Métodos Matemáticos de Bioingeniería Grado en Ingeniería Biomédica Lecture 13

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones **Área de Estadística e Investigación Operativa** Universidad Rey Juan Carlos

19 de abril de 2021

Outline

- Some Differential Geometry
 - Differential Geometry
 - Arclength
 - Reparametrization: arclength parameter
 - ullet Tangent unit vector and curvature κ

Differential Geometry

Outline

- Some Differential Geometry
 - Differential Geometry
 - Arclength
 - Reparametrization: arclength parameter
 - \bullet Tangent unit vector and curvature κ

Differential Geometry

- We focus on the study of parametrized curves in \mathbb{R}^3 .
- We consider how to measure geometric properties as length and curvature.
- A deeper insight can be obtained by defining three mutually perpendicular unit vectors: the so-called moving frame.
- This study takes us briefly into the branch of mathematics called differential geometry.
- This area uses calculus and analysis to understand the geometry of
 - Curves
 - Surfaces, and
 - Manifolds

Outline

- Some Differential Geometry
 - Differential Geometry
 - Arclength
 - Reparametrization: arclength parameter
 - \bullet Tangent unit vector and curvature κ

- Let $\mathbf{x}:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^3$ be a C^1 path in \mathbb{R}^3
- We can approximate the length L of \mathbf{x} as:

- First, partition the interval [a, b] into n subintervals.
- Choose numbers t_0, t_1, \ldots, t_n such that,

$$a = t_0 < t_1 < \dots < t_n = b$$

• For i = 1, ..., n, we let Δs_i denote the distance between the points $\mathbf{x}(t_{i-1})$ and $\mathbf{x}(t_i)$ on the path.

$$a = t_0 < t_1 < \dots < t_n = b$$

 $\Delta s_i = \text{distance between } \mathbf{x}(t_{i-1}) \text{ and } \mathbf{x}(t_i)$

• Then, we can approximate L

$$L \approx \sum_{i=1}^{n} \Delta s_i$$

$$a = t_0 < t_1 < \cdots < t_n = b$$

$$\Delta s_i = \text{distance between } \mathbf{x}(t_{i-1}) \text{ and } \mathbf{x}(t_i) \;, \quad L \approx \sum_{i=1}^n \Delta s_i$$

• Since $\mathbf{x}(t) = (x(t), y(t), z(t))$ and using the Pythagorean theorem:

$$\Delta s_i = \sqrt{\Delta x_i^2 + \Delta y_i^2 + \Delta z_i^2}$$

$$a = t_0 < t_1 < \dots < t_n = b$$

$$\Delta s_i = \sqrt{\Delta x_i^2 + \Delta y_i^2 + \Delta z_i^2}, \quad L \approx \sum_{i=1}^n \Delta s_i$$

• Then, we define the length L of x to be

$$L = \lim_{\text{máx } \Delta t_i \to 0} \sum_{i=1}^n \sqrt{\Delta x_i^2 + \Delta y_i^2 + \Delta z_i^2}$$

$$a = t_0 < t_1 < \dots < t_n = b$$

$$L = \lim_{\text{máx } \Delta t_i \to 0} \sum_{i=1}^n \sqrt{\Delta x_i^2 + \Delta y_i^2 + \Delta z_i^2}$$

• We can rewrite this equation as an integral:

$$L = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt$$

• Note that the integrand is precisely the speed of the path.

$$\|\mathbf{x}'(t)\|$$

- Speed measures the rate of distance traveled per unit time.
- So, it make sense that integrating the speed over the elapsed time interval should give the total distance traveled.

