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Dot Product

Dot and Cross Product

@ When we introduced the arithmetic operations,

Why the product of two vectors
was not defined?

@ Vector multiplication could be defined in a manner
analogous to the vector addition:

By componentwise multiplication.
@ However, such a definition is not very useful in our context.
@ Instead, we shall define and use two different concepts of a

product of two vectors:

e The Euclidean inner product, or dot product, defined for two
vectors in R™ (where n is arbitrary).
o The cross or vector product, defined only for vectors in R3.
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Dot Product

Definition 3.1

e Let a = (a1, a2,a3) and b = (b1, ba, b3) be two vectors.

@ The dot (or inner or scalar) product of a and b is
a-b = a1b; + asbs + asbs
Dot product takes two vectors

and produces a single real number
(not a vector)

In R? we have

(1,-2,5)-(2,1,3) = (1)) +(=2)1)+(5)3) =15
Bi+2j-k)-(i-2k) = (3)(1)+(2)(0) +(-1)(-2) =5

Marius A. Marinescu Métodos Matematicos de Bioingenieria 5/76



Geometry on Euclidean Space
000®0000000000000000000000000000000000000000000000000000000000000000000000

Dot Product

Properties of Dot Products

If a,b and c are any vectors in R™, and k£ € R is any scalar:

1. a-a>0,and a-a=0if and only if a = 0.
2. a-b=b-a (commutative property)

3.a-(b+c)=a-b+a-c (distributive property)

4. (ka)-b = k(a-b) = a-(kb)
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Dot Product

Definition 3.2

e If a = (a1, a9, as) then the length of a (also called the norm

or magnitude) is
lafl = y/af + a3 + a3

@ Using the distance formula, the length of the arrow from the
origin to (a1, asg,as) is

dist(a,0) = \/(a; — 0)2 + (az — 0)2 + (a3 — 0)2

@ Thus,
a-a= HaH2 or |la]] =+va-a
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Dot Product

Theorem 3.3

Let a and b be two nonzero vectors in R? (or R?) drawn with their
tails at the same point and let 6, where 0 < 6 < 7, be the angle
between a and b

Then,
a-b = [|a||b]| cos

Note

| A

o If either a or b is the zero vector, then 6 is indeterminate (i.e.,
can be any angle).
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Dot Product

Demonstration on blackboard.

Corollary of Theorem 3.3

@ Theorem 3.3 may be used to find the angle between two
nonzero vectors a and b

a-b
0 =cos ! ——
[alll[bl|

@ The use of the inverse cosine is unambiguous, since we take
0<o<nr
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Dot Product

e Ifa=1i+jand b=j—k, then formula gives

L) (- k 1
HZCOS_IM =cos ' ——— = cos™!

1
i+illi-k T (V2-v2) 2 3

1+
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Dot Product

Orthogonality

@ If a and b are nonzero, v then Theorem 3.3 implies

cos =0 ifandonly if a-b =20

@ We have cosf = 0 just in case 6 = 5

Remember that 0 <6 <«

@ We call a and b perpendicular (or orthogonal) when
a-b=0
o If either a or b is the zero vector, the angle 0 is undefined

@ Sincea-b =0 if a or b is 0, we adopt the standard

convention
The zero vector

is perpendicular to every vector
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Dot Product

@ The vector a =i+ j is orthogonal to the vector b

(i+])-(i-j+k) =11+ 1)(-1)+(0)(1) =0
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Projection of vectors

Motivation example

@ Suppose that a 2 kg object is sliding down a ramp.

@ The ramp has a 30° inclination with the horizontal:
2kg

30°

@ If we neglect friction, the only force acting on the object is
gravity.
What is the component of the gravitational force
in the direction of motion of the object?
@ To answer questions of this nature, we need to find the
projection of one vector on another.
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Projection of vectors

Projection of one vector on another: intuitive idea

@ Let a and b be two nonzero vectors. v

@ Imagine dropping a perpendicular line from the head of b to
the line through a.

proj,b

@ The projection of b onto a , denoted proj,b, is the vector
represented by the tiny arrow in figure.
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Projection of vectors

Projection of one vector on another: precise formula

@ Recall that

A vector is determined by
magnitude (length) and direction

@ The direction of proj,b is either

e The same as that of a or
o Opposite to a if the angle 6 between a and b is more than 7

