

@ Choose numbers ty, t1, ..., t, such that,
a=ty<t1<---<t,=b

@ For i=1,...,n, we let As; denote the distance between the
points x(tj—1) and x(t;) on the path.
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Arclength

Approximating the length of a C! path

x(b)
x(f;_1)
x(a)
a = <t <---<th=>b
As; = distance between x(t;_1) and x(t;)
@ Then, we can approximate L
n
L~ > As
i=1
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Arclength

Approximating the length of a C! path

b
x(t;_1) D)
x(a)
a = th<ti<---<th=b>b
n
As; = distance between x(t;_1) and x(t;) , L=~ ZAS;
i=1
@ Since x(t) = (x(t), y(t),z(t)) and using the Pythagorean
theorem:
Dsi= /B + Ay? + A
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Arclength

Approximating the length of a C! path

x(b)
x(t-1)
x(a)
a = th<thi<---<th=0>b
n
As = \JAR+AR+AZ, L~ As
i=1
@ Then, we define the length L of x to be

L= lim VAR + Ay? + A

maxIAt,%O Z A y o %i
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Arclength

Approximating the length of a C! path

b
x(1,_1) X
x(a)
a = th<ti<---<th=b>b
n
_ “ 2 2 2
L= méxllAT,aoiz; \/AX" Ay + 47

@ We can rewrite this equation as an integral:

= /ab \/x’(t)2 +y'(t)% + 2/(t)%dt
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Arclength

Approximating the length of a C! path

x(5;_1) )

X(a)

L_/ X2+ /(07 + (et

@ Note that the integrand is precisely the speed of the path.

IX'(£)]

@ Speed measures the rate of distance traveled per unit time.

@ So, it make sense that integrating the speed over the elapsed
time interval should give the total distance traveled.
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Arclength

Definition 2.1: Length of a Path in R”

o The length L(x) of a C! path x : [a, )] C R — R" is found by
integrating its speed

b
L(x) = / % (£)] dt

Example 1

@ We compute the length of the path,

x:[0,27] = R?, x(t) = (acost,asint), a >0

o We have,
/ - . .
x'(t) = —asinti+ acostj
IX(t)] = Va?sin?t+a2cos2t=a
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Arclength

Definition 2.1: Length of a Path in R”

o The length L(x) of a C! path x : [a, )] C R — R" is found by
integrating its speed

b
L(x) = / X (6)|dt

Example 1

x'(t) = —asinti+ acostj

IX(t)]| = Va2sin?t+a2cos?t=a

@ Thus, Definition 2.1 gives

b 27
L(x) = / X' (t)||dt = / adt = 27a
a 0
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Arclength

Definition 2.1: Length of a Path in R”

@ The length L(x) of a C path x : [a, ] C R — R" is found by
integrating its speed

b
L(x) = / X (6) 1 dt

Example 1

x'(t) = —asinti+ acostj
X' ()] = Va2sin?t + a2 cos? t = a
L(x) = 2rwa

@ Notice that the path x traces a circle of radius a once.

@ The length integral works out to be the circumference of the
circle, as it should.
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Arclength

Definition 2.1: Length of a Path in R”

@ The length L(x) of a C path x : [a, )] C R — R" is found by
integrating its speed

b
L(x) = / X (6) 1 dt

’

Example 2

@ Consider the helix

x:[0,27] = R3, x(t) = (acost,asint,bt), 0 <t < 2w

o We have
x'(t) = — asinti+ acostj+ bk

IX'()| = va2+b?
b 27
L(x) = / IX'(t)||dt = v/ a2 + b2dt = 2w/ a% + b2
a 0
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Arclength

Definition 2.1: Length of a Path in R”

@ The length L(x) of a C path x : [a, )] C R — R" is found by
integrating its speed

b
L(x) = / X (2) 1 dt

Example 2
x:[0,27] = R3, x(t) = (acost,asint, bt), 0 <t <27

L(x) = 27\ a2 + b?

@ When b =0, the helix reverts to a circle and the length
integral agrees with the previous example
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Reparametrization: arclength parameter

Reparametrization of a Path

@ The calculation of the length of a path provides a way to
reparametrize the path

@ This reparametrization uses a parameter that depends solely
on the geometry of the curve traced by the path.