• The length $L(\mathbf{x})$ of a C^1 path $\mathbf{x}:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$ is found by integrating its speed

$$L(\mathbf{x}) = \int_a^b \|\mathbf{x}'(t)\| dt$$

Example 1

• We compute the length of the path,

$$\mathbf{x}: [0, 2\pi] \to \mathbb{R}^2, \quad \mathbf{x}(t) = (a\cos t, a\sin t), \ a > 0$$

• We have.

$$\mathbf{x}'(t) = -a\sin t\mathbf{i} + a\cos t\mathbf{j}$$

 $\|\mathbf{x}'(t)\| = \sqrt{a^2\sin^2 t + a^2\cos^2 t} = a$

• The length $L(\mathbf{x})$ of a C^1 path $\mathbf{x}:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$ is found by integrating its speed

$$L(\mathbf{x}) = \int_{a}^{b} \|\mathbf{x}'(t)\| dt$$

Example 1

$$\mathbf{x}'(t) = -a\sin t\mathbf{i} + a\cos t\mathbf{j}$$

 $\|\mathbf{x}'(t)\| = \sqrt{a^2\sin^2 t + a^2\cos^2 t} = a$

• Thus, Definition 2.1 gives

$$L(\mathbf{x}) = \int_{a}^{b} \|\mathbf{x}'(t)\| dt = \int_{0}^{2\pi} a dt = 2\pi a$$

• The length $L(\mathbf{x})$ of a C^1 path $\mathbf{x}:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$ is found by integrating its speed

$$L(\mathbf{x}) = \int_{a}^{b} \|\mathbf{x}'(t)\| dt$$

Example 1

$$\mathbf{x}'(t) = -a\sin t\mathbf{i} + a\cos t\mathbf{j}$$
$$\|\mathbf{x}'(t)\| = \sqrt{a^2\sin^2 t + a^2\cos^2 t} = a$$
$$L(\mathbf{x}) = 2\pi a$$

- Notice that the path x traces a circle of radius a once.
- The length integral works out to be the circumference of the circle, as it should.

Arclength

Definition 2.1: Length of a Path in \mathbb{R}^n

• The length $L(\mathbf{x})$ of a C^1 path $\mathbf{x}:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$ is found by integrating its speed

$$L(\mathbf{x}) = \int_{a}^{b} \|\mathbf{x}'(t)\| dt$$

Example 2

Consider the helix

$$\mathbf{x} : [0, 2\pi] \to \mathbb{R}^3, \quad \mathbf{x}(t) = (a\cos t, a\sin t, bt), \ 0 \le t \le 2\pi$$

We have

$$\mathbf{x}'(t) = -a\sin t\mathbf{i} + a\cos t\mathbf{j} + b\mathbf{k}$$

$$\|\mathbf{x}'(t)\| = \sqrt{a^2 + b^2}$$

$$L(\mathbf{x}) = \int_{a}^{b} \|\mathbf{x}'(t)\| dt = \int_{0}^{2\pi} \sqrt{a^2 + b^2} dt = 2\pi \sqrt{a^2 + b^2}$$

• The length $L(\mathbf{x})$ of a C^1 path $\mathbf{x}:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$ is found by integrating its speed

$$L(\mathbf{x}) = \int_{a}^{b} \|\mathbf{x}'(t)\| dt$$

Example 2

$$\mathbf{x} : [0, 2\pi] \to \mathbb{R}^3, \quad \mathbf{x}(t) = (a \cos t, a \sin t, bt), \ 0 \le t \le 2\pi$$

$$L(\mathbf{x}) = 2\pi \sqrt{a^2 + b^2}$$

• When b = 0, the helix reverts to a circle and the length integral agrees with the previous example

Reparametrization: arclength parameter

Outline

- Some Differential Geometry
 - Differential Geometry
 - Arclength
 - Reparametrization: arclength parameter
 - ullet Tangent unit vector and curvature κ

- The calculation of the length of a path provides a way to reparametrize the path
- This reparametrization uses a parameter that depends solely on the geometry of the curve traced by the path.

It does not depend on the way in which the curve is traced

• This parameter is called the arclength parameter.