@ Using trigonometry

[[proj,b|

|cosf| = ——=—
b

@ The absolute value sign around cosf is needed in case

<O0<m

o
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Projection of vectors

Projection of one vector on another: precise formula

@ Since,
[[proja b
|cosf| =
b
e with a bit of algebra and using that |a - b| = ||a|||b]|| cos 6],
we have

|a-bj
Il

Iprojabll = [[b]l| cos 6] = H ”nbm | =

Thus, we know the magnitude and
direction of proj,b
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Projection of vectors

We know:

@ The direction of the projection is +a. A unit vector on this

direction is j:”%;‘H.
|a-b]

@ Has norm Tal -

So the projection vector proj,b is:

Formula for proj,b

: |a-b|> a ta-b) a a-b
proj,b = i( —=t+|—— ] —=—a
: lall/ all lall / llall [l
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Projection of vectors

Example 4

@ Suppose that a 2 kg object is sliding down a ramp

@ The ramp has a 30° incline with the horizontal
2kg

30°

o If we neglect friction, the only force acting on the object is
gravity
What is the component of the gravitational force
in the direction of motion of the object?
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Projection of vectors

Example 4

2 kg

30°

@ We need to calculate proj, F

o F is the gravitational force vector

@ a points along the ramp as shown in figure.
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Projection of vectors

Example 4

@ The coordinate situation is shown in figure

y

= 30° !

F =-mgj=-19.6j

@ The vector a = aii + asj has the form,

a1 = ||a]| cos 210° and ay = ||a]| sin 210°
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Example 4

v

- 30° *

,,,,,,,,,,,,, F =-mgj=-19.6j

@ We are really only interested in the direction of a, because the
projection will be the same for any length of a.

@ There is no loss in assuming that a is a unit vector.
3 1
a = (cos210°,sin210°) = — cos 30°i — sin 30°j = —\Q[i - §j
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Projection of vectors

Example 4

y

X
~ 30°

aw \V F =-mgj=-19.6j

o Taking g = 9.8m/sec’, we have F = —mg = —2gj = —19.6j

@ Therefore,

ey, (A8 cow s
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Projection of vectors

Example 4

proj, F' = (
j| ~ —8.49i — 4.9j

@ And the component of F' in this direction is

=98N

||proj, F|| = || —8.49i — 4.9j
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Projection of vectors

Normalization of a vector

@ Unit vectors, that is, vectors of length 1, are important in that
they capture the idea of direction

They all have the same length

@ Proposition 3.4 shows that every nonzero vector a can have
its length adjusted to give a unit vector

a

Ial]

@ u points in the same direction as a.

@ This operation is referred to as normalization of the vector. a
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Projection of vectors

Example 5

@ A fluid is flowing across a plane surface with uniform velocity
V.

@ Let n be a unit vector perpendicular to the plane surface:

“T //
i

e Find (in terms of v and n) the volume of the fluid that passes
through a unit area of the plane in unit time.
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Projection of vectors

Example b

@ Suppose one unit of time has elapsed,
v = space/time = space, for time=1.

@ Then, over a unit area of the plane (a unit square), the fluid
will have filled a "box” as in figure.

Base has area 1

@ The box may be represented by a parallelepiped.

@ The volume we seek is the volume of this parallelepiped.
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Projection of vectors

Example 5

@ The volume of this parallelepiped is:
Volume = (area of base) (height)
@ The area of the base is 1 unit by construction.
@ The height is given by proj,v.
o Sincen-n=|n|?=1
J ()n=(m-v)
rj,v = |——|n=(n-v)n
proj, T
@ Hence
lproj,v|| = [[(n - v)n| = n - v||n[| = [n - v|
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The Cross Product

@ The cross product of two vectors in R? is an “honest”
product,
it takes two vectors
and produces a third one
@ However, the cross product possesses less “natural” properties:
it cannot be defined for vectors in R?
without first embedding them in R3
@ Intuitively the cross product of two vectors gives another
vector perpendicular to both of them. It has norm
lla|||lb]|| sin @], the area of the parallelogram formed by the
vector a and b.
To introduces the definition of cross product we need to remember
some Matrix Algebra.
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The Cross Product

@ A matrix is a rectangular array of numbers.