It does not depend on
the way in which the curve is traced

@ This parameter is called the arclength parameter.
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Reparametrization: arclength parameter

Reparametrization of a Path
o Let x be any C! path and assume that the velocity x’ # 0.
@ Fix a point Py on the path and let a be such that x(a) = Pp.
@ We define a one-variable function s of the given parameter t

@ This function s measures the length of the path from Py to
any other (moving) point P by:

(1) = / %7l

P=x(t)
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Reparametrization: arclength parameter

Reparametrization of a Path

s(t) = / ¥ (7)1 dr

@ From the former formula and from the fundamental theorem

of calculus
d d [t
@ =t ). WOlldr = [X(2)] = speed
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Reparametrization: arclength parameter

Reparametrization of a Path
t ds
s(t) = [ IK(r)lldr, 5 = I¥(2)] = speed

P=x(1)

@ Since we have assumed that x’ # 0, it follows that ds/dt is
nonzero

@ In fact, s is an invertible function

It is at least theoretically possible
to solve the equation s = s(t) for ¢t in terms of s.
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Reparametrization: arclength parameter

Example 3

@ Consider the helix
x:[0,27] = R3, x(t) = (acost,asint,bt), 0 <t <27

@ Let choose the “base point” Py to be x(0) = (a,0,0)

@ Then we have
t t
S(t) = / IX(7)lldr = / V@ + Bdr = /2 + Bt
0 0

@ So that

S = \/32+b2t:t:\/ﬁ

This reparametrization
just rescales the time variable
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Reparametrization: arclength parameter

@ Consider the helix
x:[0,27] = R3, x(t) = (acost,asint,bt), 0 <t<2m

@ Let choose the “base point” Py to be x(0) = (a,0,0)

@ Then we have
t t
0= [ IKGldr = [ VF+ Bdr = VA + Bt
0 0

@ So that

S = \/32+b2t:>t:ﬁ

@ Hence, we can rewrite the helical path as

x(s) = <acos <\/a;+—bQ>,asin< —= b2>, \/afi b2>
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Reparametrization: arclength parameter

Interpretation of the Arclength Parametrization

The arclength parameter s is an intrinsic parameter.
It depends only on how the curve itself bends.
It does not depend on how fast (or slowly) the curve is traced.
Using the chain rule
d t d

K(1) = Q2T ) oo
Since x'(t) # 0,
_ X(1)

X' ()]l

Therefore, x'(s) is precisely the normalization of the original
velocity vector, and so it is a unit vector.

X(s)

Hence, the reparametrized path x(s) has unit speed,
regardless of the speed of the original path x(t).

Marius A. Marinescu Métodos Matemdticos de Bioingenieria

25 /39



@ Some Differential Geometry
o Differential Geometry
@ Arclength
@ Reparametrization: arclength parameter
@ Tangent unit vector and curvature k



Some Differential Geometry
000000000000000000000000e000000000000

Tangent unit vector and curvature K

Definition 2.2

o Let x: / CR — R3 be a C3 path and assume that x’ # 0

@ The unit tangent vector T of the path x is the normalization
of the velocity vector,

w
Remarks

@ T is undefined when the speed of the path is zero.

e T is dx/ds, where s is the arclength parameter.

A,

Marius A. Marinescu Métodos Matematicos de Bioingenieria 27/39



Some Differential Geometry
0000000000000000000000000e00000000000

Tangent unit vector and curvature K

Definition 2.2
o Let x: / CR — R3 be a C3 path and assume that x’ # 0

@ The unit tangent vector T of the path x is the normalization

of the velocity vector,
TV _ x: (t)
vl X (o)l

Remarks

@ Geometrically, T is the tangent vector of unit length that
points in the direction of increasing arclength

TN

)/
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Tangent unit vector and curvature K

Example 5

@ Consider the helix
x(t) = (acos t, asin t, bt)
@ Then
T(t) = x'(t)  —asinti+ acostj+ bk
[ (2) Va + b2

@ On the other hand, if we parametrize the helix using arclength

x(s) = (acos <\/azs_|_7b2> i <\/a2s+ b2) ’ \/a2bi b2>
@ Then
T(s)=x'(s)

—a . S . a S .
= sin 1+ cos
Va2 + b’ <\/a2+b2> Va2 + b2 (x/a2+b2>J

b
Wk (Recall s = v/a% + b%t)
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Tangent unit vector and curvature K

Proposition 2.3

@ Assume that the path x always has nonzero speed.