- Let **x** be any C^1 path and assume that the velocity $\mathbf{x}' \neq \mathbf{0}$.
- Fix a point P_0 on the path and let a be such that $\mathbf{x}(a) = P_0$.
- ullet We define a one-variable function s of the given parameter t
- This function s measures the length of the path from P₀ to any other (moving) point P by:

$$s(t) = \int_a^t \|\mathbf{x}'(\tau)\| d\tau$$

$$s(t) = \int_a^t \|\mathbf{x}'(\tau)\| d\tau$$

From the former formula and from the fundamental theorem of calculus

$$\frac{ds}{dt} = \frac{d}{dt} \int_{2}^{t} \|\mathbf{x}'(\tau)\| d\tau = \|\mathbf{x}'(t)\| = \text{speed}$$

$$s(t) = \int_a^t \|\mathbf{x}'(au)\|d au, \quad rac{ds}{dt} = \|\mathbf{x}'(t)\| = \mathsf{speed}$$

- Since we have assumed that $\mathbf{x}' \neq \mathbf{0}$, it follows that $d\mathbf{s}/dt$ is nonzero
- In fact, s is an invertible function

It is at least theoretically possible to solve the equation s = s(t) for t in terms of s.

Consider the helix

$$\mathbf{x}: [0, 2\pi] \to \mathbb{R}^3, \quad \mathbf{x}(t) = (a\cos t, a\sin t, bt), \ 0 \le t \le 2\pi$$

- Let choose the "base point" P_0 to be $\mathbf{x}(0) = (a, 0, 0)$
- Then we have

$$s(t) = \int_0^t \|\mathbf{x}'(\tau)\| d\tau = \int_0^t \sqrt{a^2 + b^2} d\tau = \sqrt{a^2 + b^2} t$$

So that

$$s = \sqrt{a^2 + b^2}t \Rightarrow t = \frac{s}{\sqrt{a^2 + b^2}}$$

This reparametrization just rescales the time variable

Consider the helix

$$\mathbf{x}: [0, 2\pi] \to \mathbb{R}^3, \quad \mathbf{x}(t) = (a\cos t, a\sin t, bt), \ 0 \le t \le 2\pi$$

- Let choose the "base point" P_0 to be $\mathbf{x}(0) = (a, 0, 0)$
- Then we have

$$s(t) = \int_0^t \|\mathbf{x}'(\tau)\| d\tau = \int_0^t \sqrt{a^2 + b^2} d\tau = \sqrt{a^2 + b^2} t$$

So that

$$s = \sqrt{a^2 + b^2}t \Rightarrow t = \frac{s}{\sqrt{a^2 + b^2}}$$

• Hence, we can rewrite the helical path as

$$\mathbf{x}(s) = \left(a\cos\left(\frac{s}{\sqrt{a^2 + b^2}}\right), a\sin\left(\frac{s}{\sqrt{a^2 + b^2}}\right), \frac{bs}{\sqrt{a^2 + b^2}}\right)$$

Interpretation of the Arclength Parametrization

- The arclength parameter *s* is an intrinsic parameter.
- It depends only on how the curve itself bends.
- It does not depend on how fast (or slowly) the curve is traced.
- Using the chain rule

$$\mathbf{x}'(t) = \frac{d(\mathbf{x}(s) \circ s(t))}{dt} = \mathbf{x}'(s)\frac{ds}{dt} = \mathbf{x}'(s)\|\mathbf{x}'(t)\|$$

• Since $\mathbf{x}'(t) \neq \mathbf{0}$,

$$\mathbf{x}'(s) = \frac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|}$$

- Therefore, $\mathbf{x}'(s)$ is precisely the normalization of the original velocity vector, and so it is a unit vector.
- Hence, the reparametrized path x(s) has unit speed, regardless of the speed of the original path x(t).