@ Examples of matrices are

o e o =
o O = O
o= O O
= o O O

If a matrix has n rows and m columns, we write it n X m.

Thus, the three matrices just mentioned are, respectively,
2x3,3x2and4x4.

To some extent, matrices behave algebraically like vectors.

Mainly interesting for us is the the notion of a determinant.

It is a real number associated to an square matrix n x n.
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The Cross Product

Definition 4.2: Determinants

@ Let A be a2 x2or3x 3 matrix.

@ Then the determinant of A, denoted det A or |A|, is the real
number computed from the individual entries of A as follows:

1. 2 X 2 case

If
a b
A= e 4
then
14| = ¢ 2‘:ad—bc
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The Cross Product

Definition 4.2: Determinants

2. 3 x 3 case

If,

then,

Al =

L Qe
>0 o

c
fl=aei+bfg+ cdh — ceg — afh — bdi
i
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The Cross Product

Definition 4.2: Determinants

3. 3 x 3 case in terms of 2 x 2 determinants
If,
a b ¢
A=1|d e f],
g h i
then,
a b c
|Al=1|d e f :a‘z { b‘d { +c‘d Z
g h i g g
In this case we develop the matrix by minors. This is the general
form to calculate a determinant for an arbitrary square matrix A.

<
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The Cross Product

There are mnemonic rules for this

Diagonal Approach for 2 x 2 and 3 x 3 Determinants

@ We write (or imagine) diagonal lines running through the
matrix entries

It is not valid
for higher-order determinants

1. 2 x 2 case

|A| = ad — bc
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The Cross Product

Diagonal Approach for 2 x 2 and 3 x 3 Determinants
2. 3 X 3 case

We need to repeat the first two columns
for the method to work

|A| = aei+bfg + cdh — ceg — afh — bdi
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Definition of Cross Product

The cross product of two vectors a = a1i + asj + ask and

b = b1i + baj + bsk is:
i j k a a a a a a
axb ai; as a CIE | E T e L2
bi bz b: by bs by bs|? T b be
Example 3

4

i j k
(Bi+2j—k) x(i—-j+k) =3 2 -1

1 -1 1

—i—4j— 5k J
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The Cross Product

@ The direction of a x b is such that a x b is perpendicular to
both a and b (when both a and b are nonzero). v

@ It is taken so that the ordered triple (a,b,a x b) is a
right-handed set of vectors.

@ The length of a x b is the area of the parallelogram spanned
by a and b or is zero if either a is parallel to b or if a or b is
0.

@ Alternatively, the following formula holds

la > bl = [alf[b]} sin

where 6 is the angle between a and b.
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The Cross Product

The norm and orientation of the cross product

@ The area of this parallelogram is,

all[[b]| sin
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The Cross Product

@ Compute the cross product of the standard basis vectors for
RB

@ First consider i X j as shown in figure

@ The vectors i and j determine a square of unit area.
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The Cross Product

@ Compute the cross product of the standard basis vectors for
R?’

@ The vectors i and j determine a square of unit area

@ Thus,

ixjll=1

@ Any vector perpendicular to both i and j must be
perpendicular to the plane in which i and j lie.

@ Hence, i X j must point in the direction of £k

@ The right-hand rule implies that i x j must point in the
positive k direction

@ Since || k|| = 1, we conclude that,

ixj=k
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The Cross Product

Properties of the Cross Product

o Let a,b and c be vectors in R? and let k£ € R be any scalar.
Then:

1. a x b= —b x a (anticommutativity)

2. ax (b+c)=ax b+ a x c (distributivity)
3. (a+b) x ¢ =a x c+ b x c (distributivity)

4. k(axb)=(ka) x b=a x (kb) (associative with scalars)

It is not associative with vectors as we'll see in the next slide.

Marius A. Marinescu Métodos Matematicos de Bioingenieria 42/76



Geometry on Euclidean Space
0000000000000V 00000O000000000000000000000e000000000000000000000000000000000

The Cross Product

Properties the Cross Product Does Not Fulfil

o Let a,b and c be vectors in R? and let k£ € R be any scalar.

