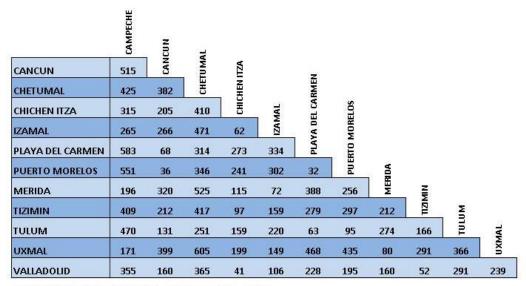
1. Práctica 1 (Algoritmo Genético con mutaciones)

Objetivo


Construye un algoritmo genético genérico que sirva para resolver el problema del viajante de comercio. El código seguirá las instrucciones del apartado "Implementación" de esta práctica. Responde después a las preguntas que se plantean en "Cuestiones".

Debes de usar comentarios con profusión, incluyendo celdas específicas donde expliques los algoritmos que usas y el código que has programado. Cuantos más comentarios haya, mejor será la evaluación y, probablemente, menos preguntas serán necesarias en la defensa de la práctica.

Implementación

Crea el notebook *L4P1-TSP.ipynb*. Usa la información recogida en la práctica ORDINARIA SIN ELITISMO quer has hecho durante el curso con los siguientes cambios:

• Un cromosoma codificará una ruta ente ciudades. Cada gen codifica una ciudad representada por una letra. La siguiente tabla recoge las 12 ciudades y la matriz de distancias entre ellas.

Distancia en Kilometros / Distances in Kilometers

- Se busca la ruta más corta que empezando en cualquier ciudad, las recorra todas y vuelva al origen.
- Los únicos datos que has de suministrar al programa son:
 - o **NTOWN**: Cuantas ciudades se usan de la lista original
 - o NPOB: Número de individuos de la población
 - o NGEN: Número de generaciones (ciclo completo sobre todos los individuos) de la prueba
 - o **Q**: Factor de Calidad. Probabilidad de que un gen dado **no** mute
 - o NRES: Cada qué número de generaciones se saca un resumen de la evolución del proceso
 - NSAMPLE: Cada qué número de generaciones se saca un muestreo de la población

El programa en Python deberá responder a los siguientes puntos:

- 1. Generar una población de individuos aleatorios y calcular su *fitness*, que será la suma de las distancias entre las ciudades según el orden que indica el cromosoma (incluyendo la vuelta a la ciudad de origen).
- 2. En cada generación, secuencialmente con todos los individuos de la población y comenzando por uno elegido **al azar**,
 - a. Decidir si el *cromosoma padre* se replicará o no usando un Método de Montecarlo simple sobre el valor de *Probabilidad de Selección* (Ps) obtenido como sigue:

Inteligencia Artificial II

Implementación de un Algoritmo Genético

 $Ps_i = 1 - \frac{F_i - min\{F_i\}}{max\{F_i\}}$

- b. Elegir al azar otro individuo de la población, el cual será borrado y sustituido por el individuo recién creado (¡puede ser él mismo!)
- c. Secuencialmente con todos los genes del *padre* decidir si cada gen se copia fielmente en el hijo o se muta (cambia) usando un Método de Montecarlo simple sobre el valor de **Q**. La mutación se obtiene invirtiendo el orden en que se visitan 2 ciudades. Así, mutar B implica:

- d. Calcular el fitness del nuevo individuo
- 3. Escribir la siguiente información:
 - Cabecera con los parámetros usados: NTOWN, NPOB, NGEN, Q
 - o Cada NRES generaciones escribir un resumen que contenga:
 - Nº de generación
 - Distancia mínima, media y máxima
 - Mejor individuo (cromosoma)
 - %Best (número de veces que el mejor individuo aparece en la población, en %)
 - Individuo consenso (aquel obtenido con la ciudad más frecuente en cada posición)
 - Cada NSAMPLE generaciones escribir
 - El resumen NRES
 - Un muestreo del 20% de los individuos de la población

Cuestiones

Elabora una memoria de la práctica en la que respondas a las siguientes cuestiones

- 1. Explica detalladamente el código que implementa las funciones de cálculo de F_i, P_s, elección de individuo a borrar, replicación/mutación de un individuo.
- 2. Estudiar qué pasa con la distancia mínima, media y máxima respecto a **NTOWN**, **NPOB** y **NGEN** probando con 5, 8 y 12 ciudades, distintos tamaños de población y distinto número de generaciones. Utilizar gráficos donde se recoja la relación entre estas variables e intentar encontrar alguna relación que garantice el mejor resultado (**usa una relación entre las distancias**, ya que los valores absolutos obviamente no son comparables para distinto número de ciudades). Explica lo que ocurre.
- 3. Para **NTOWN = 12** estudia que ocurre con los valores de distancia mínima, media y máxima para valores crecientes de **Q**. Explica la gráfica que obtienes. Estudia también qué pasa con el **individuo consenso**.

2. Forma de entrega del laboratorio:

La entrega consistirá en un fichero comprimido RAR con nombre LABO4-Apellidos.RAR subido a la tarea LAB4 Extraordinaria que contenga únicamente

- 1. Un notebook de Jupyter (archivos con extensión .ipynb).
- 2. Una memoria del laboratorio en Word.

Las entregas que no se ajusten exactamente a esta norma NO SERÁN EVALUADAS.

3. Rúbrica de la Práctica:

1. IMPLEMENTACIÓN: Multiplica la nota del trabajo por 0/1

Siendo una práctica de IA, todos los aspectos de programación se dan por supuesto. La implementación será:

- Original: Código fuente no copiado de internet. Grupos con igual código fuente serán suspendidos
- Correcta: Los algoritmos están correctamente programados. El programa funciona y ejecuta correctamente todo lo planteado en el apartado "Cuestiones" de cada práctica.
- Comentada: Inclusión (obligatoria) de comentarios.

Inteligencia Artificial II

Implementación de un Algoritmo Genético

2. MEMORIA DEL LABORATORIO

Obligatorio redacción clara y correcta ortográfica/gramaticalmente con la siguiente estructura:

- Portada con el nombre de los componentes del grupo y el número del grupo
- Índice
- Resultados de la Práctica 1
- Bibliografía

Calificación de las cuestiones:

PRÁCTICA	CUESTIÓN	VALORACIÓN (sobre 10)
Práctica 1	Cuestión 1	3
	Cuestión 2	4
	Cuestión 3	3