Tangent unit vector and curvature κ

Outline

- Some Differential Geometry
 - Differential Geometry
 - Arclength
 - Reparametrization: arclength parameter
 - \bullet Tangent unit vector and curvature κ

Definition 2.2

- Let $\mathbf{x}: I \subseteq \mathbb{R} \to \mathbb{R}^3$ be a C^3 path and assume that $\mathbf{x}' \neq \mathbf{0}$
- The unit tangent vector T of the path x is the normalization of the velocity vector,

$$\mathbf{T} = rac{\mathbf{v}}{\|\mathbf{v}\|} = rac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|}$$

Remarks

- T is undefined when the speed of the path is zero.
- **T** is $d\mathbf{x}/ds$, where s is the arclength parameter.

Tangent unit vector and curvature κ

Definition 2.2

- Let $\mathbf{x}:I\subseteq\mathbb{R}\to\mathbb{R}^3$ be a C^3 path and assume that $\mathbf{x}'\neq\mathbf{0}$
- The unit tangent vector T of the path x is the normalization of the velocity vector,

$$\mathbf{T} = rac{\mathbf{v}}{\|\mathbf{v}\|} = rac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|}$$

Remarks

• Geometrically, **T** is the tangent vector of unit length that points in the direction of increasing arclength

Tangent unit vector and curvature κ

Example 5

Consider the helix

$$\mathbf{x}(t) = (a\cos t, a\sin t, bt)$$

Then

$$\mathbf{T}(t) = \frac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|} = \frac{-a\sin t\mathbf{i} + a\cos t\mathbf{j} + b\mathbf{k}}{\sqrt{a^2 + b^2}}$$

• On the other hand, if we parametrize the helix using arclength

$$\mathbf{x}(s) = \left(a\cos\left(\frac{s}{\sqrt{a^2+b^2}}\right), a\sin\left(\frac{s}{\sqrt{a^2+b^2}}\right), \frac{bs}{\sqrt{a^2+b^2}}\right)$$

Then

$$\mathbf{T}(s) = \mathbf{x}'(s) = \frac{-a}{\sqrt{a^2 + b^2}} \sin\left(\frac{s}{\sqrt{a^2 + b^2}}\right) \mathbf{i} + \frac{a}{\sqrt{a^2 + b^2}} \cos\left(\frac{s}{\sqrt{a^2 + b^2}}\right) \mathbf{j}$$

$$+ \frac{b}{\sqrt{a^2 + b^2}} \mathbf{k} \quad (\text{Recall } s = \sqrt{a^2 + b^2} t)$$

Proposition 2.3

- Assume that the path x always has nonzero speed.
- Then
 - 1. $d\mathbf{T}/dt$ is perpendicular to \mathbf{T} for all t in I (the domain of the path \mathbf{x}).
 - 2. $||d\mathbf{T}/dt||_{t=t_0}$ equals the angular rate of change (as t increases) of the direction of \mathbf{T} when $t=t_0$.

Remark

- Using the unit tangent vector, we can define a quantity that measures how much a path bends as we travel along it.
- Part 2 of Proposition 2.3 provides a precise way of measuring the bending of a path.

Tangent unit vector and curvature κ

Definition 2.4

The curvature κ of a path \mathbf{x} in \mathbb{R}^3 is the angular rate of change of the direction of \mathbf{T} per unit change in distance along the path.

Remarks

- Note we are taking the rate of change of T per unit change in distance.
- The reason is that we want the curvature κ to be an intrinsic quantity

Small curvature κ

Tangent unit vector and curvature κ

Definition 2.4

• The curvature κ of a path ${\bf x}$ in \mathbb{R}^3 is the angular rate of change of the direction of ${\bf T}$ per unit change in distance along the path.

Remarks

- Note we are taking the rate of change of T per unit change in distance
- The reason is that we want the curvature κ to be an intrinsic quantity.

Large curvature κ

Definition 2.4

• The curvature κ of a path \mathbf{x} in \mathbb{R}^3 is the angular rate of change of the direction of \mathbf{T} per unit change in distance along the path.