@ In general, the cross product is not commutative

axb#bxa

@ In general, the cross product does not fulfill associativity

ax(bxc)#(axb)xc

leta=b=iandc=]j
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The Cross Product

Example

Use vectors to calculate the area of the triangle whose vertices are
A(3,1),B(2,—1), and C(0,2) as shown in figure:

y

Cq

v
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The Cross Product

@ The trick is to recognise that any triangle can be thought of
as half of a parallelogram,

@ Now, the area of a parallelogram is obtained from a cross
product.
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The Cross Product

y

° ﬁ X zﬁ is a vector whose length measures the area of the
parallelogram determined by AB and 1@

Area of VABC = %HE X BH
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The Cross Product

@ To use the cross product, we must consider /ﬁ, /ﬁ € R3

@ We simply take the k-components to be zero

AB = —i—2j——i—2j—0k
AC = —3i+j=-3i+j+0k
@ Therefore
i j k
ABxAC =|-1 —2 0|=-7k
3 1 0
1 7
Area of VABC = §||—7k|| =3
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The Cross Product

@ There is nothing sacred about using A as the common vertex

@ We could just as easily have used B or C, as shown in figure

1 — 1
Area of VABC = §||BA X B(%H = §| (i+2j) x (—2i+ 3j)|
1 7
= — k = —
il = -
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The Cross Product

Find a formula for the volume of the parallelepiped determined by
the vectors a, b, and c:

axb

lelllcos |
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The Cross Product

Example

axb

lellfcos 6|

@ The volume of a parallelepiped is equal to the product of the
area of the base and the height.

@ The base is the parallelogram determined by a and b.

@ Its area is ||a x b]|.
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The Cross Product

axb

lell|cos 6]

@ The vector a X b is perpendicular to this parallelogram.
@ The height of the parallelepiped is ||c||| cos 8.

@ 0 is the angle between a x b and c.

The absolute value is needed in case 0 > %
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The Cross Product

axb

lelllcos |

Volume of parallelepiped = (area of base)(height)
= [la > blf[|c[|| cos ] = [(a x b) - |
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The Cross Product

Volume of parallelepiped =

(area of base)(height)
= |[la x bll[lc||| cos 8] = [(a x b) - ]

For example, the parallelepiped determined by the vectors

a=i+5j, b=—4i+2j and c=i+j+ 6k

Volume of parallelepiped = |((i+ 5j) x (—4i+2j)) - (i+j+ 6k)
— |22k - (i+j+ 6k)| = |22(6)| = 132
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The Cross Product

Turning a bolt with a wrench

@ Suppose you use a wrench to turn a bolt:

|F| sin 6

@ To measure exactly how much the bolt moves, we need the
notion of torque (or twisting force).

o Letting F' denote the force you apply to the wrench. Then:

Amount of torque = (wrench length)(component of F L wrench)
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The Cross Product

Turning a bolt with a wrench

@ Suppose you use a wrench to turn a bolt

|F| sin 6

@ Let r be the vector from the center of the bolt head to the
end of the wrench handle

@ Then
Amount of torque = ||r||||F||sinf

where 0 is the angle between r and F .
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The Cross Product

Turning a bolt with a wrench

@ Suppose you use a wrench to turn a bolt

@ That is, the amount of torque is

< |

@ And the direction of r X F is the same as the direction in
which the bolt moves.
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The Cross Product

Turning a bolt with a wrench

@ Suppose you use a wrench to turn a bolt

@ Hence, it is quite natural to define the torque vector T to be

T=rxF
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The Cross Product

Turning a bolt with a wrench

@ Suppose you use a wrench to turn a bolt

|F|sino |
|
@ Note that if F is parallel to r, then T =0

If you try to push or pull the wrench,
the bolt does not turn
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The Cross Product

Spinning an object about an axis

@ Assume the rotation of a rigid body about an axis as shown in
figure

What is the relation between
the (linear) velocity of a point of the object
and the rotational velocity?
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The Cross Product

Spinning an object about an axis
@ Assume the rotation of a rigid body about an axis as shown in
figure

@ First, we need to define a vector w, the angular velocity
vector of the rotation

@ This vector points along the axis of rotation, and its direction
is determined by the right-hand rule
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The Cross Product

Spinning an object about an axis

@ Assume the rotation of a rigid body about an axis as shown in
figure

@ The magnitude of w is the angular speed (measured in radians
per unit time) at which the object spins