@ Then
1. dT/dt is perpendicular to T for all ¢ in I (the domain of the
path x).

2. ||dT/dt|| |t=t, equals the angular rate of change (as t
increases) of the direction of T when t = t.

@ Using the unit tangent vector, we can define a quantity that
measures how much a path bends as we travel along it.

@ Part 2 of Proposition 2.3 provides a precise way of measuring
the bending of a path.
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Tangent unit vector and curvature K

Definition 2.4

The curvature & of a path x in R3 is the angular rate of change of
the direction of T per unit change in distance along the path.

Remarks
o Note we are taking the rate of change of T per unit change in
distance.
@ The reason is that we want the curvature  to be an intrinsic
quantity T

Small curvature &
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Tangent unit vector and curvature K

Definition 2.4
@ The curvature k of a path x in R3 is the angular rate of
change of the direction of T per unit change in distance along
the path.

Remarks
@ Note we are taking the rate of change of T per unit change in
distance
@ The reason is that we want the curvature  to be an intrinsic
quantity.

T

Large curvature k
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Tangent unit vector and curvature K

Definition 2.4

@ The curvature k of a path x in R3 is the angular rate of
change of the direction of T per unit change in distance along
the path.

@ Considering Definition 2.4, Part 2 of Proposition 2.3 and
using the chain rule

|ldT/dt|  ||dT
M) = "o/ar || ds

o ||dT/dt|| measures the angular rate of change of the direction
of T per unit change in parameter.

o ds/dt is the rate of change of distance per unit change in
parameter.
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Tangent unit vector and curvature K

Example 6

@ Consider the circle,
x(t) = (acost,asint), 0 <t <27
@ Then,
X'(t) = — asinti+ acostj
ds
/
t = _— =
K@) = 2 =a
@ So that,
x'(t) .
T(t) = = —sinti+ costj
' (2)]
@ Hence,
dT/dt 1 1
K(t) = Hds//dtH = 5” — cos ti — sin tj|| = 3
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Tangent unit vector and curvature K

Example 6

@ Consider the circle,

x(t) = (acost,asint), 0 <t<2rm
dT/dt 1 1
k(t) = Hds//dtH_aH — cos ti — sin tj|| =3

@ The curvature of a circle is always constant.

@ lIts value equals the reciprocal of the radius.

Therefore, the smaller the circle,
the greater the curvature
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Tangent unit vector and curvature K

Example 7

o Let a and b be constant vectors in R® and a # 0.
@ Consider the path,
x(t) = at+b
@ This path traces a line.
@ Then,
ds
¢ t = d 4 t = — =
X(t) = a and [X(0)] =S =l
@ Hence,
a
T(t) = —
all
@ Therefore T(t) is a constant vector.
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Tangent unit vector and curvature K

Example 7

o Let a and b be constant vectors in R3 and a # 0
o Consider the path
x(t) = at+b

@ Therefore T(t) is a constant vector.
@ Thus,

T(t)=0=xk=0

This result agrees with the intuitive fact that
a line doesn't curve
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Tangent unit vector and curvature K

Example 8

@ Consider the helix
x(t) = (acost,asin t, bt)

@ We have already seen that

ds —asin ti + acos tj + bk
p” Vvaz+b?> and T(t) o

@ Thus
K(t) = |dT/dt|| 1 —acosti—asintj|| a
T ds/dt VTR R+ || P+h

The curvature of the helix
is constant, just like the circle
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Tangent unit vector and curvature K

K in terms on nonintrinsic quantities

Let ¢(t) be a smooth curve. Another interesting formula for the
curvature is

v x al
"0 = PR

where v(t) and a(t) are the velocity and acceleration vector
respectively.

Try to compute the curvature of f(x) = x? and f(x) = sin(x).
Does it makes sense?

Marius A. Marinescu Métodos Matemadticos de Bioingenieria 39/39



	Some Differential Geometry
	Differential Geometry
	Arclength
	Reparametrization: arclength parameter
	Tangent unit vector and curvature 