Remarks

 Considering Definition 2.4, Part 2 of Proposition 2.3 and using the chain rule

$$\kappa(t) = \frac{\|d\mathsf{T}/dt\|}{ds/dt} = \left\|\frac{d\mathsf{T}}{ds}\right\|$$

- $\|d\mathbf{T}/dt\|$ measures the angular rate of change of the direction of \mathbf{T} per unit change in parameter.
- ds/dt is the rate of change of distance per unit change in parameter.

Consider the circle,

$$\mathbf{x}(t) = (a\cos t, a\sin t), \ 0 \le t < 2\pi$$

Then,

$$\mathbf{x}'(t) = -a \sin t \mathbf{i} + a \cos t \mathbf{j}$$

 $\|\mathbf{x}'(t)\| = \frac{ds}{dt} = a$

So that,

$$\mathbf{T}(t) = \frac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|} = -\sin t\mathbf{i} + \cos t\mathbf{j}$$

Hence,

$$\kappa(t) = \frac{\|d\mathbf{T}/dt\|}{ds/dt} = \frac{1}{a}\|-\cos t\mathbf{i} - \sin t\mathbf{j}\| = \frac{1}{a}$$

Consider the circle,

$$\begin{aligned} \mathbf{x}(t) &= (a\cos t, a\sin t), \ 0 \leq t < 2\pi \\ \kappa(t) &= \frac{\|d\mathbf{T}/dt\|}{ds/dt} = \frac{1}{a}\|-\cos t\mathbf{i} - \sin t\mathbf{j}\| = \frac{1}{a} \end{aligned}$$

- The curvature of a circle is always constant.
- Its value equals the reciprocal of the radius.

Therefore, the smaller the circle, the greater the curvature

- Let **a** and **b** be constant vectors in \mathbb{R}^3 and $\mathbf{a} \neq \mathbf{0}$.
- Consider the path,

$$\mathbf{x}(t) = \mathbf{a}t + \mathbf{b}$$

- This path traces a line.
- Then,

$$\mathbf{x}'(t) = \mathbf{a} \text{ and } \|\mathbf{x}'(t)\| = \frac{ds}{dt} = \|\mathbf{a}\|$$

Hence,

$$T(t) = \frac{a}{\|a\|}$$

• Therefore T(t) is a constant vector.

- ullet Let $oldsymbol{a}$ and $oldsymbol{b}$ be constant vectors in \mathbb{R}^3 and $oldsymbol{a}
 eq oldsymbol{0}$
- Consider the path

$$\mathbf{x}(t) = \mathbf{a}t + \mathbf{b}$$

- Therefore T(t) is a constant vector.
- Thus,

$$\mathbf{T}'(t) \equiv \mathbf{0} \Rightarrow \kappa = 0$$

This result agrees with the intuitive fact that a line doesn't curve

Tangent unit vector and curvature κ

Example 8

Consider the helix

$$\mathbf{x}(t) = (a\cos t, a\sin t, bt)$$

• We have already seen that

$$\frac{ds}{dt} = \sqrt{a^2 + b^2}$$
 and $\mathbf{T}(t) = \frac{-a\sin t\mathbf{i} + a\cos t\mathbf{j} + b\mathbf{k}}{\sqrt{a^2 + b^2}}$

Thus

$$\kappa(t) = \frac{\|d\mathbf{T}/dt\|}{ds/dt} = \frac{1}{\sqrt{a^2 + b^2}} \left\| \frac{-a\cos t\mathbf{i} - a\sin t\mathbf{j}}{\sqrt{a^2 + b^2}} \right\| = \frac{a}{a^2 + b^2}$$

The curvature of the helix is constant, just like the circle

κ in terms on nonintrinsic quantities

Let c(t) be a smooth curve. Another interesting formula for the curvature is

$$\kappa(t) = \frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|^3}$$

where $\mathbf{v}(t)$ and $\mathbf{a}(t)$ are the velocity and acceleration vector respectively.

Try to compute the curvature of $f(x) = x^2$ and f(x) = sin(x). Does it makes sense?