@ Assume that the angular speed is constant in this discussion
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The Cross Product

Spinning an object about an axis

@ Assume the rotation of a rigid body about an axis as shown in
figure

]
I
]
i
i
]
I
i
]
I
i
i
]
]
1

-

Q

e Fix a point O (the origin) on the axis of rotation

o Letr(t) = OP be the position vector of a point P of the
body, measured as a function of time
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The Cross Product

Spinning an object about an axis

@ Assume the rotation of a rigid body about an axis as shown in
figure

]
i
i
i
1
]
i
1
]
i
1
]
I
i
1

3

Q

@ The velocity v of P is defined by

3

| Ar
v= lim —
At—0 At
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The Cross Product

Spinning an object about an axis

@ Assume the rotation of a rigid body about an axis as shown in
figure

o Ar =r(t + At) — r(t)
The vector change in position
between times ¢ and ¢t + At

@ Our goal is to relate v and w
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The Cross Product

Spinning an object about an axis

@ As the body rotates, the point P (at the tip of the vector r)
moves in a circle whose plane is perpendicular to w

@ The radius of this circle is

lr(t)]| sin 6

where 0 is the angle between w and r
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The Cross Product

Spinning an object about an axis

@ Both ||r(t)|| and 6 must be constant for this rotation

The direction of r(t)
may change with ¢, however
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The Cross Product

Spinning an object about an axis

e If t = 0, then ||Ar|| is approximately the length of the circular
arc swept by P between t and ¢t + At

@ That is,

| Ar]

Q

(radius of circle)(angle swept through by P)
= ([[rllsinf)(A¢)
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The Cross Product

Spinning an object about an axis

@ Thus

At

Ar . A¢
HE ~ ||r|| sin 0—
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The Cross Product

Spinning an object about an axis

o Now, let At — 0
@ Then ﬁ—‘; — v and %(f — ||w]| by definition of the angular
velocity vector w

@ Thus, we have
vl = [[wllllrllsiné = [lw x r|
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The Cross Product

Spinning an object about an axis

[Vl = llwll[|z]| sin 6 = || x r]|
@ It's not difficult to see intuitively that v must be

perpendicular to both w and r

@ Right-hand rule should enable you to establish the vector
equation

V=wXTr
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The Cross Product

Spinning an object about an axis

@ Apply to a bicycle wheel formula

vl = llwlllr|[sin = f|lw x r]
@ It tells us that the speed of a point on the edge of the wheel
is equal to the product of

e The radius of the wheel, and
e The angular speed

6 is 7 in this case
@ If the rate of rotation is kept constant, a point on the rim of a
large wheel goes faster than a point on the rim of a small one
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The Cross Product

Spinning an object about an axis

@ In the case of a carousel wheel, this result tells you to sit on
an outside horse if you want a more exciting ride.
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Summary of products involving vectors

Here we resume the properties:

Scalar Multiplication: ka

@ Result is a vector in the direction of a

Magnitude is ||kal| = |k|||a]|
@ Zeroif k=0ora=20

Commutative: ka = ak

@ Associative: k(la) = (kl)a

Distributive: k(a+b) = ka+ kb and (k +l)a = ka+ la
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Summary of products involving vectors

Dot Product: a-b

@ Result is a scalar

e Magnitude is a- b = ||al|||b|| cos 8; 6 is the angle between a
and b

e Magnitude is maximized if a || b

@ Zeroifalb, a=0o0rb=0

o Commutative: a-b=b-a

@ Associativity is irrelevant, since (a - b) - ¢ doesn't make sense

o Distributive: a-(b+c)=a-b+a-c

o If a=Dbthena-a=|a|?
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Summary of products involving vectors

Cross Product: a x b

@ Result is a vector perpendicular to both a and b

Magnitude is ||a x b|| = ||a]|||b|| sin #; 0 is the angle between
aand b

Magnitude is maximized if a | b

Zeroifalb,a=00orb=0
@ Anticommutative: a X b= —b x a
@ Not associative: In general a x (b x ¢c) # (ax b) x ¢

@ Distributive: a x (b+c)=axb+a x c and
(a+b)xc=axc+bxc

If a L b then ||a x b|| = ||al|||b]|
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